Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Технологические схемы и режим процессов

    Процесс пригоден для производства парафинов всех марок, включая пищевые, и осуществляется на типовых установках, применяемых также для гидродоочистки масел. Технологическая схема, режим, материальный баланс и расходные показатели процессов гидроочистки парафинов и гидродоочистки масел во многом близки. [c.256]

    В производстве изопренового каучука используется также схема дегазации в двух отдельных аппаратах. Конструкцией дегазаторов предусмотрено выдерживание в них более высокого уровня пульпы по сравнению с дегазаторами, применяемыми в других технологических схемах. Для процесса дегазации рекомендуется следующий технологический режим первая ступень— температура 92—105°С, давление 0,16—0,22 МПа вторая ступень — температура 97—105 °С, давление 0,11—0,17 МПа. Такая схема позволяет снизить остаточное содержание растворителя в дегазированном каучуке и повысить производительность всей технологической линии. Однако в данном случае на дегазацию каучука расходуется на 15—20 % больше острого водяного пара. [c.63]


    Зависимость между составом, свойством и состоянием системы наиболее наглядно выражается графически, путем построения равновесных диаграмм состав — свойство. Графические методы физико-химического анализа широко используются в технологии минеральных веществ, в частности для исследования процессов разделения фаз. Кристаллизация солей из водных растворов является важнейшей операцией большинства технологических процессов. Выделение твердых фаз из раствора часто связано с осуществлением циклического процесса, т. е. с возрастом маточных и промежуточных растворов солей в производственный цикл, что вызывает необходимость количественного исследования процессов смешения растворов, растворения солей, высаливания и т. п. Во многих случаях условия совместной растворимости солей определяют технологический режим и обусловливают последовательность отдельных стадий производства, т. е. позволяют теоретически обосновать технологическую схему производственного процесса. [c.7]

    При проектировании атмосферно-вакуумных установок (АВТ) качество нефти является важнейшей характеристи ой, поскольку именно оно определяет ассортимент продуктов и технологическую схему процесса, режим работы аппаратов и выбор конструкционных материалов, а также расход реагентов. Согласно технологической классификации нефтей, принятой в СССР (ГОСТ 912—66), класс нефти характеризует содержание серы, тип — выход моторных топлив, группа и подгруппа — выход и качество масел, вид—содержание парафина в нефти (качество нефтей месторождений, имеющих промышленное значение, дано в справочниках [8, 9], трудах исследовательских институтов, журнальных статьях в виде таблиц и графиков — см. далее рис. 1.4 и 1.5). [c.24]

    Во всех случаях появление неустойчивых режимов тесно связано с нарушением единственности решения уравнений, описывающих стационарный режим процесса. Для любой технологической схемы реактор — теплообменник можно доказать следующие утверждения [171 1) по крайней мере, один стационарный режим существует всегда 2) при изменении условий процесса могут попарно возникать дополнительные стационарные режимы, причем один режим из [c.357]

    Режим работы воздушных холодильников технологических сред во многом отличается от режима работы конденсаторов. Основное отличие состоит в том, что при охлаждении необходимо поддерживать определенное значение температуры продукта на выходе из АВО /вых при постоянных расходах охлаждаемого потока. Возможны две схемы рабочего процесса когда охлаждаемая среда с температурой tex возвращается в АВО и когда среда не возвращается в АВО (например, готовая продукция). При охлаждении обращаемого технологического продукта любые причины, вызывающие увеличение температуры вых сверх регламентированной, приводят к нарушению режима работы установки и повышению температуры продукта на входе в АВО. Повышение температур i вх и вых Продолжается до уровня, при котором наступает равновесное состояние. [c.143]


    Режим процесса и его аппаратурное оформление для экструзионного метода получения этролов на основе различных эфиров целлюлозы примерно аналогичны. Ниже (рис. 72) в качестве примера приведена схема технологического процесса получения ацетилцеллюлозного этрола. [c.107]

    Технологическая схема производства формальдегида окислительным дегидрированием метанола изображена па рис. 139. Метанол, содержащий 10—12% воды, из напорного бака I непрерывно поступает в испаритель 2. Туда же через распределительное устройство подают воздух, очищенный от пыли и других загрязнений. Воздух барботирует через слой водного метанола в нижней части испарителя и насыщается его парами. В 1 л образующейся 1 аро-воздушной смеси должно содержаться 0,5 г метанола. Поддержание такого состава смеси очень важно для обеспечения взрывобезопасности и нормального протекания процесса. Поэтому работа испарительной системы полностью автоматизирована поддерживают постоянные уровень жидкости в испарителе, ее темпера-туру (48—50" С) и скорость подачи воздуха, благодаря чему обеспечиваются необходимые температурный режим и степень конверсии в адиабатическом реакторе. [c.476]

