Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Видимый свет и УФ-излучение

    Энергия, испускаемая во время радиоактивного распада, является одной из форм электромагнитного излучения высокой энергии. Видимый свет, мик-ро- и радиоволны тоже являются электромагнитным излучением, но меньшей энергии. На, рис. V.1 показаны главные составляющие спектра электромагнитного излучения и их источники. [c.303]


    Окраска предметов определяется частотой отражаемого света. Если отражаются фотоны со всеми частотами видимого света, объект кажется белым, а если все фотоны с частотами видимого света поглощаются (не отражаясь), то объект выглядит черным. Так как светлая поверхность отражает больше излучения, чем темная, она остается более холодной. [c.400]

    Инфракрасное излучение Электромагнитное излучение с энергией, меньшей, чем у видимого света. При поглощении ИК-излучения температура повышается Ион [c.544]

    Ультрафиолетовое излучение Электромагнитное излучение с энергией большей, чем видимый свет. Может повреждать ткани тела. Вызывает загар [c.548]

    Торможение электронов на аноде рентгеновской трубки может происходить по-разному. одни из них тормозятся мгновенно на самой поверхности анода, что соответствует фотону максимальной величины (т. е. вычисленному по уравнению (IV. 1)1 другие, проникая в глубь анода, постепенно теряют свою энергию. Следовательно, при торможении электронов возникнут фотоны самой разнообразной энергии, а так как количество их, излучаемое в единицу времени, очень велико, то тормозной спектр будет состоять из непрерывного ряда длин волн с резкой границей в коротковолновой части. Характер распределения энергии в спектре торможения при различных напряжениях показан на рис. 56. Тормозное рентгеновское излучение называют сплошным или белым по аналогии с видимым светом. [c.107]

    Принцип действия спектрографа виды спектров. В спектрографе пучок света, проходящий через щель, попадает в устройство, которое разлагает излучение на его составляющие и направляет их в разные места фотографической пластинки, соответствующие определенным длинам волн и частотам V. Для исследования видимого и ультрафиолетового излучения обычно используют оптические спектрографы, в которых излучение разлагают, пропуская его через призму из стекла (для видимого света) или из кварца (для ультрафиолетового излучения). Принципиальная схема спектрографа показана на рис. 1.1. Разложение света призмой обусловлено зависимостью показателя преломления от длины волны света для большинства сред показателе- преломления уменьшается с увеличением длины волны. [c.9]

    Переходы электронов, принадлежащих к внутренним слоям, дают рентгеновское излучение, длинна волн которого значительно меньше, чем длина волн видимого света. Это обусловлено тем, что внутренние электроны более прочно связаны с ядром, поэтому их переходы сопряжены с большими энергетическими изменениями, что, согласно уравнению (1.36), приводит к излучению высокой частоты и, следовательно, малой длины волны. Рентгеновские спектры состоят из небольшого числа линий их частоты закономерно изменяются с возрастанием заряда ядра при -переходе от одного элемента к другому (см. разд. 1.5). [c.30]


    К области фотохимии ( 208) относится рассмотрение химических реакций, возбуждаемых видимым светом или инфракрасными и ультрафиолетовыми лучами, т. е. практически колебаниями с длинами волн от 1000 до 10 ООО А. Энергия этих колебаний примерно 1,2—12 эв. При поглощении этих излучений усиливается вращательное движение молекул или колебания атомов и атомных групп, составляющих молекулу, и могут быть возбуждены электроны наружных оболочек атомов. Под действием излучений с меньшей длиной волны может происходить и отделение наиболее слабо связанных электронов. В отличие от этого, при поглощении рентгеновских лучей, обладающих много большей энергией, возбуждаются или отделяются электроны внутренних оболочек атома. Поэтому химическое действие рентгеновских лучей по своему характеру сильно отличается от действия видимого света или инфракрасных и ультрафиолетовых лучей. [c.551]

    Инфракрасное излучение в большинстве случаев не оказывает фотохимического действия на вещество, приводя лишь к повышению его температуры. Чаще всего в фотохимических исследованиях используется видимый свет в интервале длин волн 700—400 нм и ультрафиолетовый свет в области 400—200 нм. [c.134]

