Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Параметры потенциалов действия

    При действии раздражителя на нервное или мышечное волокно мембранный потенциал в месте раздражения нарушается. Это нарушение начинает распространяться вдоль волокна приблизительно с постоянной скоростью. В первый момент состояния возбуждения резко возрастает проницаемость мембраны для ионов Ыа+, поток которых устремляется внутрь клетки. Затем возникает ток ионов К+, направленный во внешнюю среду. Распространяющаяся по волокну волна называется волной потенциала действия. Схема распространения нервного импульса может быть смоделирована на основе некоторых электрохимических систем, а само явление можно феноменологически описать, если задаться электрической емкостью, сопротивлением утечки мембраны, формой нервного импульса, и рассматривать его как распространение электрического сигнала в кабеле с определенными параметрами. [c.159]


    Основанная на этой зависимости как на исходной, развита теория диффузии, приводящая к выражениям для расчета D и 1)а,п в бинарных и многокомпонентных разбавленных газовых смесях при низких давлениях. Используется несколько предположений 1) происходят только двойные столкновения 2) движение сталкивающихся молекул можно описать с помощью классической механики 3) происходят лишь упругие соударения 4) квантовые эффекты отсутствуют 5) межмолекулярные силы действуют только вдоль линии центров молекул. Кроме того, приняты полуэмпирические правила комбинирования для определения Gab и АВ по значениям соответствующих величин для чистых компонентов, чтобы иметь возможность распространить получаемые уравнения для самодиффузии на системы, включающие смеси веществ. Такой же теоретический подход позволяет вывести уравнения для расчета вязкости и других свойств газов, и именно путем сравнения данных для нахождения вязкости с опытными данными по изменению ее в зависимости от температуры чистых разбавленных газов обычно получают значения е и а. И наоборот, вязкость, которая необходима при определении числа Шмидта, может быть вычислена по известным или найденным значениям параметров потенциала, как описано у Бромли и Уилки [15]. Несмотря на отмеченные выше ограничивающие предположения и наличие эмпирических констант, теория дает отличную основу для определения коэффициентов диффузии в разреженных газах. [c.31]

    Впоследствии по семейству полученных кривых были построены зависимости изменения параметров натриевых и калиевых токов в процессе генерации потенциала действия. [c.92]

    Для расчета формы потенциала действия необходимо было решить существенно более сложную систему уравнений уравнения для мембранного тока (4.7), три уравнения типа (4.3) для п, т и Ь параметров, в которых коэффициенты (Х , и [c.95]

    Модель межмолекулярного потенциала SP [338] использует три заряда, расположенных на атомах водорода и кислорода. Так же как и в модели ST2, между молекулами воды действует потенциал 6-12, центрированный на атомах кислорода. Для определенных параметров модели выполнялась серия пробных расчетов с целью минимизировать отклонение рассчитанных величин от данных экспериментальных измерений. В результате получен дипольный момент, равный 2,27 Д, энергия водородной связи равна 27,6 кДж/моль при равновесном расстоянии 0,276 нм между атомами кислорода в димере воды. [c.120]


    Существует много различных типов масс-спектрометров. Детали конструкции и относительные достоинства различных типов приборов описаны в литературе [1—7]. Большинство основных принципов масс-спектрометрии можно продемонстрировать, описав принцип действия простого масс-спектрометра, изображенного на рис. 16.1. Образец, находящийся в емкости, вводится через отверстие, входит в ионный источник а и проходит через электронный пучок в точке в, пучок обозначен штриховой линией. При взаимодействии образца с электронами, имеющими достаточную энергию, образуются положительные ионы, движущиеся по направлению к ускоряющим пластинам гид, поскольку между задней стенкой (напускной щелью) и передней стенкой этого устройства существует небольшая разность потенциалов. Отрицательные ионы притягиваются задней стенкой, которая заряжена положительно относительно передней стенки, и разряжаются на ней. Положительные ионы проходят через пластины гид, ускоряются под действием большой разности потенциалов (несколько тысяч вольт) между этими пластинами и покидают ионный источник через отверстие б. Заряженные ионы движутся по круговой орбите под влиянием магнитного поля. Полуокружность, помеченная е, есть траектория движения ускоренного иона в магнитном поле напряженности Н. Радиус полуокружности г зависит от следующих параметров 1) ускоряющего потенциала V(т. е. от разности потенциалов между ускоряющими пластинами г и (3), 2) массы иона т, 3) заряда иона е и 4) напряженности магнитного поля Н. Связь между этими параметрами выражается уравнением  [c.313]

