Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионообменное распределение

    Основное уравнение ионообменного распределения [c.50]

    Второе направление переработки метанола связано с получением метил-грет-бутилового эфира (МТБЭ — бесцветная жидкость с резким запахом, температура кипения 55 °С). Он образуется при взаимодействии метанола с изобутиленом в присутствии ионообменных смол. Процесс освоен в промышленных масштабах с 1973 г. Введение МТБЭ снижает неравномерность распределения детонационной стойкости бензина по фракциям и склонность бензина к нагарообразованию. МТБЭ обладает высокой детонационной стойкостью октановые числа смешения его изменяются от 115 до 135 по исследовательскому методу или от 98 до ПО — по моторному (табл. 28). [c.171]


    Коэффициенты распределения ионов в ионообменной хроматографии.  [c.5]

    КОЭФФИЦИЕНТЫ РАСПРЕДЕЛЕНИЯ ИОНОВ В ИОНООБМЕННОЙ ХРОМАТОГРАФИИ [c.176]

    Ионообменная хроматография — сорбционный динамический метод разделения смесей ионов на сорбентах, называемых ионо-обменниками. При пропускании анализируемого раствора электролита через ионообменник в результате гетерогенной химической реакции происходит обратимый стехиометрический эквивалентный обмен ионов раствора на ионы того же знака, входящие в состав ионообменника. Ионообменный цикл состоит из стадии поглощения ионов (сорбции) ионообменником (неподвижной фазой) и стадии извлечения ионов (десорбции) из ионообменника раствором, который проходит через сорбент (подвижная фаза или элюент). Разделение ионов обусловлено их различным сродством к ионообменнику и происходит за счет различия скоростей перемещения компонентов по колонке в соответствии с их значениями коэффициентов распределения. [c.223]

    Отношение коэффициентов распределения двух ионов, разделяемых в одинаковых условиях, называется коэффициентом разделения, который характеризует способность данного ионита к разделению смеси двух различных ионов в растворе. Если коэффициент разделения равен единице, то разделение смеси ионов невозможно. Таким образом, в ионообменной хроматографии необходимо выбирать иониты с достаточно высоким коэффициентом разделения по отношению к анализируемым ионам. [c.105]

    Допустим, что ионообменное равновесие устанавливается мгновенно, т. е. при прохождении раствора через слой ионита время установления ионообменного равновесия меньше, чем время нахождения раствора в данном объеме ионита. Следствием этого допущения является независимость распределения обменивающихся ионов по длине слоя ионита от скорости течения раствора вдоль слоя. [c.107]

    Кроме ионообменной хроматографии, для разделения и анализа катионов и анионов советские ученые Е. Н. Гапон и Т. Б. Га-пон в 1948 г. предложили осадочную хроматографию. В этом варианте метода Цвета формирование хроматограмм обусловлено не различием адсорбируемости или коэффициентов распределения, а процессом образования осадков и различием в их растворимости. Это и вызывает разделение тех ионов, которые вошли в состав осадков при реакции с реактивом-осадителем, нанесенным на сорбент хроматографической колонки или на фильтровальную бумагу. [c.9]

    О распределении групп во внутренних сферах того и другого центральных ионов судят иа основании методов получения и в результате изучения физико-химических свойств изомеров (спектры поглощения, рентгенографический метод). Сравнительно недавно для изучения строения координационных изомеров и полимеров стали применять ионообменные смолы. [c.73]


    При ионообменной хроматографии распределение происходит в результате ионного обмена (см. 8.5) между неподвижным ионитом и перемещающимся относительно него раствором разделяемых веществ. Последние должны иметь заряд. В качестве примера можно привести разделение аминокислот на катионитах. Такое разделение широко используется в биохимии, когда необходимо определить, из каких аминокислот состоит какой-либо белок и в каком отношении находятся в нем эти аминокислоты. Кипячением с соляной кислотой белок разрушается до аминокислот, и полученная смесь наносится на катионит. Устанавливается ионообменное равновесие [c.339]