    Источники света. Источниками ультрафиолетового и видимого света для проведения фотохимических исследований служат ртутные лампы. В зависимости от давления паров ртути, развивающегося при работе, различают лампы низкого давления 10 —1мм рт. ст., среднего давления 2-10 —2-10 мм рт. ст., высокого давления от 2-10 до (2- -3) 10 мм рт. ст. Излучение, возникающее при работе ртутных ламп, связано с переходами возбужденного атома ртути с соответствующих энергетических уровней в основное состояние. Если переход осуществляется с нижних энергетических уровней (6 Яь 6 Я ) в основное состояние (6 5о), происходит испускание так называемого резонансного излучения. В зависимости от строения внешней электронной оболочки атома может быть несколько резонансных линий испускания. Если атом в результате столкновений возбуждается до более высоких энергетических уровней, чем резонансный, то сначала происходит испускание кванта энергии, соответствующего разности этих уровней, а затем переход с резонансного уровня в основное состояние. На- [c.138]

    Некоторые вещества, например полимеры, можно исследовать в виде тонких пленок, которые помещают на пути луча. Иногда пленки можно получить непосредственно на пластинке из хлорида натрия испарением растворителя, расплавлением вещества или его напылением в вакууме. Даже непрозрачная для видимого света пленка может пропускать ИК-излучение в достаточной степени, чтобы записать ее спектр. Однако для количественных измерений в пленках трудно контролировать толщину образца, а также потери на рассеяние света. В спектрах пленок часто наблюдаются интерференционные полосы, которые могут налагаться на полосы исследуемого вещества. При образовании пленки молекулы могут ориентироваться определенным образом, поэтому при частичной поляризации ИК-излучения в приборе (особенно с дифракционной решеткой) может наблюдаться зависимость спектра от положения образца в луче. [c.209]

    Для возбуждения спектров КР используют обычно излучение в видимой области. При этом спектры КР также находятся в видимой области, что позволяет использовать для их записи стеклянную оптику. Поскольку вода прозрачна для видимого света и очень слабо рассеивает его, она служит прекрасным растворителем для получения спектров КР- При этом доступны для исследования многие водные растворы, интересные с биологической точки зрения, для которых использование метода ИК-спектроскопии затруднительно или даже невозможно. Примером могут служить растворы а-химотрипсина и других ферментов, в спектрах КР котор были обнаружены полосы, характерные для ряда структурных элементов в этих молекулах. [c.222]

    Было замечено, что энергия сопряженных связей уменьшается, полоса поглощения сдвигается в длинноволновую область с увеличением длины цепи сопряжения. Заметим, что поглощение света связано с поляризацией поглощающих свет молекул. Легкая поляризуемость молекул с сопряженными связями, благодаря чему ее концы оказываются заряженными, благоприятствует поглощению электромагнитного излучения сравнительно малой,энергии в-области длин волн видимого света. [c.95]

    Проникая в твердое вещество, излучение в зависимости от величины его энергии может затрагивать только валентные электроны, всю электронную оболочку атомов или же, при достаточно высокой энергии, и атомные ядра. В последнем случае оно производит не только возбуждение электронов, ионизацию, но и смещение атомов данного вещества из их нормальных положений. Зто относится как к электромагнитному излучению (видимому свету, ультрафиолетовым и рентгеновским лучам, 7-излучению), так и к потокам частиц (электронов, ионов, например, протонов или а-частиц и др.). При этом энергия излучения трансформируется частично в тепловую, вибрационную энергию твердого вещества, которая передается соприкасающимся с ним веществам, а частично в электромагнитное излучение сниженной частоты по сравнению с частотой поглощенной лучистой энергии. Местные изменения структуры твердого вещества, возникающие при его взаимодействии с излучением высоких энергий, принято называть радиационными дефектами. Радиационные дефекты, равномерно распределенные по всему сечению луча, проникающего в твердое вещество, создаются фотонами, электронами, а-частицами и т. д. [c.121]


    Все электронные переходы, в том числе и переходы на локальные уровни типа 5 и 3—4 сопровождаются электронно-фонон-ным взаимодействием, в результате которого часть электронной энергии превращается в вибрационную энергию, т. е. в теплоту, нагревающую твердое тело выше первоначальной температуры, а часть излучается в виде квантов сниженной частоты, по сравнению с частотой поглощаемого излучения Поэтому, когда ширина запрещенной зоны не слишком сильно превосходит 3,1 эВ, т. е. энергию фотонов самого коротковолнового видимого света, полоса электромагнитного излучения данного вещества может находиться в области спектра видимого излучения. При более значительной ширине запрещенной зоны может иметь место испускание только ультрафиолетового излучения. [c.122]

