Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Контроль количества полученного кислорода

    Мартеновскую сталь производят в отражательных печах, т. е. в таких печах, в которых пламя отражается от потолка камеры сгорания и нагревает загруженный материал. Чугун плавят со стальным скрапом и некоторым количеством гематита в печи, обогреваемой газообразным или жидким топливом. Горючее и воздух (иногда обогащенный кислородом) предварительно нагревают, пропуская через камеры с горячей насадкой из огнеупорного кирпича, расположенные по одну сторону печи аналогичные камеры, расположенные по другую сторону печи, обогреваются выходящими из печи газами. Время от времени направление потока газов изменяют на обратное. Углерод и другие примеси, содержащиеся в расплавленном железе, окисляются гематитом и избытком воздуха, поступающим в печь вместе с газом. В процессе плавки производят анализы (плавка занимает примерно 8 ч) и, когда почти весь углерод окисляется, добавляют необходимое для данной марки стали количество кокса, или высокоуглеродистого сплава, обычно ферромарганца, или зеркального чугуна. Затем расплавленную сталь разливают в изложницы, где она затвердевает в виде слитков (болванок). Мартеновскую сталь можно получить вполне определенного качества, благодаря тому что данный процесс подвергается строгому аналитическому контролю на протяжении нескольких часов плавки. [c.550]


    ЛИШЬ в редких случаях. В тех редких случаях, когда отмечалось свободнорадикальное присоединение H l ориентация по-прежнему соответствовала правилу Марковникова, по-види-мому, потому, что образуется наиболее стабильный продукт [121]. Свободнорадикальное присоединение HF, HI и НС1 энергетически невыгодно (см. обсуждение в разд. 14.5 и при описании реакции 14-1). Присоединение НВг против правила Марковникова часто наблюдалось и в отсутствие пероксидов. Это происходит в результате того, что субстрат (алкен) адсорбирует кислород воздуха, образуя небольшие количества пероксидов (реакция 14-8). Присоединение по правилу Марковникова можно обеспечить тшательной очисткой субстрата, но практически этого нелегко добиться, и поэтому большее распространение получило проведение реакции в присутствии ингибиторов, например фенолов или хинонов, которые предотвращают протекание реакции по свободнораднкальному пути. Присутствие свободнорадикальных инициаторов, таких, как пероксиды, не ингибирует ионный путь реакции, но свободнорадикальное присоединение, будучи цепным процессом, идет намного быстрее, чем электрофильная реакция. В большинстве случаев оказывается возможным контролировать механизм (а следовательно, и ориентацию), добавляя пероксиды для проведения свободнорадикального присоединения или ингибиторы для осуществления электрофильного пути, хотя известны случаи, когда реакция по ионному пути идет так быстро, что может конкурировать со свободнорадикальным механизмом, и полного контроля достичь не удается. Присоединение НВг, НС1 и HI по правилу Марковникова с высокими выходами осуществлено с использованием межфазиого катализа [122]. Альтернативные методы присоединения НВг (или HI) против правила Марковникова рассмотрены в разделе, посвященном реакции 12-28 (т. 2). [c.162]

    Анализ неконденсирующихся газов собранных в трубке 9, производится следующим путем. Предполагается, что газы не содержат одновременно кислорода и какого-либо углеводорода. Через затвор 5 вводится измеренное количество водорода. Для контроля измеряется его давление в системе, затем его собирают в трубке 9 при помощи ртутного насоса. Далее производят сжигание, накаливая платиновую нить и открывают затвор 10, чтобы получающиеся углекислота и вода могли распространиться по соединительным трубкам вместе с кислородом в избытке и негорючими газами. Углекислота и водяной пар конденсируются в трубке 13. Измеряется давление кислорода и негорючих газов, после чего их снова собирают в трубке 9. Далее, как и прежде, измеряют получившиеся количества СО2 и НдО (количество Н2О по разности между новой и старой величиной количеств сконденсированных газов). Полученные величины непосредственно определяют содержание окиси углерода и водорода [c.228]