    Процесс синтеза нефтеполимеров проводился в реакторе периодического действия при режимах температура 200-275 С продолжительность 6-8 час. Пробы отбирались с интервалом 1 час. Контролировались следующие параметры системы температура размягчения (Т ), среднечисловая молекулярная масса (ММ), коксуемость (К), относительная плотность (р). По электронным спектрам поглощения определялись эффективный потенциал ионизации (ПИ), эффективное сродство к электрону (СЭ), энергия активации вязкого течения (Е ), концентрация парамагнитных центров (С ) [3]. Свойства битум-стирольных композиций представлены в табл. 1. [c.110]

    Рассматривая потенциал седиментации (эффект Дорна) как явление, обратное электрофорезу, представим себе, что частицы твердой фазы, несущие заряд, осаждаются под действием силы тяжести либо центробежного поля. В процессе осаждения ионы диффузного слоя в силу молекулярного трения отстают от движущейся частицы, т. е. осуществляется поток заряженных частиц. Если в сосуд с осаждающимися в жидкости частицами твердой фазы поместить электроды на разной высоте, то между ними можно измерить разность потенциалов—потенциал седиментации. Этот потенциал пропорционален -потенциалу, частичной концентрации V, а также зависит от параметров системы, определяющих скорость оседания частиц и электропроводности среды. Выражение Гельмгольца — Смолуховского для потенциала седиментации можно получить из уравнения (IV. 74). Роль перепада давления Ар в этом случае играет сила тяжести fg, которая дл 1 столба суспензии с частицами сферической формы равна [c.226]

    Гиббс предполагал, что переходный слой между двумя фазами, в котором происходит постепенное изменение свойств, имеет очень малую толщину. Поскольку в то время не было никаких данных о размерах молекул и силах, действующих между ними, Гиббс не смог оценить, какова эта толщина, и, таким образом, определить размер фаз, к которому все еще можно применять представления о поверхностной фазе с независящими от размеров параметрами. Однако он, по-видимому, допускал, что такая граница существует. Говоря, например, об устойчивости пен [4], он совершенно определенно утверждал, что очень тонкие слои могут иметь особые свойства, которые способны приводить к их неустойчивости и разрушению. Более четко идея об изменении термодинамических свойств (химического потенциала) в тонком слое была изложена Поляни в 1914 г. Согласно Поляни, в результате взаимодействия молекул тонкого полимолекулярного слоя с подложкой, поверх которой [c.92]

    Из (V, 2) вытекает наличие характеристических функций состояния системы, убыль которых в обратимом процессе, протекаю щем при постоянстве определенной пары термодинамических параметров, равна максимальной полезной работе. По аналогии с механикой, где работа постоянно действующих сил также определяется независящей от пути разностью потенциалов этих сил в начальном и конечном состояниях системы, эти функции называются термодинамическими потенциалами. В зависимости от условий протекания процесса различают четыре термодинамических потенциала. [c.101]

    Различия между объемной и поверхностной концентрациями могут быть обусловлены также замедленным подводом реагирующих веществ из объема раствора. Медленно могут отводиться продукты реакции. Подвод и отвод реагирующих веществ при электролизе осуществляется линейной или конвективной диффузией и электрической миграцией. Миграция — перенос ионов под действием электрического поля, что обеспечивает перенос электричества в растворе электролита. Скорость диффузии определяется природой реагирующих веществ и среды, температурой, величиной градиента концентрации (т. е. с — с). Скорость миграции, кроме того, зависит от объемного градиента потенциала, подвижностей ионов и в значительной мере от трудно учитываемых геометрических параметров электролизера, электродов и их взаимного расположения. В электрохимических исследованиях миграцию исключают добавлением избытка электролита, ионы которого не участвуют в электродных реакциях, но осуществляют перенос электричества через раствор. [c.302]


