Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электроды, селективные к иону калия

    Самый простой и быстрый способ определения ионов калия с селективным электродом — прямое измерение потенциала и нахождение соответствующего значения концентрации по градуировочному графику. При этом предполагают, что коэффициенты активности измеряемых ионов в градуировочных и [c.23]

    Жидкостные ионообменные мембраны можно изготовить и на основе растворов нейтральных молекул, например таких, как циклодекстрины, циклические антибиотики или соединения, образующие хелатные комплексы с определяемыми катионами. Наиболее известным примером указанных электродов является электрод на основе валиномицина, коэффициент селективности которого по отношению к ионам калия почти на два порядка превышает аналогичный коэффициент для лучших стеклянных электродов. [c.178]


    Раствор валиномицина в дифениловом эфире является основой мембраны калий-селективного электрода. При определении калия в присутствии натрия такая мембрана характеризуется коэффициентом селективности < 10 . Электрод позволяет определять калий в диапазоне концентраций от 10 до 10 моль/л. Единственным ионом, оказывающим влияние на показания калиевого электрода, является ион аммония. [c.207]

    Новые рецептуры в серии литиевых алюмосиликатных стекол обеспечивают хорошо вырабатываемые электроды, обладающие специфичностью к иону натрия по сравнению с ионом калия, равную 1000 I. Сравнение данных по концентрации натрия, полученных с помощью стеклянных электродов и на пламенном фотометре, позволяет заключить, что в первом случае можно определять концентрацию ионов натрия в диапазоне 0,001—0,2 н. с точностью 1—5% [123]. Поскольку большинство катион-чувствительных электродов имеет некоторую остаточную водородную функцию, желательно поддерживать pH в области 7—9. Производятся также электроды с удовлетворительной селективностью по отношению к ионам калия .  [c.286]

    Важной характеристикой ионоселективного электрода является его коэффициент селективности, показывающий, во сколько раз электрод более чувствителен к данным ионам, чем к посторонним (мешающим). Например, если коэффициент селективности натриевого электрода по отношению к ионам калия составляет 1000, т. е. Na+.к+= 10 , то это означает, что данный электрод в 1000 раз чувствительнее к ионам натрия, чем к ионам калия. Другими словами, если электрод имеет потенциал Е при концентрации ионов натрия равной 10 моль/л, то для достижения этого потенциала потребуется концентрация ионов калия в 1000 раз большая, т. е. 1 моль/л. [c.200]

    Другим ионоселективным электродом, представляющим ценность для физиологических исследований, является калиевый электрод, поскольку передача нервных импульсов, по-видимому, включает движение этих ионов через нервные мембраны. Для изучения этого процесса необходим электрод, позволяющий определять малые концентрации ионов калия в присутствии значительно больших количеств ионов натрия. Ряд электродов с жидкими мембранами, как можно надеяться, должен удовлетворить этим требованиям. В одном из них применяется раствор валиномицина в дифениловом эфире. Антибиотик валиномицин — это эфир циклической структуры, обладающий значительно более сильным сродством к ионам калия, чем к ионам натрия. При определении калия в присутствии натрия [8] такая жидкая мембрана характеризуется коэффициентом селективности свыше 10000. [c.437]


    Так, описан [115] К -селективный электрод с мембраной на основе биологических материалов, потенциал которого зависит от активности ионов калия в растворе по уравнению Нернста. Другой электрод с константами селективности и Kk°-nh4 = 10 , обнаруживающий мгновенную реакцию на К% изготовлен на основе полимерного материала, содержащего макро-циклический антибиотик (точный состав не назван) [116]. Последний период ознаменовался энергичными разработками твердых мембран на основе соединений, связывающих в комплекс и переносящих ион калия через полимерную матрицу, в которой содержится комплексующий агент. Разработаны электроды с мембранами из силиконового каучука, содержащими валиномицин (см. его структуру в главе о жидких мембранах), с применением и без применения пластификатора оценены их селективность к иону калия, стабильность, воспроизводимость [117]. В табл. VII.7 приведены некоторые характеристики различных мембран, содержащих валиномицин. Селективность к К+ этих электродов по сравнению с селективностью к большинству ионов щелочных и щелочноземельных металлов [118] почти такая же (табл. VII.8), как у обычных электродов с жидкими мембранами (фильтр из милли-пора, пропитанный раствором валиномицина в дифениловом эфире) [119]. Для определения ионов щелочных металлов испытывали также электрод с мембраной из силиконового каучука, содержа-198 [c.198]