    Другие системы, например, одиночные аппараты с мешалками, система смеситель—сепаратор и каскады таких аппаратов, также широко распространены в технологических схемах химических производств. Методы расчета всех указанных систем различны и зависят от выбранной модели, отражающей режим движения жидкости в аппарате, относительной скорости химической реакции и процесса переноса массы и от растворимости активных компонентов каждой системы. [c.381]

    По разделу "Технологические схемы" используется раздаточный материал. В раздаточном материале имеется технологическая схема процесса, температурный режим, устройство аппаратов, соотношение растворитель сырье, материальный баланс, качество получаемых продуктов, основные показатели качества применяемого растворителя. Раздаточный материал охватывает все технологические процессы маслоблока НПЗ. [c.63]

    Основные требования сводятся к тому, чтобы обеспечить хороший контакт исходного сырья с катализатором при непрерывности процессов крекинга и регенерации. Температурный режим процессов в реакторе и регенераторе должен поддерживаться в строго заданных пределах. Недопустимо смешение газообразных продуктов процесса крекинга и регенерации. Технологическая схема должна позволять эффективно использовать тепло регенерации. Гидравлическое сопротивление системы не должно быть высоким. Таким образом, требования к технологической системе весьма жестки. [c.246]

    Включение гидрокрекинга в схемы переработки нефти обеспечивает гибкость эксплуатации предприятий. Изменяя технологический режим процесса и условия ректификации жидких продуктов, можно на одной и той же установке получать любой из перечисленных продуктов бензин, реактивное или дизельное топливо. [c.308]

    Главная стадия химико-технологического процесса, определяющая его назначение и место в химическом производстве, реализуется в основном аппарате химико-технологической схемы, в котором протекает химический процесс — химическом реакторе. В технологической схеме химический реактор сопряжен с аппаратами подготовки сырья и аппаратами разделения реакционной смеси и очистки целевого продукта. Конструкция и режим работы химического реактора определяет эффективность и экономичность всего химико-технологического процесса. [c.119]

    Технологическая схема и режим процесса ГТТ зависят от состава генераторного газа и назначения газогенераторной установки. В настоящее время в мире эксплуатируются сотни промышленных стационарных газогенераторных установок, которые конструктивно классифицируются по следующим признакам  [c.211]

    В табл. 15.2 приведен технологический режим первой и второй стадий дегидрирования н-бутана, а на рис. 15.4 принципиальная схема двухстадийного процесса производства бутадиена-1,3 из н-бутана. [c.328]

    Основное оборудование установок гидроочистки указано при описании технологических схем. Наиболее ответственным аппаратом является реактор. На его конструкцию влияет режим процесса температура, гидравлическое сопротивление, кратность циркуляции, объемная скорость и т. д. Размер и число реакторов выбирают в первую очередь в зависимости от объемной скорости подачи сырья, т. е. от объема загружаемого катализатора. [c.249]

    Существует более 80 наименований рабочих профессий химических производств. Основное место среди них занимает аппаратчик, обслуживающий тот или иной технологический процесс. Каждый из них должен знать 1) технологическую схему производства, продукт, устройство, принцип работы и правила эксплуатации основного оборудования, контрольно-измерительных приборов 2) физико-химические и технологические свойства сырья, полуфабрикатов, продуктов, а также топлива, смазочных и других вспомогательных материалов 3) физико-химические основы и сущность технологического процесса на обслуживаемом участке, нормальный технологический режим и правила регулирования процесса 4) методику анализов, необходимых для контроля данного процесса. [c.200]


    Для целей управления процессом необходимо выбирать параметры, удовлетворяющие следующим условиям 1) параметры должны быть контролируемыми с помощью имеющихся технических средств 2) технологическая схема процесса предусматривает возможность изменения выбранного параметра 3) изменение параметра в диапазоне, определяемом технологическим реж,имом, оказывает существенное влияние на выходные характеристики продукта. [c.251]