    Это — частный случай важного общего закона теории потоков, согласно которому потоки (в первом приближении) пропорциональны обобщенным силам— градиентам интенсивных параметров. Поток компонента, определяемый числом молей п, перенесенных за единицу времени через единицу площади 5 сечения, нормального к направлению диффузии х, пропорционален градиенту химического потенциала компонента и его способности перемещаться под действием силы /, т. е. скорости , отнесенной к единичной силе, приложенной к 1 моль. Эту величину обозначают как подвижность Ur. [c.32]

    Методика расчёта позволяет определить параметры катодных станций, необходимые для обеспечения защитного потенциала на всех находящихся в заданном районе сооружениях, которые расположены в зоне действия установок электрохимической защиты и имеют контролируемые и неконтролируемые металлические соединения, обеспечивающие электрическую проводимость. [c.7]

    В. А. Притула и И. А. Корнфельд [13], изучавшие условия распространения блуждающих токов, нашли, что величина последних зависит от параметров основного тока, проводимости окружающей среды, значений переходных сопротивлений металл — среда и среда — металл, а также от расстояния между подземными металлическими сооружениями. Опасность коррозии сооружения, находящегося в зоне блуждающих токов, определяется изменениями потенциала труба — земля, силы и направления тока в трубопроводе, плотности тока утечки. По силе воздействия коррозия, возникающая от действия блуждающих токов, может во много раз превосходить почвенную коррозию, ко в отличие от последней носит локальный характер. Наиболее эффективным способом борьбы с коррозией от действия блуждающих токов является устройство электрических дренажей, с помощью которых блуждающие токи отводятся из анодной зоны к отсасывающему пункту. Это, однако, не исключает необходимости применения надежных антикоррозионных покрытий, обладающих высокими диэлектрическими свойствами. Критерием степени защищенности сооружения является его потенциал относительно окружающего грунта. [c.20]

    Г Установки катодной защиты состоят из катодной станции (нре-/образователя), анодного заземления, защитного заземления и соединительных проводов (кабелей). Установка автоматической катодной защиты состоит из катодной станции (преобразователя), анодного заземления, защитного заземления, неполяризующегося электрода сравнения длительного действия, датчика электрохимического потенциала и соединительных кабелей. Установки катодной защиты (неавтоматические и автоматические) по номинальным выходным параметрам должны соответствовать данным, приведенным в табл. 56. [c.117]

    Основными параметрами систем протекторной защиты, характеризующими их эффективность и срок действия, являются потенциал или плотность тока на защищаемой поверхности плотность тока на поверхности протектора. [c.191]

    Распределение токов и магнитное поле вокруг нервного импульса имеет своеобразный вид (рис. 34). На переднем фронте импульса силовые линии магнитного поля окружают аксон, будучи закручены по часовой, а на заднем фронте — против часовой стрелки. Эта картина является следствием токов, генерируемых трансмембранным потенциалом, распределение которого вдоль аксона показано на рис. 35. По расчетам Плонси [126], картину магнитного поля нервного импульса можно представить как результат действия двух равных по величине и противоположно направленных токовых диполей, один из которых расположен на фронте деполяризации, а другой - на фронте реполяризации спайка (рис. 35). В предположении однородной окружающей среды эти токовые диполи Р можно выразить через параметры потенциала действия в аксоне получается интегрированием плотности возникающих токов по внутриклеточному объему. Для отдельного диполя получаем [c.128]

    Радиус действия адсорбционной составляющей П йд весьма мал, поэтому ее вкладом в Да даже при очень больших величинах Ha j можно пренебречь [18, 144]. Электростатическая составляющая Пе в анолярных средах исследована очень мало. Необходимые для ее расчета параметры (потенциал и вид зависимости от толщины) точно неизвестны. В работе [158] было показано, что с помощью добавок длинноцепочечных ионогенных ПАВ можно подобрать условия, когда электростатическая составляющая расклинивающего давления исключается. [c.132]