    Мембраны для электродов, селективных к ионам К" , вырабатывали из пасты, состоящей из 5% раствора тетра(п-хлорфенил)-бората калия в пластификаторе и тщательно размельченного порошка ПВХ. Пасту помещали в форму, разравнивали и выдерживали при 200 °С [123]. Обнаружено, что химическая природа [c.200]

    Калий-селективный электрод позволяет непосредственно определять концентрацию ионов калия. Анализируемые растворы не должны содержать органических соединений, загрязняющих или растворяющих активную фазу. При высоких концентрациях ряд катионов оказывает мешающее влияние. После исследования растворов с высоким содержанием мешающих ионов время отклика электрода увеличивается и наблюдается дрейф потенциала. Чтобы сделать электрод вновь пригодным к работе, его следует вымочить в течение часа в дистиллированной воде и затем еще 2 ч в соответствующем стандартном растворе (№ 921906). [c.48]

    Следует отметить, что, несмотря на большое число публикаций, нет пока достаточно широкого ассортимента ИСЭ, выпускаемых серийно. Кроме того, имеющиеся ИСЭ обладают в ряде случаев невысокой селективностью (например, рСа-ИСЭ). Практически не решены вопросы создания ИСЭ на Р04- M.g+ , 504 -ионы, имеющие важное прикладное значение. Не предложены пока принципы стандартизации ионометрических цепей, слабо разработаны вопросы конструкции и технологии изготовления ИСЭ. По существу, только начинаются систематические исследования динамики работы ИСЭ, в частности методы экспериментального определения их полных динамических характеристик. Наконец, и это самое важное, метод разработки новых ИСЭ в основном базируется на качественных соображениях, поскольку количественной теории, способной предсказывать селективность комплексонов и тем самым вести их направленный поиск для каждого конкретного иона, пока не существует. Создание такой теории — дело будущего, но уже теперь ясно, что она должна базироваться на основных принципах МЭ, в частности использовать достижения квантовой химии и теории локального строения материи на молекулярном уровне, учитывающих геометрию и топологию электронной плотности, системы энергетических уровней, свойства симметрии ионов, атомов и молекул и более сложных надмолекулярных образований кластеров, комплексов, сольватных оболочек. Именно на таких концепциях базируются последние теоретические работы [140, 141], в которых большое внимание уделяется развитию квантовой теории поверхностных явлений. Данная глава не ставит целью ввести читателя в круг подобных вопросов, они достаточно полно излагаются в цитированных выше монографиях и сборниках. Здесь будут рассмотрены только самые фундаментальные положения общей теории, а основное внимание сосредоточено на трех практически важных примерах — электродах, селективных к ионам кальция, калия и нитрата. [c.276]

    ЭЛЕКТРОДЫ, СЕЛЕКТИВНЫЕ К ИОНУ КАЛИЯ [c.288]

    В работе [98] Эйзенман проверил свое выражение для коэффициента селективности (3.4.1), использовав стеклянный электрод, селективный одновременно к ионам калия и натрия. Сначала из зависимости потенциала стеклянного электрода от отношения активностей этих ионов он установил, что [c.190]

    Определить селективность электродов к ионам калия по отношению к ионам Li, Na ", NH4 и Н " методами биионных потенциалов и смешанных растворов, используя растворы хлоридов. Рассчитать коэффициенты влияния и сравнить их с характеристиками соответствующих электродов со стеклянными и с пленочными мембранами на основе катионообменника. [c.586]


    Для определения pH сильнощелочных растворов применяются стеклянные электроды специальных составов, например, содержащие в стекле оксид лития вместо оксида натрия. Если в составе стекла заменить оксид двухвалентного металла на оксид трехвалентного (например, СаО на А Оз), коэффициент селективности по натрию существенно увеличивается, в результате чего стеклянный электрод в широком интервале pH становится натрий-селективным. Например, электрод из стекла состава 11% N320, 18% АЬОз и 71% ЗЮг позволяет при рНсб определять активность ионов натрия при более чем 1000-крат-ном избытке ионов калия. [c.243]