    Технологическая эффективность методов увеличения нефтеотдачи определяется путем сравнения фактических результатов с базовым вариантом разработки объекта, которым является способ разработки до применения нового метода. Как правило, базовый вариант разработки обосновывается в технологической схеме. Обычно режим истощения пластовой энергии является базовым вариантом для объектов, разрабатываемых тепловыми методами и, в ряде случаев, при закачке в пласт углеводородного газа. Для объектов, проектируемых к разработке химическими, физическими и газовыми методами, базовым вариантом обычно является процесс заводнения. [c.197]

    Установки каталитического риформинга в настоящее время являются обязательным звеном в технологической схеме современного нефтеперерабатывающего завода. Предельная мощность их определяется потенциальным содержанием бензино-лигроиновых фракций в перерабатываемых нефтях. Количество избыточного водорода, которое можно получить на этих установках и использовать для гидроочистки заводских продуктов, зависит от мощности установки, химического состава перерабатываемых фракций, назначения и технологического режима процесса, а также от характера применяемого катализатора. Чем выше содержание в сырье нафтеновых и ниже содержание ароматических углеводородов, тем выше выход избыточного водорода. При повышении температуры и при переходе установки па жесткий режим, определяемый октановым числом заводского бензина, выход На увеличивается, а при работе на мягком режиме — снижается. [c.96]

    Режим эксплуатации гудриформинга приведен в табл. 5.3. Технологическая схема установки аналогична схеме процесса с одновременной регенерацией катализатора во всех реакторах. [c.62]

    Технология риформинга с НРК второго поколения (146,147,213]. В 1988 г. "ЮОПи" был освоен риформинг с НРК второго поколения, технологическая схема которого аналогична схеме первого поколения, однако режим процесса более ужесточён. В технологию риформинга внесены следующие изменения  [c.76]

    Содержание гидроперекиси циклогексила при 200 °С составляет 40% от полезных продуктов. Для реализации такого процесса необходимо селективно и с хорошим выходом превратить ее в циклогексанон и циклогексанол. Удовлетворительные результаты получены при разложении гидроперекиси циклогексила в присутствии 10%-ной водной щелочи при 150—1170°С В этих условиях под влиянием водного раствора щелочи одновременно нейтрализуются свободные кислоты и частично омыляются эфирные соединения. Одним из существенных преимуществ перехода на такой режим окисления является исключение катализатора из технологической схемы и значительное уменьшение рабочего объема реактора В целом сопоставление результатов низко- и высокотемпературных процессов окисления циклогексана при одинаковой степени конверсии (5%) показывает, что во втором случае суммарный выход циклогексанона и циклогексанола повышается (75—80% против 65—70%). Снижение продолжительности реакции дает возможность существенно интенсифицировать процесс [c.54]

    Равновесная поликонденсация чаще всего осуществляется в массе, реже - в растворе. К преимуществам равновесной поликонденсации в массе являются относительная простота технологической схемы, возможность синтезировать полимеры с высокой чистотой, непосредственно использовать расплав полученного полимера для формирования пленок и волокон. Отсутствие растворителя увеличивает выход продукции с единицы оборудования, что удешевляет производство и повышает экологическую надежность. Существенными недостатками этого метода являются высокие энергетические затраты, большая продолжительность процесса, необходимость высокой термостойкости исходных мономеров и получаемых полимеров [22]. [c.17]

    Включение гидрокрекинга в схемы переработки нефти обеспечивает гибкость эксплуатации предприятий. Изменяя технологический режим процесса и условия ректификации жидких продуктов, можно на одной и той же установке получать любой из перечисленных продуктов бензин, реактивное или дизельное топливо. В табл. 14.2 в качестве примера приведены различные варианты процесса двухступенчатого гидрокрекинга тяжелого дистиллятного сырья (фракция 350—500 °С прямогонного газойля). Переход с одного варианта на другой осуществляют изменением температуры в реакторах, а также изменением режима и направления потоков в блоке разгонки продуктов гидрокрекинга. [c.391]

    Технологическая схема, режим работы отдельных узлов газофракционирующей установки по абсорбционно-ректификаци-онному методу может отличаться в зависимости от состава газа, определяемого видом сырья и условиями процесса пиролиза, а также количеством компонентов, выделяемых из пирогаза, и требованиями, предъявляемыми к их концентрации и чистоте. Аб- [c.67]