    Бауэр и Злотник действуют следующим образом. Они полагают, что основными компонентами, присутствующими при температурах между 3000 и 8000° К, являются Ог, О, Ыг, N и N0. Рисунок 10.5 несомненно подтверждает это предположение. Кроме того, из рис. 10.5 видно, что к тому моменту, когда N присутствует в заметной концентрации, Ог исчезает, так что имеются только три или четыре компонента, присутствующие в любом заданном интервале температуры Ог, О и № в то время, когда Ог диссоциирует, и О, N2, N и N0 в то время, когда N2 диссоциирует. Бауэр и Злотник предположили, что параметры потенциала взаимодействия для О—О, О—N и N—N одни и те же и определяются значениями а и 6а аналогичное предположение было сделано относительно участвующих молекул, т. е. для взаимодействий О2—О2, N2—N2 и О2—N2- После вычисления коэффициентов диффузии они использовали эмпирически подтверждаемые комбинаторные правила, приводимые ниже. ла взаимодействий [c.406]

    Определяют основные параметры тока действия амплитуду, время подъема и спада биопотерщиала, общую продолжительность реакции. Крутизну изменения биопотенциала вычисляют при делении значения амплитуды потенциала действия иа значения времени его нарастания. [c.35]

    Амиодарон оказывает характерное влияние на электрофизиоло-гические параметры миокарда. Он существенно удлиняет потенциал действия кардиомиоцитов и таким образом увеличивает рефрактерные периоды предсердий, желудочков, пучка Гиса и волокон Пуркинье, а также блокирует калиевые каналы мембран кардиомиоцитов. Сумма электрофизиологических эффектов и характерное влияние на калиевые каналы клеточных мембран дали основание выделить амиодарон в особую фуппу антиаритмиков П1 класса. [c.150]

    Динамика фотоизомеризации ретиналя, происходящей под действием сверхкоротких световых импульсов, изучена методом волновых пакетов в рамках двухуровневой модели с квазипересечением электронных термов. Определена зависимость заселенностей электронных состояний от времени и дана классическая интерпретация полученным результатам. Рассчитана зависимость выхода реакции от параметров потенциала неадиабатического взаимодействия. Определены значения параметров, которые приводят к экспериментально наблюдаемому выходу. Показано, что классическое приближение качественно правильно описывает динамику движения по электронным термам и вероятность электронного перехода в области квазипересечения. Изучено влияние параметров светового импульса (длительности и чирпа) на форму волнового пакета и выход реакции изомеризации. [c.158]

    Непористые реакционно-диффузионные мембраны отличаются от прочих химической формой связи компонентов разделяемой смеси и исходного материала мембраны. Химические реакции приводят к образованию новых веществ, участвующих в транспорте целевого компонента. Массоперенос компонентов разделяемой газовой смеси определяется не только внешними параметрами и особенностями структуры матрицы, но и химическими реакциями, протекающими в мембране. В подобных системах за счет энергетического сопряжения процессов диффузии и химического превращения возможно ускорение или замедление мембранного переноса, в определенных условиях возникает активный транспорт, т. е. результирующий перенос компонента в направлении, противоположном движению под действием градиента химического потенциала этого компонента. В сильнонеравновесных мембранных системах могут формироваться структуры, в которых возникают принципиально иные механизмы переноса, например триггерный и осциллирующий режимы функционирования мембранной системы. Обменные процессы такого рода обнаружены в природных мембранах, но есть основания полагать, что синтетические реакционно-диффузионные мембраны в будущем станут основным типом разделительных систем, в частности, при извлечении токсичных примесей из промышленных газовых выбросов. [c.14]

    Антистатическое действие присадки основано на повышении электропроводности топлива, что неизбежно приводит к снижению до нуля всех электрических параметров, характеризующих алектризуемость топлива (величину заряда, перенесенного в разряде, электрический потенциал поверхности топлива и др.) (рис. 1.5, см. также рис. 1.3). [c.73]

    Адсорбционная теория (Фрейндлих) объясняла снижение заряда процессом адсорбции ионов. Согласно электростатической теории (Мюллер), увеличение с приводит, при постоянном заряде, к снижению -потенциала, а следовательно и устойчивости системы. Теория Рабиновича рассматривала совместное действие ионного обмена и снижение -потенциала. В теории, развитой Оствальдом, коагуляция рассматривалась как вытеснение дисперсной фазы межионными силами притяжения, действующими в дисперсионной среде (сжатие динамической ионной решетки ), В этом представлении параметром, определяющим коагуляцию, является величина коэффициента активности электролита. [c.247]