    Во время зарядки обычного щелочного аккумулятора на его аноде образуется некоторое количество кислорода, а на катоде после окончания зарядки — водород. Однако выделение газа может быть устранено соответствующей конструкцией аккумулятора или с помощью химических катализаторов. 0 дает возможность получать герметически закрытые сухие аккумуляторы. Элемент изготавливается таким образом, чтобы емкость отрицательного электрода была намного больше емкости положительного тогда зарядка положительного электрода заканчивается гораздо раньше, чем отрицательного, последний остается частично незаряженным, и выделения водорода не происходит. Выделение кислорода на аноде в результате таких мер не уменьшается, но образование пузырьков газа можно предотвратить. Так как электроды расположены очень близко друг к другу и аккумулятор содержит лишь минимум электролитной жидкости, необходимой для пропитывания пор электродов и находящихся между ними пористых пластин, то образованный при зарядке кислород в растворенном состоянии легко диффундирует к отрицательному электроду и окисляет его. Этот процесс может быть ускорен с помощью катализаторов. Окисленная часть отрицательного электрода снова восстанавливается зарядным током. В этих условиях нэт необходимости прерывать процесс зарядки для уменьшения газовыделения — газ не выделяется, даже если зарядный ток не выключают. С экономической точки зрения перезарядка, конечно, означает потерю энергии, ибо после каждого восстановления положительного электрода выделяющийся на одном электроде кислород с помощью зарядного тока снова переводится в раствор на другом электроде. Таким образом, этот ток вызывает ненужный процесс. Однако у маленьких аккумуляторов стоимость потраченной напрасно электрической энергии с избытком возмещается тем удобством, что процесс зарядки не нуждается в контроле. [c.224]

    Помимо прикладного значения результаты количественного анализа весьма важны при исследованиях в области химии, биохимии, биологии, геологии и других наук. В качестве доказательства рассмотрим несколько примеров. Представления о механизме большинства химических реакций получены из кинетических данных, причем контроль за скоростью исчезновения реагирующих веществ или появления продуктов реакции осуществлялся при помощи количественного определения компонентов реакции. Известно, что механизм передачи нервных импульсов у животных и сокращение или расслабление мышц включают перенос ионов натрия и калия через мембраны это открытие было сделано благодаря измерениям концентрации ионов по обе стороны мембран. Для изучения механизма переноса кислорода и углекислого газа в крови понадобились методы непрерывного контроля концентрации этих и других соединений в живом организме. Исследование поведения полупроводников потребовало развития методов количественного определения примесей в чистых кремнии и германии в интервале 10 —10-1"%. Пд содержанию различных микровключений в образцах обсидиана можно установить их происхождение это дало возможность археологам проследить древние торговые пути по орудиям труда и оружию, изготовленным из этого материала. В ряде случаев количественный анализ поверхностных слоев почв позволил геологам обнаружить громадные залежи руд на значительной глубине. Количественный анализ ничтожных количеств проб, взятых с произведений искусства, дал в руки историков ключ к разгадке материалов и техники работы художников прошлого, а также важный способ обнаружения подделок. [c.12]

    Энергетический эквивалент калориметрической системы определяли по эталонной бензойной кислоте (А /в=—26434 Дж-г- при стандартизованных условиях сжигания). Исследуемые образцы сжигали в териленовых ампулах. Давление кислорода в бомбе составляло 3040 кПа. Для контроля полноты сгорания проводили анализ продуктов на СОг. Энергия сгорания териленовой пленки составляла 22892,3+ 6,0 Дж-г количество СОг, получившейся при сгорании 1 г пленки, было 2,2752 г. Результаты опытов приведены в табл. 1. Приняты следующие обозначения энергетический эквивалент калориметрической системы т— масса сжигаемого вещества АРс— подъем температуры Q— суммарное количество энергии, выделившееся во время опыта <7пл, < иров и — поправки на количество энергии, выделившееся при сгорании териленовой пленки, проволоки и при образовании раствора НМОз А и в — энергия сгорания соединения в условиях калориметрической бомбы. [c.98]

    Помимо химических или электрохимических методов определения содержания кислорода, существует простой метод определения коррозионной активности воды, заключающийся в том, что в циркулирующей питательной воде у смотрового окна устанавливают шлифованный образец из малоуглеродистой стали если в воде кислород имеется даже в небольших количествах, то внешний вид образца заметно меняется. Такой простой метод контроля весьма широко применяют в Германии. Аналогичный принцип был использован в приспособлении, разработанном применительно к котлам много лет тому назад одной Шотландской фирмой, однако в Англии он не получил широкого применения. [c.413]