    Возможность непосредственно наблюдать вращательные и колебательные переходы в области видимого света основывается на открытии Раманом и Мандельштамом явления комбинационного рассеяния света. При прохождении монохроматического света через вещество в спектре рассеянного света наряду с линией излучения источника света появляются также линии с более высокими и более низкими частотами. Эта разность частот относительно основной частоты источника света соответствует изменению энергии при колебательных переходах. Основное достоинство спектроскопии комбинационного рассеяния (КР) состоит в том, что с ее помощью можно точно и просто определять собственные частоты колебаний молекулы. При этом можно различить валентные и деформационные колебания. Последние возможны у многоатомных нелинейных молекул. Так, например, молекула воды НгО имеет два валентных колебания [c.68]

    В приборах другого типа (фотометр) раствор сравнения не нужен. Свет от источника излучения пропускают через ослабляющее световой поток устройство и, регистрируя его, добиваются совпадения его интенсивности с интенсивностью света, прошедшего через анализируемый раствор. Для ослабления светового потока сравнения можно использовать так называемый серый раствор, поглощающий всегда одинаковую часть проходящего через него видимого света (какой бы длины волны этот свет ни был), аналогично действующий серый клин или регулируемую диафрагму (в фотометре Пульфриха). При этом, разумеется, нужно строить градуировочную кривую зависимости поглощения от концентрации анализируемого раствора. [c.363]

    В зависимости от длины волны видимого света и относительных размеров частиц дисперсной фазы рассеяние света принимает различный характер. Если размер частиц превышает длину световых волн, то свет от них отражается по законам геометрической оптики. При этом часть светового излучения может проникать внутрь частиц, испытывать преломление, внутреннее отражение и поглощаться. [c.295]

    Прежде чем мы попытаемся объяснить причину появления окраски у комплексов, следует кратко повторить то, что уже ранее говорилось о природе света, введя некоторые новые представления. Напомним, что видимый свет представляет собой электромагнитное излу-чение, длина волны которого находится в пределах от 400 до 700 нм (см. рис. 5.3, ч. 1). Как было указано в разд. 5.2, энергия этого излучения обратно пропорциональна его длине волны  [c.388]

    В конце XIX и начале XX вв. появились экспериментальные доказательства сложной структуры атома фотоэффект — явление, когда при освещении металлов с их поверхности испускаются носители электрического заряда (см. разд. 2.2.3) катодные лучи — поток отрицательно заряженных частиц — электронов в вакуумированной трубке, содержащей катод и анод рентгеновские лучи — электромагнитное излучение, подобное видимому свету, но с гораздо более высокой частотой, испускаемое веществами при сильном воздействии на них катодных лучей радиоактивность — явление самопроизвольного превращения одного химического элемента в другой, сопровождающееся испусканием электронов, положительно заряженных частиц, других элементарных частиц и рентгеновского излучения. Таким образом было установлено, что атомы состоят [c.37]

    Электромагнитное излучение характеризуется длинами волн от 10 м до радиоизлучения с длиной волны, измеряемой сотнями метров. Глаз человека воспринимает очень малую часть спектра — видимый свет. Видимое излучение соответствует колебаниями с длинами волн 10 —10 м или 10 —10 нм (1 нм = 10 м). За пределами его в области колебаний большей длины волны располагается инфракрасное излучение ( .= 10 —10 м), переходящее в радиоизлучение. В области колебаний меньшей длины волны располагается ультрафиолетовое излучение с длиной волны 10 — 10 м, а далее область у-излучения, характерного для радиоактивных превращений и имеющего длины волн порядка 10 м. [c.238]

    Однако наиболее общий и простой метод определения зарядов ядер был дан Мозли на основе изучения спектров рентгеновских лучей. Рентгеновские волны обладают меньшей длиной волны по сравнению с видимым светом, большей частотой и, следовательно, их кванты обладают энергией. Они возникают в результате переходов электронов внутренних оболочек атомов. Эти электроны крепче связаны и находятся, следовательно, на более низких энергетических уровнях. Рентгеновское излучение обычно вызывается воздействием на вещество потока электронов, которые выбивают внутренние электроны атомов. На освободившиеся [c.454]

    В 1912 г. М. Лауэ доказал, что рентгеновские лучи представляют собой электромагнитное излучение, длина волны которого примерно в 10000 раз меньше длины волны видимого света этим были созданы основы структурного рентгеновского анализа. [c.494]