    Определение активности ионов — показателя активности рА — и концентрации с помощью ИСЭ сводится к измерению э. д. с. гальванического элемента типа (XXII), составленного из индикаторного электрода, селективного по отношению к определяемому иону А А (2а > О для катиона и 2л < О в случае аниона) и погруженного в исследуемый раствор, и из сравнительного электрода, потенциал которого известен. Иногда в элемент (XXII) включают солевой мост, если раствор в электроде сравнения имеет достаточно высокую концентрацию хлорида калия. Тогда этот раствор и служит солевым мостом .  [c.538]

    Известны также стеклянные электроды для определения ионов лития, калия, серебра состава 15 % ЫгО, 25% АЬОз, 60 /о 8102 (литиевый электрод) 27 7о Na20, 5 % АЬОз, 68 % ЗЮг (калиевый элек-тpoд)j 28,8% МагО, 19,1 % АЬОз, 52,1 % ЗЮг (серебряный электрод). Коэффициенты селективности таких электродов в присутствии ионов калия, натрия и ионов водорода равны соответственно 10 (Ь1), 5-10 2 (К) и 10 (Ag). Однако коэффициент селективности, например, литиевого электрода по отношению к ионам натрия равен 0,3, т. е. эти ионы мешают определению лития. [c.472]

    Для осадительного титрования ионов калия в качестве титранта готовили стандартный раство ) 17,1 г тетрафенилбората натрия растворяли в мерной колбе на 1000 см в дистиллироварной воде и приливали несколько капель 1 %-ного р 1-створа хлорида аммония для коагуляции нерастворимых примесей. После отстаивания раствор фильтровали через бумажный фильтр и устанавливали концентрацию тетрафенилбората натрия Ло стандартному раствору хлорида калия потенциЬ-метрическим титрованием с калий-селективнь м электродом. I [c.23]

    Перенос принципа ион-селективных электродов на оптические сенсоры привел к созданию иоп-сеяективных оптодов. Одна из возможностей заключается в применении ионообменных равновесий между раствором и ПВХ-мембраной оптода. Определение иона калия возможно на оснюве равновесия  [c.511]

    Индикаторный электрод, селективный по отношению к тиолят-иону, был изготовлен в лаборатории. Для изготовления мембраны 0,5 г сульфида серебра (ч) измельчали в ступке и прессовали в прессе (при 2160 кг/см ) для получения таблеток толщиной 1 мм. Мембрану укрепляли на стеклянной трубке с помощью эпоксидной смолы. Перед измерениями поверхность мембраны полировали. Внутренним раствором для этого электрода был 0,004 М расгвор нитрата серебра, в который опускали серебряную проволоку. В качестве электрода срав-нения использовали насыщенный каломельный электрод, который соединялся с исследуемым раствором электролитическим мостиком с фитилем, заполненным 1 М раствором нитрата калия. Потенциал индикаторного электрода изменялся линейно в зависимости от концентрации тиола в растворе гидроксида натрия в пределах концентраций от 0,1 до 10 М [c.540]

    Для измерения pH воды широко применяются как лабораторные, так и промышленные рН-метры со стеклянными электродами (см. п. 9.14.5.1). В отдельных случаях могут использоваться металлаоксидные электроды, например сурьмяный, молибденовый и др. Имеются также стеклянные электроды для определения содержания в растворе натрия и калия обычно концентрацию их определяют на пламенном фотометре. Изготовляются электроды с ион-селективными мембранами для определения в воде фтора, хлора, брома, иода, сульфидов, сульфатов. Разработаны также электродные системы для измерения концентрации ионов кальция, магния, нитратов и др. Следует, однако, отметить, что с помощью электродов определяется лишь активная концентрация ионов (см. п. 2,14.4). [c.181]