    Из этого качественного рассмотрения видно, что действующая электрическая сила (в явлениях электроосмоса и электрофореза), равная произведению заряда на градиент потенциала, тем больше, чем больше зарядов диффузного слоя оказывается в подвижной части жидкости. От этих зарядов зависит и величина конвективного тока, и, следовательно, величш1ы потенциалов течения и оседания. Таким образом, все эти явления должны быть развиты тем сильнее, чем больше подвижный заряд диффузного слоя и -потенциал границы скольжения. Отсюда следует, что -потенциал есть мера интенсивности электрокинетических явлений. С другой стороны, измеряя параметры этих явлений, можно вычислить -потенциал на основе теории, связывающей его с этими параметрами. К расбмотрению этой теории, разработанной Гельмгольцем около ста лет назад и развитой далее в трудах Перрена, Смолуховского и других ученых,, мы и переходим. [c.213]

    При изучении кинетики электрохимических реакций имеет большое значение исследование кривых потенциал — время. Изменение поляризации во времени при постоянной величине тока позволяет судить об интенсивности разрастания образующегося на катоде осадка. Снятие кривых потенциал — время позволяет оценить эффект действия плотности тока, поверхностно активных веществ, вводимых в электролит, и других параметров на микроструктуру катодных осадков. В случае образования на катоде рыхлых осадков скорость измерения потенциала катода во времени ( ф/ О onsi характеризует интенсивность разрастания катодного осадка, т. е. степень его дисперсности и дендритности. [c.252]

    При усиленном дренаже блуждающих токов ток отводится из трубопровода к рельсам при помощи преобразователя, питаемого от сети. Преобразователь включается в линию отвода блуждающих токов обратно к рельсам, причем минусовой полюс подсоединяется к защищаемой установке (сооружению), а плюсовой полюс — к ходовым рельсам или к минусовой сборной шине на тяговой подстанции. Различные исполнения защитных преобразователей и возможности их применения описаны в разделе 9. На участке рисунка г показана запись параметров, получающихся при применении нерегулируемого преобразователя с напряжением на выходе 2 В, подсоединительные кабели которого, имеющие сопротивление около 0,4 Ом, действуют как ограничитель тока. При этом достигается катодная защита, эффективность которой однако а случае трубопроводов с плохим изолирующим покрытием быстро уменьшается по мере удаления от защитной установки. Сильные колебания защитного тока могут быть уменьшены путем увеличения сопротивления, ограничивающего ток, с помощью добавочного сопротивления Я. Однако тогда и потенциал труба — грунт в среднем становится менее отрицательным. Если требуется обеспечить только защиту от блуждающих токов, то сопротивление настраивается так, что с увеличением защитного тока потенциал труба—грунт становится лишь немного более отрицательным. Однако эффект сглаживания тока при работе преобразователей, питаемых от сети, может быть достигнут и без потери мощности на омическом сопротивлении, если предусмот- [c.331]

    Защитное действие И. к. количественно оценивают коэф. торможения у = Уо// я, где jg и скорости коррозии (или величины, их характеризующие) в исходной и ингибир. среде соотв. степенью защиты Z = (1 — 1/у)-100% миним. концентрацией И., обеспечивающей заданный уровень Z. В общем случае эффективность ингибирования сильно зависит от состава среды, природы металла и условий процесса (т-ра, давление и т. п.) для кинетич. области протекания процесса обычно справедливо соотношение у = = Ю (1 — 0)"где 0 степень заполнения пов-сти ад-сорбир. ингибитором, ДЧ изменение электродного Tj-потенциала в адсорбц. слое, /с-эмпирич. постоянная, включающая кинетич. параметры электродных р-ций (см. Элект-рохимическа.ч кинетика). [c.222]


Смотреть страницы где упоминается термин Параметры потенциалов действия: [c.139]    [c.353]    [c.30]    [c.72]    [c.201]    [c.2]    [c.200]    [c.325]    [c.325]    [c.134]    [c.258]    [c.82]    [c.95]    [c.174]    [c.68]    [c.208]    [c.647]    [c.33]    [c.73]   
Смотреть главы в:

Биоэлектрогенез у высших растений -> Параметры потенциалов действия




ПОИСК







© 2025 chem21.info Реклама на сайте