    Способность элементарных веществ испускать электроны под воздействием электромагнитных волн — фотоэлектрический эффект — характерна для металлов. В этом случае она объясняется слабостью связи валентных электронов в атомах. Чем слабее связаны электроны в атомах, тем меньшая энергия кванта излучения требуется для их отрыва. В соответствии с этим фотоэлектрический эффект легче всего осуществляется у щелочных металлов, которые испускают электроны под воздействием не только ультрафиолетовых, но даже и длинноволновых лучей видимого света. [c.45]

    Широкое применение в различных областях техники и в быту получили плазменные источники света, в которых плазму получают действием электрических разрядов в лампах, наполненных газом. Возникающая в лампе плазма может непосредственно излучать видимый свет (газосветные лампы) или же давать излучение, которое при помощи люминофоров преобразуется в видимый свет (люминесцентные лампы). Плазменные источники света иначе называют газоразрядными. Они имеют более высокие коэффициенты полезного действия, чем лампы накаливания, а также обладают рядом других ценных свойств. Так, газосветные лампы в зависимости от природы газа — наполнителя могут излучать свет различных цветов. Люминесцентные лампы могут давать излучение, близкое по составу к дневному свету. [c.253]

    Если тело нагрето, оно излучает теплоту. Тепловое излучение, так же как и видимый свет, является одним из видов электромагнитных волн. Однако оно обычно состоит из волн с большей длиной и, следовательно, с меньшей энергией, чем видимый свет. Было замечено, что энергия излучения от нагретого тела распределяется по непрерывному спектру, зависящему от температуры тела. При низких температурах спектр состоит в основном из излучения с низкой энергией, т. е. соответствует инфракрасной области. Однако при повышении температуры спектр меняется, и в нем усиливается область, отвечающая высоким энергиям. Это легко заметить, если иметь в виду, что при нагревании тела его излучение соответствует видимой области спектра. Сначала тело становится красным, а затем при повышении температуры — белым, например таким, как нити в лампах накаливания. [c.17]

    Закономерности протекания химических процессов, обусло-вленных действием света (излучение с частотами видимого спектра и с близкими к ним), рассматриваются в разделе физической химии, называемом фотохимией. В этом разделе значительное внимание уделяется скорости протекания фотохимических реакций, поэтому основы фотохимии целесообразнее всего излагать в разделе, посвященном химической кинетике. [c.229]

    Как уже отмечалось в предыдущей главе о ядерной энергии, огромное количество энергии С олнца производится при слиянии ядер водорода в гелий. Большая часть этой энергии выбрасывается Солнцем в виде электромагнитного излучения. Около 9% энергии Солнца приходится на ультрафиолетовый (УФ) диапазон, 46% - на видимый свет и 45% - на инфракрасный (ИК) диапазон спектра. Полный солнечный спектр приведен на рис. VI.11. [c.397]

    Одновременно с необъяснимо устойчивой резерфордовой моделью атома в физике появились и другие непонятные факты. На грани двух веков ученые пришли к выводу, что радиоволны, инфракрасные лучи, видимый свет и ультрафиолетовое излучение (а затем рентгеновские и гамма-лучи представляют собой электромагнитные волны с различной длиной волны. Все эти волны распространяются с одинаковой скоростью с — = 2,9979-10 M 300000 км с (Такая скорость кажется беспредельно большой лишь до тех пор, пока мы не вспомним, что именно из-за ее ограниченности радиосигнал, посланный с Земли на Луну, приходит ту- [c.333]

    И качестве источника ультрафиолетового и видимого света используют газоразрядные лампы (ртутные лампы низкого, В1.1С0К0Г0, среднего давления, ксеноновые лампы), лампы нака-лпвгшия или лазеры. Для получения монохроматического света служат монохроматические фильтры, выделяющие из излучения источника сложного спектрального состава свет определенной длины волны. Промышленность выпускает твердотельные фильтры (из окрашенного стекла, пластиче-ски> масс) или жидкостные, представляющие собой имеющие цвет растворы. [c.25]

    Повышенная энергия Движения электронов может достигаться при поглощении видимого света (или других электромагнитных колебаний) и переходе электронов на волее высокий энергетический уровень (как, например, при активации хлора в реакции Н2- -С12 = 2НС1). Энергия электронов в атомах может повышаться при разрыве валентной связи, например при диссоциации молекулы водорода на атомы или при образовании других атомов с ненасыщенной валентностью или свободных радикалов. Такая активация может осуществляться и при химических взаимодействиях (как, например, в реакции Ыа + С12 = НаС1 + С1) и при ударах молекул о стенку сосуда и пр. Наконец, молекулы могут активироваться действием электрического разряда, ультразвуковыми колебаниями, действием излучений различного рода и другими путями. [c.479]