    Ионообменная бумага [33]. При проведении бумажной хроматографии на обычных сортах бумаги в щелочных средах процессы распределения перекрываются ионообменными процессами. Действие ионообменной бумаги основано на использовании процессов ионного обмена для разделения веществ. Ионообменную бумагу получают при дополнительной химической обработке карбокси-, сульфо-, аминогрупп целлюлозы или в процессе получения ионообменных смол, смешивая их с бумажной массой. Свойства такой бумаги подобны свойствам ионитов в зернах. Ионообменную бумагу можно применять для проведения быстрых прикидочных опытов в случае длительных разделений. [c.359]

    Неправильная, нитеобразная форма целлюлозных частиц не позволяет дать точную оценку размеров частиц, характеризовать дисперсность материала. При прямом измерении длины волоконец под микроскопом были получены кривые распределения, показывающие, что максимальная длина частиц составляет 350—500 мкм (микрометров, микрон). Максимум кривых распределения приходится на интервал 50—100 мк,м, диаметр частиц составляет 15— 20 мкм. Объемная масса ионообменных целлюлоз находится в интервале 0,1— 0,2 г/мл, т. е., подобно технической целлюлозе, это довольно рыхлый материал. [c.62]

    Экспериментально коэффициенты распределения можно определять как статическим, так и динамическим методами. В статическом методе навеску воздушно-сухого ионообменного сорбента встряхивают с определенным объемом исследуемого раствора, содержаш.им тот или иной противоион, до получения состояния равновесия. Затем в отдельной порции раствора определяют количество не поглощенного ионитом противоиона. Вычисления проводят по формуле  [c.96]

    Константа ионного обмена является фундаментальной величиной, определяющей условия равновесия ионообменной сорбции. Знание величин констант обмена позволяет получить ответ на многие практически важные вопросы, например, о распределении вещества между фазой ионита и раствором в заданных условиях проведения опыта. Как следует из теории динамики ионообменной сорбции (стр. 106,122), от константы ионного обмена зависит ход формирования, движения и деформации (размывания) хроматографических зон ионов. [c.125]

    В табл. 1 дана классификация хроматографических методов анализа, основанная на этих показателях. Как видно изданных, приведенных в таблице, при хроматографическом анализе наиболее часто используется колоночная техника работы. Один и тот же метод хроматографического анализа может применяться в различных вариантах, например, осадочную хроматограмму можно получить в колонке с сорбентом, на бумаге или в гелях. Определенный принцип разделения, например, распределение молекул между двумя фазами, лежит в основе различных методов хроматографического анализа. Необходимо также отметить, что в методах тонкослойной хроматографии возможен практически любой принцип разделения — сорбционный, распределительный, ионообменный и т. д. Однако чаще всего разделение в тонких слоях сорбента используется в адсорбционной, распределительной и ионообменной хроматографии жидкостей. [c.7]

    Коэффициент распределения равен отношению концентрации анализируемого вещества в неподвижной фазе к концентрации в подвижной фазе. В зависимости от вида хроматографии его называют коэффициентом распределения в распределительной и ионообменной хроматографии, коэффициентом адсорбции в адсорбционной хроматографии и коэффициентом проницаемости в молекулярно-ситовой хроматографии. [c.37]

    Ионообменная хроматография основана на распределении ионов между твердым или жидким сорбентом и раствором. [c.146]

    В результате прохождения некоторого объема раствора верхняя часть колонки (рис. XI. 3) полностью насыщается ионами В+ — верхняя зона)] в средней части колонки ионит содержит одновременно ионы А+ и В+ — переходная зона, а нижняя часть остается насыщенной только ионами А+ — нижняя зона. При дальнейшем протекании раствора переходная зона, двигаясь вдоль колонки, образует фронт — область, где концентрация ионов В+ более или менее резко уменьшается до нуля. Фронт называют острым, если концентрация ионов в этой зоне меняется резко — от некоторого конечного значения до нуля. Ширина переходной зоны характеризует остроту фронта ионов В+, которая определяется состоянием равновесия и кинетикой ионообменного процесса. Зоны могут быть симметричными и несимметричными (один фронт размыт, другой — острый). Форма зоны определяется характером равновесного распределения ионов между фазами ионита и раствора. Влияние равновесного фактора на остроту фронта переходной зоны связано с типом изотермы обмена, т. е. зависимости концентрации иона в ионите от концентрации его в растворе (см. рис. XI. 2). [c.684]