    На рис. 11-5 показано влияние оксида алюминия на сигнал стеклянного мембранного электрода. Если стеклянный электрод идеально-отвечает на присутствие ионов водорода в обычном диапазоне pH, то потенциал электрода будет линейно изменяться с измерением pH (диагональная сплошная линия на рис. 11-5). Электроды, изготовленные из обычного известково-натриевого стекла, проявляют ожидаемый линейный отклик на ион водорода почти вплоть до рН=10, выше возникают отклонения или щелочная погрешность вследствие мешающего влияния катионов щелочных элементов ион натрия является самой больщой помехой, за которым следует ион лития и калия. Однако стеклянный мембранный электрод, состоящий из 1,7% АЬОз, 10,9% ЫааО и 87,4% (моль.) ЗЮг, ведет себя совершенно по-иному в очень сильнокислой среде наблюдается нормальный отклик на pH, но при повышении pH электрод становится заметно чувствительным к 0,1 Л1 растворам иона натрия или калия (при рН>2) и иона лития (при рН>4). При равных концентрациях иона водорода и катиона каждого щелочного металла стеклянный электрод, содержащий АЬОз, более чувствителен к иону водорода, но при рН>1 селективность такого электрода к иону щелочного металла повышается. Между 5 и 6 единицами pH пунктирные линии на нижней части рис. 11-5 становятся горизонтальными, указывая, что натриевоалюмосиликатное стекло не реагирует более на присутствие протонов, а только на присутствие ионов щелочных металлов. Хотя свойства натриевоалюмосиликатного стекла (см. рис. 11-5) не являются оптимальными, ионообменные центры во внеш  [c.380]

    Жидкий ионообменный мембранный электрод разработан и для определения активности иона калия. Он очень похож по конструкции на кальцийселективный в нем используется в качестве жидкого ионита разбавленный раствор валиномицина в дифениловом эфире. Как показано на рис. 11-7, молекула валиномицина (антибиотик) представляет собой незаряженную циклическую макромолекулу с высоким сродством к иону калия (но не к иону натрия). Селективность этого электрода к К по сравнению с селективностью к N3+ составляет около 13 000 к 1 и для К+ по сравнению с Са + или Mg2+ лучше, чем 5000 к 1. Электродная функция подчиняется уравнению Нернста в интервале активностей иона калия от 10 до 0,1 М. Таким образом, валиномициновый электрод гораздо лучше любого доступного стеклянного мембранного электрода для определения калия в моче, сыворотке, почечных диализатах или в любой другой пробе, в которой присутствуют ощутимые количества иона натрия. [c.384]

    Жидкостной бро.мид-селективный электрод, наготовленный на основе нитробензольного раствора кристалличесиаго фиолетового (5- Ю М) имеет прямолинейный участок градуировочного графика при относительно больших концентрациях от 10 до 10 моль/л. Описанный ранее электрод с мембраной из раствора бромида ртути в трибутил-фосфате имеет значительно меньшнй предел обнаружения (рВг=4,5), но в области больших концентраций (рВт=4—2,5) наблюдаются отклонения от линейности и Появление катионной функции [1]. Лучшими характеристиками обладает электрод со смесью кристаллического фиолетового (5-10- М) и бромида ртути (нас.) в нитробензоле в качестве мембраны. Линейность градуировочнаго графика сохраняется в пределах рВт от 2 до 5,5, предел обнаружения рВг р =5,7, крутизна электродной функции 45 м В/рС, коэффициент селективности к хлоридам, определенный методам смешанных растворов, равен 0,01. Присутствующие в растворе ионы калия, кальц(ия, бария, М агния, меди, железа, хро.ма не оказывают влияния на электродный потенциал. [c.28]

    На селективность ионного обмена влияют многие факторы, и количественная теория может рассматривать только простейшие случаи, примером чего может служить обмен катионов щелочных металлов. Убедительное объяснение селективности катионообменников для щелочных металлов дано Айзенманом [19]. Он начал с исследования реакций стеклянных электродов для различных катионов щелочных металлов. Стекла действуют как ионообменники, а стеклянные электроды функционируют как ионообменные мембраны. Это было показано многими исследователями, и, в частности, в последней работе Доремуса [20] были измерены коэффициенты диффузии ионов в стеклах. Электрические потенциалы определить легче, чем ионообменное распределение, но потенциалы мембран зависят от двух факторов — ионообменной селективности и отношения коэффициентов диффузии или подвижностей. При измерении потенциалов стеклянных электродов в растворах, содержащих два иона, натрий и калий (в дополнение к иону водорода, который всегда присутствует в водных растворах), нашли, что фактор электрохимической селективности зависит в основном от ионообменной селективности.. Отношение подвижностей составляет только десятую часть ионообменной селективности. Айзенман исследовал много стекол различного химического состава, а также ряд биологических мембран. Он сделал вывод, что если измерена селективность для [c.64]