    Нитрид марганца получают из высокореакциониоспособного возогнанного -марганца. В установке, снабженной устройствами для контроля количества логлощеиного азота, нагревают металлический марганец в атмосфере азота, -совершенно свободного от примеси кислорода при давлении 100 мм рт. ст. и температуре 690 °С до тех пор, пока в системе не установится постоянное давление. Продолжительность процесса 12—24 ч. [c.1692]

    Биологическая обработка — самый эффективный способ удаления органических веществ из городских сточных вод. Действие биологических очистных систем основано на том, что смешанные культуры микробов разлагают и удаляют коллоидные и растворенные органические вещества из раствора. Параметры среды, в которой находятся микроорганизмы в очистном сооружении, постоянно контролируются например, активный ил в достаточном количестве снабжается кислородом для поддержания аэробных условий. Сточная вода содержит биологическую пищу, питательные вещества для роста и микроорганизмы. Лица, незнакомые с очисткой сточных вод, часто спрашивают, откуда получают специальные биологические культуры. Многочисленные разновидности бактерий и простейших, присутствующие в бытовых сточных водах, служат на очистных установках в качестве исходной биологической затравки. Затем посредством тщательного контроля расхода поступающих сточных вод, рециркуляции микроорганизмов после их осаждения, снабжения кислородом и применения других способов удается вывести желательные биологические культуры, которые сохраняются для обработки загрязненных стоков. Биопленку на поверхности загрузки биофильтра получают, пропуская сточную воду через фильтр. Через несколько недель фильтр может работать, удаляя органические вещества из сточной жидкости, орошающей фильтр. Активный ил в механической или диффузно-воздушной системе начинает действовать при включении аэраторов и подаче сточной воды. Первоначально необходима высокая степень рециркуляции отстоя со дна вторичного отстойника для сохранения в достаточном количестве биологической культуры. Однако через короткий промежуток времени созревает устойчивый активный ил, который эффективно извлекает органические вещества из сточной воды. При включении в работу анаэробного сооружения приходится преодолевать более существенные затруднения, так как метанообразующие бактерии, необходимые для протекания процесса брожения, немногочисленны в необработанной сточной воде. Кроме того, эти анаэробы растут очень медленно и требуют оптимальных условий окружающей среды. Пуск анаэробной установки может быть значительно ускорен при заполнении тенка сточной водой и засеве ее достаточным количеством бродящего ила из близлежащей очистной установки. Сырой осадок сначала подают с незначительной дозой загрузки, а для поддержания должного значения pH в метантенк в необходимых количествах вводят известь. Даже при этих условиях проходит несколько месяцев, прежде чем установка начинает работать на полную мощность. [c.84]

    Для построения логической схемы необходимы дискретные приборы, поэтому стандартные приборы, применяемые для контроля работы аэротенков, дополняются устройствами, позволяющими получать дискретные сигналы (Грейнер, Ильяшенко и др., 1977). Работой воздуходувок управляют сигналы двух приборов измерителя количества растворенного кислорода и расходомера, измеряющего расход поступившей в аэротенки сточной жидкости. В качестве измерителя количества растворенного кислорода может быть применен прибор К-215. На выходе этого прибора стоит стандартный электронный потенциометр. Можно взять потенциометр КСП-4 с контактным устройством. В этом потенциометре указывающая стрелка движется вдоль прямолинейной шкалы. Параллельно со шкалой расположена направляющая планка, по которой можно перемещать два микропереключателя. Приспособление прибора для работы с логической схемой сводится к добавлению двух микропереключателей. [c.117]