    Ионообменная хроматография — один из видов хроматографического анализа, основы которого были созданы в 1903— 1906 гг. Цветом первоначально с целью разделения пигментов группы хлорофилла. Современная хроматография — это метод разделения веществ (молекул или ионов), основанный на различиях в скорости переноса растворенных веществ в системе двух фаз, одна из которых подвижна компоненты перемещаются через систему только находясь в подвижной фазе, в направлении ее движения. Компоненты, распределяющиеся предпочтительно в неподвижной фазе, двигаются медленнее компонентов, находящихся в основном в подвижной фазе. Таким образом, различия в равновесном распределении компонентов между двумя фазами и в кинетике обмена обуславливают различия в линейных скоростях движения компонентов и в конечном счете ведут к их разделению. [c.686]

    Для нахождения оптимальных условий хроматографического разделения ионов обычно определяют сорбцию ионов ионообменными смолами из тех или иных растворов. Из применяемых в хроматографии методов определения сорбируемости ионов наиболее простым является метод определения коэффициента распределения того или иного иона между ионообменной смолой п растворами. [c.228]

    Действие стеклянного электрода можно объяснить, например, при помощи ионообменной теории, предложенной Б. П. Никольским между поверхностным слоем мембраны и раствором, в который погружается электрод, происходит обмен ионами. Стекло отдает катионы N3+, получая взамен Н +, в результате устанавливается равновесие, определяемое концентрацией этих ионов в стекле и растворе и коэффициентом их распределения в этих двух фазах, [c.69]

    Действие стеклянного электрода можно объяснить, например, при помощи ионообменной теории, предложенной Б. П. Никольским между поверхностным слоем мембраны и раствором, в который погружается электрод, происходит обмен ионами. Стекло отдает катионы Ма+, получая взамен Н+, в результате устанавливается равновесие, определяемое концентрацией этих ионов в стекле и растворе и коэффициентом их распределения в этих двух фазах. В кислых растворах ионы N3 - в стекле почти полностью вытесняются ионами Н+ и стеклянный электрод работает подобно водородному электроду. В щелочных растворах, наоборот, в стекле преобладают ионы Ыа+ электрод действует как натриевый. Таким образом, на границе раздела стеклянная мембрана — исследуемый раствор возникает потенциал, величина которого зависит от концентрации водородных ионов (и, следовательно, pH) в растворе. Этот потенциал можно отнести к межфазовым потенциалам. Потенциал на стеклянной мембране электрода быстро устанавливается и не зависит от присутствия окислите.1ей и восстановителей, солей и т. п. Стеклянным электродом можно пользоваться в большом интервале значений pH —от —2 до 12. Свойства мембран у [c.66]

    Изотерма адсорбции, получаемая экспериментально, представляет собой (при разных температурах для одного вещества или для разных веществ при одной и той же температуре) кривую Ленгмюра (моно-молекулярная адсорбция) или s-образную кривую (полимолекулярная адсорбция), или прямую линию (простое распределение по закону В. Нернста). А. В. Раковским и С. М. Липатовым была изучена ионообменная адсорбция. Этот процесс происходит в гетерогенной среде на границе раздела раствор — ионит. В качестве ионитов берут многие твердые, практически не растворимые в воде и органических растворителях материалы, способные к ионному обмену. Практически наиболее важны иониты, состоящие из высокомолекулярных соединений с сетчатой или пространственной структурой (см. рис. 95). [c.518]

    На селективность ионного обмена влияют многие факторы, и количественная теория может рассматривать только простейшие случаи, примером чего может служить обмен катионов щелочных металлов. Убедительное объяснение селективности катионообменников для щелочных металлов дано Айзенманом [19]. Он начал с исследования реакций стеклянных электродов для различных катионов щелочных металлов. Стекла действуют как ионообменники, а стеклянные электроды функционируют как ионообменные мембраны. Это было показано многими исследователями, и, в частности, в последней работе Доремуса [20] были измерены коэффициенты диффузии ионов в стеклах. Электрические потенциалы определить легче, чем ионообменное распределение, но потенциалы мембран зависят от двух факторов — ионообменной селективности и отношения коэффициентов диффузии или подвижностей. При измерении потенциалов стеклянных электродов в растворах, содержащих два иона, натрий и калий (в дополнение к иону водорода, который всегда присутствует в водных растворах), нашли, что фактор электрохимической селективности зависит в основном от ионообменной селективности.. Отношение подвижностей составляет только десятую часть ионообменной селективности. Айзенман исследовал много стекол различного химического состава, а также ряд биологических мембран. Он сделал вывод, что если измерена селективность для [c.64]