    Для печей пиролиза схема размещения акустических горелок на трех ярусах боковых стенок топки оказалась наиболее удачной. Взамен 112 инжекционных чашеобразных горелок смонтировали 24 акустических горелки типа АГГ-П (по 12 шт.) с обеих сторон радиантной камеры. В результате реконструкции каждую из четырех секций пирозмеевикоЕ облучают шесть горелок, поэтому появилась возможность ва])ьировать теплопроизводительность горелок и создавать тепловой режим процесса пиролиза, как этого требует технологический регламент. После выполнения пусковых операций система сжигания топлива переключается на работу в автоматическом режиме, т. е. расход топлива управляется клапаном в зависимости от производительности печи по сырью и температуры пирогаза на выходе из пирозмеевиков. При ручном управлении расход топливного газа косвенно контролируют по показаниям манометров, смонтированных на газопроводе около горелок. [c.282]

    Оптимальный режим процесса целесообразно определять в два этапа. На первом этапе, называемом теоретической оптимизацией, находят самые лучшие в некотором- смысле условия, не принимая во внимание возможность их реализации. Этот теоретический оптимальный режим зачастую отыскивают из условия максимальной интенсивности процесса при заданном выходе целевого продукта. Задачи определения минимального времени контактирования при известной степени превращения (максима[Льная интенсивность процесса) и поиска ее максимума при данном времени контактирования для простых процессов эквивалентны. На втором этапе выбирают реакторы (подробно см. стр. 499 сл.), позволяющие наилучшим образом приблизиться к указанному. Следовательно, появляется объективный критерий выбора технологической схемы и конструкции реактора. [c.491]

    В последнее время совершенствование процесса обессоливания идет по пути конструирования новых и улучшения старых технологических схем и аппаратов для отделения воды (электродегидраторов) [59—65], автоматизации и оптимизации обессоливающих установок 166—69], синтезирования новых высокоэффективных деэмульгаторов 170—71 ] и оптимизации процесса обессоливания по управляемым технологическим параметрам, таким, как подача промывочной воды, темпера- турный режим, дозировка и место подачи дезмульгатора и др. Большая часть проведенных исследований, оформленная в виде рекомендаций по улучшению качества обессоливания, уже реализована на промышленных установках или находится в стадии проектирования. Так, существуют обессоливающие установки, работающие в три и даже в четыре ступени. Созданы и работают установки, работающие при 140—160 °С (раньше процесс обессоливания проводили при темпера-туре не выше 70—90 °С). Реализовано в металле и испытано в промышленных условиях большое число вариантов электродегидраторов аппараты вертикального, шарового и горизонтального типа, аппараты с радиально-щелевыми и продольно-щелевыми распределительными головками аппараты с вертикальным вводом сырья через распределительные устройства и слой промывочной воды аппараты с различной конструктивной организацией и напряженностью электрического поля и др. В результате исследовательских работ в последние годы удалось существенно улучшить качество обессоливания неф и, хотя [c.45]

    Основной аппарат технологической схемы — колонна синтеза, представляющая собой реактор РИВ-Н. Колонна состоит из корпуса и насадки различного устройства, включающей ка-тализаторную коробку с размещенной в ней контактной массой, и систему теплообменных труб. Для процесса синтеза аммиака существенное значение имеет оптимальный температурный режим. Для обеспечения максимальной скорости синтеза процесс следует начинать при высокой температуре и по мере увеличе- [c.204]

    Процесс Варга. В ВНР в 1951—1956 гг. был разработан процесс Варга, который позволяет из сернистого мазута в две ступени получить бензин, дизельное и малосернистое котельное топливо [16, 178]. Чтобы избежать сильного коксообразования при термическом разложении, исходное сырье разбавляют керосино-га-зойлевыми фракциями, полученными после гидроочисткн во второй ступени процесса. Схема переработки по методу Варга по существу не отличается от обычной схемы переработки остаточных продуктов под высоким давлением водорода. Технологический режим процесса Варга следующий I ступень — жидкофазная гидрогенизация сырья в смеси с разбавителем под давлением 3—10 МПа при 420—450 °С, катализатор — суспендированный, обычно окись железа на буроугольном полукоксовом контакте II ступень — гидрирование в паровой фазе дистиллятных продуктов I ступени в стационарном слое катализатора. [c.281]