    Если уравнение (1.1) сопоставить с приведенными значениями разностей энергий для соседних энергетических уровней, то излучение в УФ-области спектра будет давать кванты света, достаточные, чтобы вызвать типичные электронные переходы. Например, длина волны 250 нм соответствует энергии кванта примерно 0,5-10 Дж, а моль таких квантов имеет энергию примерно 300 кДж. Энергия квантов электронного возбуждения одного и того же порядка, что и величина энергии диссоциации связи. Поэтому электронное возбуждение иногда сопровождается фотохимическим разложением. Однако в больщинстве случаев разрыва химической связи не происходит, так как во.чбужденные молекулы возвращаются в основное состояние в результате различных фотофизических процессов, а в конденсированных средах, кроме того, взаимодействие между частицами приводит к быстрой передаче поглощенной энергии всему коллективу частиц. В некоторых молекулах электронные уровни расположены так близко друг от друга, что для электронного перехода достаточен видимый свет. Если уровни удалены друг от друга, то, чтобы вызвать эти переходы, необходимо УФ-излучение или даже рентгеновское. Инфракрасное излучение вызывает переходы между колебательными уровнями, радиочастотное излучение — между вращательными. [c.7]

    Закон Бугера-Ламберта с соответствующими значениями К в принципе применим для всего диапазона электромагнитных излучений видимого света, инфракрасшх и ультрафиолетовых лучей, радиоволн, рентгеновских и у-лучей. Однако при практическом применении следует учитывать, что по ряду причин он имеет лишь приближенный характер [ ]. [c.90]

    Такие группы, вызьгеаюшие сильное поглощение каких-то у гас-тков спектра видимого электромагнитного излучения (света), называются хромофорами. Не менее важньш дпя проявления окрашивания является наличие в структуре молекулы сопряжетюй системы двух и.чи более хро.чофоров- [c.158]

    На рис. 42 представлены спектры, которые были полу-чены спектрографированием отдельных кристаллов 2п5 и 2п8 — Си-кристаллофосфора при помощи ультрафиолетового микроскопа. Мы видим, что эти спектры существенно отличаются друг от друга. В спектре чистого сульфида цинка фундаментальная полоса поглощения, не доходя до длин волн видимого света, круто спадает (рис. 42,а). В спектрах же кристаллофосфора, содержащего 0,01 и 0,1% меди, она наращивается, начиная с места обрыва, продолжается в области длинных волн и захватывает синий и зеленый участки спектра видимого излучения (рис. 42, б). Чистый сульфид цинка, в спектре поглощения которого нет волн видимого света, не люминесцирует. Полученный же на его основе твердый раствор, содержащий наряду с атомами цинка некоторое количество атомов меди, распределенных случайным образом среди атомов серы, спектр которых захватывает волны синего и зеленого света, представляет собой кристаллофосфор, испускающий сине-зеленое излучение, хотя и несколько более длинных волн. Ясно, что последний имеет и ную электронную конфигурацию, чем чистый сульфид цинка, а отсюда и иной энергетический спектр. [c.123]

    Сти. юскопы (например, СЛ-11 и СЛ-12) предназначены для изучения видимых спектров излучения металлов, накаленных в искровой дуге переменного тока. Однако их можно применить также и для определения гр в видимых спектрах поглощения. Для этого следует в качестве осветителя воспользоваться лампой белого света и стеклянную ампулу с исследуемым веществом поместить между осветителем и объективом стилоскопа. [c.348]