    Рециркуляция также нащла широкое применение в процессах выпаривания, адсорбции, сушки, экстракции, кристаллизации, в ионообменных процессах (например, при получении калиевой селитры на катионите КУ-1, что позволяет получать высококонцентрированные растворы нитратов. Широко распространена рециркуляция в аппаратах с псевдоожиженным слоем. Рециркуляция является эффективным средством теплосъема и поэтому позволяет осуществлять в промышленности реакции, протекающие с большим выделением тепла. В случае применения рецикла по жидкой фазе в трехфазных реакторах с суспендированным катализатором, кроме теплосъема, рециклический поток улучшает условия распределения катализатора в реакционном объеме. [c.290]

    Коэффициентом распределения в ионообменной хроматографии называют отношеяие концентраций распределяемого вещества в жидкой и твердой фазах. Коэффициент распределения может быть отнесен как к единице веса ионита (коэффициент весового р 1с-прсделення /( ),так и к единице объема ионита (коэффициент объемного распределения [c.172]

    Из уравнения (III. 138) видно, что с ростом емкости ионита уменьшается коэффициент распределения электролита. Он снижается также с уменьшением концентрации электролита. Можно утверждать, что ионит, находящийся в равновесии с разбавленным раствором электролита, практически не содержит коионов, т. е. сильные электролиты в иротивоиоложность слабым электролитам и неэлектролитам почти не адсорбируются ионитами из разбавленных растворов. Из этого следует, что через иониты могут диффундировать практически только противоионы, т. е. ионообменные материалы проявляют свойства полупроницаемых мембран но отношен кчо к отдельным ионам. [c.173]

    Устройство ионообменников и схемы ионообменных установок. В производственной практике широко распространены ионообменные установки периодического действия с неподвижным слоем ионита (рис. Х1У-12). Ионообменный аппарат состоит из цилиндрического корпуса 1 и опорной решетки 2, на которой расположен слой гранулированного ионита 3- Для более равномерного распределения раствора по плопхади поперечного сечения аппарата и предотвращения уноса мелких частиц ионита имеются распределительные устройства 4 и 5 в виде труб, снабженных колпачками или щелями для прохода раствора. [c.581]

    Существенный вклад внесла аналитическая химия в решение такой важной проблемы современной науки, как синтез и изучение свойств трансурановых элементов. Предсказание химических свойств трансурановых элементов оказалось более сложным, чем для элементов, входящих в периодическую систему в ее старых границах, так как не было ясности в распределении новых элементов по группам. Трудности усугублялись и тем, что до синтеза трансурановых элементов торий, протактиний и уран относились соответственно к IV, V и VI группам периодической системы в качестве аналогов гафния, тантала и вольфрама. Неправильное вначале отнесение первого трансуранового элемента № 93 к аналогам рения привело к ошибочным результатам. Химические свойства нептуния (№ 93) и плутония (№ 94) показали их близость не с рением и осмием, а с ураном. Было установлено, что трансурановые элементы являются аналогами лантаноидов, так как у них происходит заполнение электронного 5/- слоя, и, следовательно, строение седьмого и шестого периодов системы Д. И. Менделеева аналогично. Актиноиды с порядковыми номерами 90—103 занимают места под соответствующими лантаноидами с номерами 58—71. Аналогия актиноидов и лантаноидов очень ярко проявилась в ионообменных свойствах. Хроматограммы элюирования трехвалентных актиноидов и лантаноидов были совершенно аналогичны. С помощью ионообменной методики и установленной закономерности были открыты все транс-кюриевые актиноиды. Рекордным считается установление на этой основе химической природы элемента 101 — менделевия, синтезированного в начале в количестве всего 17 атомов. Аналогия в свойствах актиноидов и лантаноидов проявляется также в процессах экстракции, соосаждения и некоторых других. Экстракционные методики, разработанные для выделения лантаноидов, оказались пригодными и для выделения актиноидов. [c.16]