    Аэрация. Контроль аэрации является трудным. Аэрация — это приток подаваемого кислорода в количестве, таком же или несколько большем, чем в воздухё. Усиление подачи воздуха в виде пузырьков через раствор увеличивает даже медленные скорости коррозии небольших образцов. На рис. 10.2 показана зависимость скорости коррозии сплава монель в 5%-ной Н2504 от скорости подаваемого для аэрации кислорода. Для облегчения перехода кислорода из пузырьков воздуха в раствор желательно получить пузырьки как можно меньшего размера, что достигается путем пропускания воздуха через специальный стеклянный фильтр. Намного менее удовлетворительные результаты получают при простом пропускании через отверстие трубки с тонким оттянутым концом, Недопустимым является попадание пузырьков воздуха непосредственно на поверхность образца. Это можно предотвратить путем помещения аэратора в стороне от образца. Изучение влияния различной степени аэрации лучше проводить путем изменения количества растворенного кислорода (например, используя смесь кислорода и азота, пропускаемую при постоянной и одинаковой скорости), чем изменения скорости подачи подвода газа (такого, как воздух) постоянного состава. Это распространяется также и на, условия полного отсутствия аэрации, которые могут быть достигнуты путем насыщения раствора азотом или другим инертным газом, способствующим удалению кислорода, Неразумно предполагать, что при аэрации без добавки воздуха кислород не поступает в раствор, находящийся в открытом сосуде. Такая практика, однако, дает низкую концентрацию доступного кислорода, что является недостаточным, чтобы обеспечить контроль за воспроизводимостью результатов. [c.546]

    Определение БПК считают правильным, если к концу периода инкубации в склянке остается от 3 до 5 мг Ог/л. Если к концу инкубации поглощено меньше 4 мг/л кислорода, то в последующих определениях разбавление уменьшают, если больше б мг/л — увеличивают. Когда ожидаемая БПК приблизительно известна, степень разбавления нетрудно установить примерным расчетом. Можно принять, что в среднем потребление кислорода должно составлять 5 мг/л. Делением ожидаемой БПК на 5 получают необходимую степень разбавления исследуемой пробы. Для очень чистой воды с БПК менее-5 мг/л разбавление не требуется. Величина БПК указывается с индексом внизу, который означает длительность инкубации. Например, БПК5 — количество кислорода, потребленное за 5 сут инкубации. Иногда указывается степень разбавления (чтд очень полезно для контроля правильности ее подбора) в виде отношения 1 (и + 1). Например, запись БПК5(1 к ) означает, что определена пятисуточная БПК при разведении 1 ч. сточной воды 99 ч. разбавляющей воды. [c.57]

    Сероводород является обычным спутником нефтей и попутных нефтяных газов. При перегонке сернистых нефтей также происходит выделение сероводорода (иногда в значительных количествах) в результате распада органических сернистых соединений при повышенной температуре [341—343] или в результате дегидрогенизации нефтяных углеводородов свободной серой [344]. Легкая окисляемость сероводорода кислородом воздуха делает его источником образования свободной серы в дистиллатах. Удаление серы сопряжено с дополнительными затратами средств для получения высококачественных моторных топлив и масел. Разработка надежного метода определения сероводорода имеет большое значение для нефтяной промышленности и связанной с ней промышленностью природного и синтетического газа. Большинство методов определения сероводорода предложено для анализа газов [345—355], причем удовлетворительные результаты получаются только в отсутствие низших меркаптанов. По-еидимому, аналитические методы определения НгЗ в газах могут быть использованы для определения его и в жидких нефтепродуктах. Представляется весьма целесообразной разработка более чувствительных методов определения сероводорода и меркаптанов при их совместном присутствии. Потенциометрические методы могли бы лечь в основу непрерывного автоматического контроля и управления некоторыми процессами при переработке нефти и природного газа. [c.39]

    Даже в случае присоединения НВг длины реакционных цепей весьма малы, гораздо меньше, чем в случае присоединения галогена для получения достаточного количества радикалов обычное количество добавляемого пероксида должно быть выше, чем следовое так, для препаративных целей требуется 0,01 моль пероксида на 1 моль алкена. Однако на практике того количества пероксида, которое образуется в реакционной среде рследствие автоокисления алкена кислородом воздуха (см. разд. 11.5.2.2), может быть достаточно для автоинициирования радикального присоединения НВг, независимо от того, желательно оно или нет. Начавшись, реакция по этому механизму протекает гораздо быстрее, чем конкурирующее гТрисоединение по полярному механизму, поэтому в реакционной смеси будет преобладать продукт присоединения против правила Марковникова, например (65). Если необходимо получить продукт присоединения по Марковникову, например 2-бромпропан из пропена, необходима тщательная очистка алкена перед применением или добавление ингибиторов (хорошие акцепторы радикалов, такие как фенолы, хиноны и др.), чтобы удалить любые присутствующие в алкене радикалы или потенциальные источники радикалов. Указанный продукт гораздо легче получить препаративно. Практически полный контроль ориентации присоединения НВг в любом направлении может быть достигнут в препаративных условиях путем введения в реакционную смесь либо пероксидов (инициаторы радикалов), либо ингибиторов. Введение инициаторов или ингибиторов радикалов для контроля ориентации используется не только в случае незамещенных алкенов 3-бромпропен, например, может быть превращен в 1,2-или 1,3-дибромпропан. [c.356]