    В результате научных исследований, проведенных в последние годы, впервые дая целей автоматизированного синтеза ТС разработаны методика и алгоритм селективной декомпозиции массовых расходов исходных технологических потоков, которые позволяют, варьируя число параллельных потоков в синтезируемых ТС, обеспечивать рациональный гидродинамический режим процессов теплообмена на основе принципа селективной декомпозиции. Разработан эффективный алгоритм генерации узлов теплообмена ТС. Под узлом теплообмена (УТ) подразумевается функциональная подсистема ТС, в которой осуществляется операция тешгообмена между парой холодных и горячих потоков (рис. I). В зависимости от тепловой нагрузки УТ он может быть оснащен от I до К секциями ТА. При таком подходе к решению задачи, ИЗС схем ТС распадается на совокупность N подзадач меньшей размерности и поякчяется возможность последовательной генерации каадого из N узлов теплообмена ТС. Предяожена методика оценки эффективности синтезированных ТС, которая позволяет выделить оптимальную ресурсосберегающую ТС без проведения полного расчета ТА системы и определения расчетом значения приведенных затрат на ТС. [c.8]

    Материальный баланс и температурный режим процесса по отдельным аппаратам и в целом приведены на технологической схеме. Как видно из чертежа, из 145 т толуолсодержащей фракции бензина получают 14 т [c.395]

    При расчете процесса разложения апатита по второй технологической схеме с рециклом получили, что фазовые траектории лежа на странном аттракторе. На рис. 2 приведены фазовая траектория решения системы уравнений математической модели процесса получения ЭФК в десятисекционном экстракторе. Глобальный фазовый портрет второй технологической схемы напоминает странный аттрактор Лоренца. Видно, что фазовая траектория имеет два неустойчивых предельных цикла. Фазовые траектории, начинающиеся справа, накручиваются на правый предельный цикл, затем через некоторое время, осуществляя автоколебания, сдвигаются влево и накручиваются на левый предельный цикл. Через некоторое время начинается сдвиг вправо, и траектория вновь накручивается на правый предельный цикл и т. д. Наличие рецикла приводит к наложению на собственные автоколебания системы за счет обратной связи между механизмами разложения апатита и кристаллизации дигидрита сульфата кальция еще и колебаний, связанных с наличием цикла в экстракторе. Механизм колебаний за счет обратной связи по кинетике процесса был описан выше. Когда система, пройдя левый предельный циют, стремиться выйти на устойчивое положение - отрицательный режим по SO3, рецикл дает повышение концентрации SO3, что заставляет систему двигаться вправо, накручиваясь на правый предельный цикл. Затем система, проходя через правый предельный цикл, за счет образования пленки стремится ко второму устойчивому состоянию - повышению концентрации SO3 и понижению концентрации СаО, но рецикл приводит к понижению концентрации SO3, и фазовая траектория сдвигается влево. Было рассчитано, что странный аттрактор наблюдается при времени цикла в интервале 30-60 мин. При этом увеличение рецикла (время цикла менее 30 мин) приводит к уменьшению расстояния между предельными циклами, а уменьшение рецикла (время цикла более 60 мин) приводит к увеличению этого расстояния. Увеличение рецикла [c.44]

    Технологические схемы процессов абсорбции и десорбции с применением простых и сложных колонн. Процессы абсорбции и десорбции (отпарки) ширОко применяются главным образом на газоперерабатывающих заводах при извлечении целевых компонентов из природного или цопутного нефтяных газов в практике нефтепереработки для этих целей они применяются реже. [c.135]

    Процесс гидроформинга. В 1940 г. в США вступила в эксплуатацию первая промышленная установка каталитического риформинга с неподвижным слоем алюмомолибденового катализатора, требующего периодической регенерации по цикличной схеме [38]. Технологический режим процессов и принципиальная схема установки приведены в табл. 5.1 и на рис. 5. , производительность установок по сырью составляла 800-2200м сырья в сутки [116,117]. [c.52]


Смотреть страницы где упоминается термин Технологические схемы и режим процессов: [c.2]    [c.348]    [c.311]    [c.293]    [c.144]    [c.206]    [c.134]    [c.173]    [c.286]    [c.304]    [c.106]   
Смотреть главы в:

Технология минеральных удобрений -> Технологические схемы и режим процессов

Технология минеральных удобрений -> Технологические схемы и режим процессов




ПОИСК





Смотрите так же термины и статьи:

Технологические схемы процесса

режим технологическая схема



© 2024 chem21.info Реклама на сайте