    По природе взаимодействия разделяемых веществ с твердой фазой различают адсорбционную, распределительную и ионообменную хроматографии. Адсорбционная хроматография основана на молекулярной адсорбции и подчиняется уравнению Лэнгмюра. Ионообменная хроматография определяется процессом ио1нообмена. В основе распределительной хроматографии лежит различие н коэффициентах распределения разделяемых веществ между двумя жидкими фазами. По методике проведения различают колоночную, хроматографию на бумаге и тонкослойную. Сорбция, иоиный обмен, распределение между фазами различного состава протекают непрерывно при последовательном многократном повторении. При колоночной хроматографии изучаемую смесь веществ в виде раствора (жидкая фаза) пропускают через колонку со слоем сорбента (твердая фаза). [c.254]

    Методы анализа фракций могут быть физическими, химическими и биологическими. Одним из лучших методов считается детектирование радиоактивных изотопов. Результаты измерений оформляют в виде кривой зависимости определяемой величины от объема злюата. По распределению пиков на хроматограмме судят о возможности объединения некоторых фракций, совершенно чистых, без примесей других компонентов. Методом ионообменной хроматографии можно разделять различные катионы и анионы, четвертичные аммониевые основания, амины, аминокислоты, белки, продукты гидролиза пептидов, физиологические жидкости, гидролизаты клеточных оболочек микробов, антибиотики, витамины, нуклеиновые кислоты. [c.361]

    Разделение осуществляется на колонках, в которых носителями неподвижной фазы служат ионообменные смолы, причем при разделении катионов используют аниониты, при разделении анионов — катиониты [14, 15]. Подвижной фазой является водно-органическая смесь, нанример ацетон и вода, смешанные в разных соотношениях. Последнее определяется иредварительно для каждого компонента по коэффициенту распределения. [c.87]

    После окончания основной стадии — насыщения ионита нзвле-каемым из раствора ионом — перед стадией регенерации реакционный раствор, находящийся между зернами, удаляют из слоя ионита промывкой его водой. При подаче воды снизу вверх, т. е. в направлении, противоположном ионообменной стадии, одновременно с отмывкой от раствора происходит разрыхление слоя ионита, зерна перераспределяются по размерам более равномерно, что улучшает распределение жидкого потока по слою в последующей стадии. Кроме того, промывная вода выносит из слоя ионита шлам и другие твердые осадки, которые могли задержаться при фильтровании растворов или образоваться в результате ионообменных или побочных процессов. После регенерации ионита, перед рабочей стадией насыщения, его также необходихмо отмыть водой от регенерирующего раствора. [c.310]

    Названные зависимости с высокой точностью описывают и газохроматографическое поведение веществ-гомологов в условиях газоадсорбционнои и ионообменной хроматографии, а также могут быть использованы для расчета значений Р, в тонкослойной хроматографии, факторов емкости в высокоэффективной жидкостной хроматографии с обращенной фазой, коэффициентов распределения при растворении органических соединений — членов гомологического ряда в бинарных системах вода — органический растворитель. [c.189]

    Распределение может осуществляться также при обмене ионами между неподвижной и подвижной фазами. Тогда говорят об ионообменной хроматографии. Неподвижная твердая фаза обычно состоит из органического полимерного материала, содержащего группы, способные к обмену ионами. Такой шолимерный материал называют ионитом. Обмен ионами меледу ионитом и раствором, по существу, представляет собой химическую реакцию. Так, например, если ионит обменивает ионы водорода на катионы Ш+, реакцию можно написать в следующем виде  [c.249]


Смотреть страницы где упоминается термин Ионообменное распределение: [c.100]    [c.116]    [c.321]    [c.172]    [c.221]    [c.5]    [c.44]    [c.41]    [c.12]    [c.338]    [c.118]   
Технология редких металлов в атомной технике (1974) -- [ c.14 , c.180 ]

Технология редких металлов в атомной технике (1971) -- [ c.14 , c.121 , c.123 ]




ПОИСК







© 2025 chem21.info Реклама на сайте