    Ряд исследований показал, что присутствие в стекле АЬОз или ВгОз приводит к желаемому эффекту. Эйзенман и сотр. [7] провели систематическое изучение стекол, содержащих NagO, АЬОз и SIO2 в различных соотношениях. Они показали, что действительно можно изготовить мембраны для селективного определения некоторых катионов в присутствии других. В настоящее время выпускаются стеклянные электроды для определения ионов калия и натрия. [c.432]

    Калий-селективный (калиевый) электрод. Калий-селективный электрод фирмы Орион (модель 93-19) представляет собой электрод с жидкой мембраной, предназначенный для определения концентрации ионов, де.мв калия в водных растворах и в биологических жидкостях. Используется в сочетании с подходящим электродом сравнения. ко Электрод, конструкция которого представлена на рис. К-5, имеет 180 сменный модуль с пластифицированной мембраной, в состав которой вхо- -220 дит жидкий селективный ионообменник. При контакте мембраны с раство- -2во ром, содержащим ионы калия, на разделе фаз мембрана — раствор воз- -зоо никает разность потенциалов, величина которой зависит от концентрации pjj j .g типичный калибровочный график калия в растворе. При для калий-селективного электрода. [c.47]

    Описан также электрод, селективный к дигоксину калий-се-лективная мембрана этого электрода состоит из ковалентно связанного с дигоксином бензо-15-крауна-5 и поливинилхлорида [8 ]. Принцип иммуноанализа состоит в конкурентном связывании ди-, гоксина в мембране и в пробе с ограниченным количеством антител. В ходе анализа некоторое количество конъюгата ионофора связывается антителами на внешней поверхности мембраны, что снижает способность мембраны к транспорту ионов. Количество связанного конъюгата обратно пропорционально концентрации дигоксина в растворе. При данной кс нцентрации иона калия на электродный потешщал влияет эффективность удаления различного количества ионофора из мембраны. Калибровочная кривая постро-ога в диапазоне концентраций дигоксина 1-100 нмоль/л. [c.212]

    Щелочная ошибка стеклянных электродов связана в основном с их селективностью к ионам щелочных металлов. Количественное описание этого явления было дано Никольским и Толмачевой [278]. С целью же практического использования данного свойства стеклянных электродов Ленгьел и Блам 226] получили стекло, содержащее наряду с обычными компонентами алюмо- и боросиликаты. Такое стекло проявляет селективность к ионам щелочных металлов в широком диапазоне pH. Чувствительность стекла к этим ионам обусловлена наличием в нем оксидов трехвалентных металлов. Если содержание последних превышает 10 мол. %, то соответствующие стеклянные электроды обладают нернстовским откликом в интервале 10 —1 М Na+ при pH 6—10. Систематическим изучением селективности стеклянных электродов к ионам щелочных металлов занимались Эйзенман с сотр. [99]. Результатом этого изучения явилось создание электродов на основе натриевых алюмосиликатных стекол NAS 11-18 для определения ионоз натрия [96, 178] и NAS 27-06 для определения ионов калия (цифры обозначают мольное процентное содержание натрия и алюминия). При использовании стекла с коэффициентом селективности N3+ порядка 250 ионы натрия можно определять [c.186]

    Среди калийселективных электродов наилучшими свойствами обладает электрод на основе валиномицина XXII [51, 194], отличающийся повышенной селективностью по отношению к ионам натрия. В качестве мембранных растворителей применяют сложные эфиры фталевой кислоты (9, 10 в табл. 7.2) и по причинам, обсуждавшимся в разд. 3.3, в состав мембраны вводят липофильную добавку — калиевую соль аниона XV или XVI (табл. 7.1) [119, 166]. ИСЭ с мембраной на основе краун-эфира XXV имеет лишь ограниченное применение [183], так как его селективность к калию относительно натрия значительно меньше, чем у валиномицинового электрода. [c.228]


Смотреть страницы где упоминается термин Электроды, селективные к иону калия: [c.122]    [c.122]    [c.271]    [c.470]    [c.189]    [c.87]    [c.302]    [c.73]    [c.381]    [c.269]    [c.72]    [c.434]    [c.107]    [c.302]    [c.93]    [c.187]    [c.190]    [c.193]   
Смотреть главы в:

Введение в молекулярную электронику -> Электроды, селективные к иону калия




ПОИСК





Смотрите так же термины и статьи:

Ион-селективные электроды

Ион-селективные электроды электроды

Ионная селективность

Калий селективность

Электрод калий-селективный



© 2024 chem21.info Реклама на сайте