    Обратите внимание на то, что для образования одного моля сахара СбН120б должно быть поглощено и использовано 48 молей фотонов. Необходимая для этого энергия излучения поступает из видимой части солнечного спектра (см. рис. 5.3 ч. 1). Фотоны поглощаются фотосинтетическими пигментами в листьях растений. К важнейшим из этих пигментов относятся хлорофиллы структура наиболее распространенного хлорофилла, так называемого хлорофилла-а , показана на рис. 25.1. Хлорофилл представляет собой координационное соединение. Он содержит ион связанный с четырьмя атомами азота, которые расположены вокруг него по вершинам квадрата в одной плоскости с металлом. Атомы азота входят в состав порфиринового цикла (см. разд. 23.2). Следует обратить внимание на то, что в окружающем ион металла цикле имеется ряд двойных связей, чередующихся с простыми связями. Благодаря такой системе чередующихся, или сопряженных, двойных связей хлорофилл способен сильно поглощать видимый свет. На рис. 25.2 показано соотношение между спектром поглощения хлорофилла и спектральным распределением солнечной энергии у поверхности Земли. Зеленый цвет хлорофилла обусловлен тем, что он поглощает красный свет (максимум поглощения при 655 нм) и синий свет (максимум поглоще- [c.442]

    ФОТОН — элементарная частица с массой покоя, равной нулю, вследствие чего Ф. всегда движется со скоростью света. Спнн Ф. равен 1. Ф. представляет собой порцию электромагнитного излучения, например, видимого света, рентгеновского или -излучения. Ф. называют также квантами — световыми квантами, рентгеновскими квантами или у-квантами. Ф. могут испускаться или поглощаться любой системой, содержащей электрические заряды или по которой проходит ток. Ф. с высокой энергией (7-кванты) испускаются при распадах атомных ядер и элементарных частиц, и могут вызывать расщепление атомных ядер и образование элементарных частиц. Понятие Ф. введено в 1899 г. М. Планком для объяснения распределения энергии в спектре излучения абсолютно черного тела. Существование Ф. означает, что электромагнитные волны с частотой V излучаются и поглощаются только определенными порциями (квантами) с энергией, равной hv (где /г — постоянная Планка). [c.268]

    Счетчики квантов рентгеновского излучения. К наиболее употребительным счетчикам квантов рентгеновского излучения относятся ионизацио((ные и сцин-тилляциониые счетчики. Принцип работы ионизационных счетчиков, к которым относится, в частности, счетчик Гейгера — Мюллера, основан иа способности рентгеновского излучения ионизировать газы, а сцинтилляционных — на способности рентгеновского излучения вызывать люминесцентное свечение некоторых веществ в виде всрышек — сцинтилляций видимого света. Преимуществом сцинтилляционных счетчиков перед ионизационными является высокая эффективность (процентное отношение числа зарегистрированных квантов к числу всех квантов, попавших во входное окно счетчика) при регистрации жесткого рентгеновского излучения, малое мертвое время (время, в течение которого счетчик, зарегистрировав квант, остается нечувствительным к следующему кванту) и практически неограниченный срок службы при хорошей герметизации кристалла — сцинтиллятора. В табл. 10 приведены некоторые характеристики серийно выпускаемых счетчиков. [c.77]

    Эти невидимые лучи способны вызывать флуоресценцию некоторых кристаллических веществ (цинковая обманка, барий платиносинеродистый и др.), воздействовать на фотопластинки (засвечивать их через непрозрачные для видимого света экраны) и ионизировать газы. Данные явления используют для обнаружения и диагностики рентгеновских лучей, а также широко применяются в практике. Известно два типа рентгеновского излучения тормозное и характеристическое. [c.113]

    Но жизнь не только использует свет, она трансформирует энергию обмена веществ в излучение. Свечение бактерий, глубоководных рыб, светляков темной летней ночью связано с преобразованием энергии аденозинтрифосфата в кванты видимого света. Для осуществления механизма хемолюми- [c.286]

    Реакции, которые протекают под действием света, называются фотохимическими. Под светом понимается видимый свет, ин-фракрасное и ультрафиолетовое излучения. Эффективность действия света зависит от его энергии чем короче длина волны (т. е. чем больше смещено излучение в ультрафиолетовую об ласть спектра), тем выше энергия излучаемых фотонов и тем сильнее воздействие кванта света на облучаемую частицу — атом, ион или молекулу. [c.47]

    Такие труппы, вызываюшзне сильное поглощение какик-то участков спектра видимого электромагнитного излучения (света), называются хролюфорами. Не менее важным для проявления окрашивания является наличие в структуре молекулы сопряженной системы двух или Оолее хромофоров. [c.158]


Смотреть страницы где упоминается термин Видимый свет и УФ-излучение: [c.47]    [c.49]    [c.368]    [c.52]   
Смотреть главы в:

Химия высоких энергий -> Видимый свет и УФ-излучение




ПОИСК





Смотрите так же термины и статьи:

Видимость



© 2025 chem21.info Реклама на сайте