    Чановое выщелачивание используется в горнорудной промышленности для извлечения урана, золота, серебра и меди из окисных руд. Медные и урановые руды сильно измельчают и смешивают с растворами серной кислоты в больших емкостях (обычно размером 30X50X6 м) для перевода металла в растворимую форму. Время выщелачивания, как правило, составляет несколько часов. Медь получают из кислого раствора электролизом, уран — ионообменным путем или экстракцией растворителем. Ферментация в чанах, а также в отстойниках с постоянным или предварительным перемешиванием может с успехом применяться для бактериального выщелачивания потому, что при этом легко контролировать факторы, влияющие на активность микроорганизмов. К этим факторам относятся размер частиц руды, ее качество, плотность пульпы (масса руды на единицу объема раствора), pH, содержание углекислого газа, кислорода, время удержания (время нахождения частиц в реакторе), температура и содержание питательных веществ. Хотя руда и не стерилизуется, возможен строгий контроль за видовым составом и количеством микроорганизмов. Чановое выщелачивание создает предпосылки для использования специфических штаммов микроорганизмов (например, ацидотермофиль-ных бактерий) или микробов-выщелачивателей, полученных методами генетической инженерии. Вначале чановое выщелачивание применяли для руд с очень высоким содержанием металлов, однако эта технология может использоваться и в случае материалов более низкого качества. При этом следует учитывать экономические и технологические факторы. [c.200]

    Для газо-жидкостноп распределительной хроматографии применяют специальную аппаратуру, так же как и для адсорбционной хрохматографии газов, что позволяет проводить как качественный, так и количественный анализ. Приборы — хроматографы обеспечивают автоматизацию процесса анализа, например, прп газовом каротаже в нефтяной промышленности, при непрерывном анализе парафиновых углеводородов, при определении суммы всех горючих газов и их раздельном определении, при анализе нефтяных газов. Осуществляется непрерывный автохлгатический контроль и экспресс-анализ. При поточных процессах в промышленности осуществляется автоматический многокомпонентный анализ. Методы газовой хроматографии позволяют определять микро-количества п даже следы различных органических веществ, например при меси бензола и циклогексанола в толуоле и циклогек-сане, примесь метилового спирта в воде, изопропилового спирта в бензоле. В 99%-ном хлорэтане можно таким путем обнаружить примеси углеводородов и галоидонроизводных. Можно определять очень малые количества метана, окиси углерода, азота и кислорода в чистом этилене. С другой стороны, методы газовой хроматографии позволяют разделять большие количества веществ непрерывным процессом, нанример получать чистый ацетилен пз газовых смесей, содержащих мало ацетилена (метод непрерывной газовой хроматографии). Газовые хроматографы с программным управлением получили применение нри препаративном разделении смесей различных органических соединений. Их колонки обеспечивают высокую производительность, что очень важно при разделениях сложных по составу смесей углеводородов и др. Высокотемпературная хроматография позволяет при 500—600° С осуществлять программированное изменение температуры. [c.198]

    Тонкие пленки, которые приобрели большое значение в новых приборах и схемах, получают из газовой фазы различными способами, включая напыление, выпаривание и химическое осаждение. Когда эпитаксиальные пленки полупроводников получают химическим осаждением из газовой фазы, требуется обычный контроль чистоты полупроводникового материала при содернх аниях примесей порядка 10 —10" %. Пленки тантала [461, применяемые в качестве элементов сопротивлений или анодов для конденсаторов в интегрирующих схемах, обычно получают напылением при этом наблюдали изменения свойств пленок, когда малые количества активных газов, таких, как азот, метан или кислород, присутствовали в аргоне (в атмосфере которого проводили напыление), причем эти изменения обусловлены [c.51]


Смотреть страницы где упоминается термин Контроль количества полученного кислорода: [c.274]    [c.139]    [c.110]    [c.71]    [c.623]   
Смотреть главы в:

Производство кислорода -> Контроль количества полученного кислорода




ПОИСК







© 2025 chem21.info Реклама на сайте