Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплообмен стационарный

Фиг. 1. Схема установки каталитического крекинга со стационарным слоем катализатора / водоотделитель 2— барометрический конденсатор 5 —отделитель неиспарившегося сырья 4 —паровой вжекгор 5 — реакционные камеры теплообменного типа 6 — нагревательнап трубчатая печь 7 — теплообменник в — турбокомпрессор 9 — воздухоподогреватель 10— ректификационная колонна II — конденсатор /2 — га-зосепаратор /5 — холодильник — насосы /5 —сырье /б — тяжелый газойль /7—легкий газойль /8 — бензин /5 — жирный газ 20 —тяжелые остатки неиспарившегося сырья (гудрон) 2/— воздух 22 вода 25 — пар Фиг. 1. <a href="/info/1336562">Схема установки каталитического крекинга</a> со <a href="/info/277379">стационарным слоем катализатора</a> / водоотделитель 2— <a href="/info/93805">барометрический конденсатор</a> 5 —отделитель неиспарившегося сырья 4 —паровой вжекгор 5 — <a href="/info/316863">реакционные камеры</a> <a href="/info/320685">теплообменного типа</a> 6 — нагревательнап <a href="/info/26508">трубчатая печь</a> 7 — теплообменник в — турбокомпрессор 9 — воздухоподогреватель 10— <a href="/info/24173">ректификационная колонна</a> II — конденсатор /2 — га-зосепаратор /5 — холодильник — насосы /5 —сырье /б — <a href="/info/823403">тяжелый газойль</a> /7—<a href="/info/1455277">легкий газойль</a> /8 — бензин /5 — жирный газ 20 —тяжелые остатки неиспарившегося сырья (гудрон) 2/— воздух 22 вода 25 — пар

    Рассмотрим основные элементы этого процесса. При этом необходимо учесть, что различают два режима передачи тепла стационарный (установившийся) и нестационарный (неустановившийся). Мы ограничимся рассмотрением только стационарного режима. Стационарным, или установившимся, режимом передачи тепла считают такой режим, когда с течением времени в каждой точке тела, участвующего в теплообмене, температура (температурное поле) не меняется. ,  [c.49]

    Тепло, выделяющееся при синтезе из окиси углерода и водорода, может быть эффективно снято непосредственным теплообменом между реакционной смесью и маслом, циркулирующим через стационарный слой железного катализатора. В ходе первоначальных исследований по съему тепла маслом [271], проводившихся в Германии фирмой И. Г. Фарбениндустри и в США Горным бюро, были выявлены некоторые трудности при осуществлении такого процесса. Эти трудности связаны со спеканием частиц катализатора, что в свою очередь вызывало неравномерное распределение тока газа и жидкости в слое катализатора, перегревы, повышение сопротивления и перепада давления, разрушение катализатора. Эти осложнения частично были преодолены путем повышения линейной скорости охлаждающего масла, достаточного для обеспечения легкого непрерывного движения каждой гранулы железного катализатора (обычно плавленый и восстановленный магнетит) [7]. [c.528]

    Синтез метанола ведется с рециркуляцией непрореагировавшего газа после конденсации продуктов, образовавшихся в каталитическом реакторе,—метанола и воды. Часть непрореагировавших газов непрерывно отводится на продувку для удаления инертов и избыточного водорода, накапливаемых в циркуляционном контуре. Продувочные газы содержат теряемые для процесса синтеза оксиды углерода и пары несконденсировавшегося метанола. Общее количество теряемого углеродного сырья 3—10% от исходного. Это сырье можно попытаться переработать в дополнительном реакторе. Однако из-за малого содержания оксидов углерода (СО + СОг) становится затруднительным обеспечить автотермичность процесса ири его реализации в стационарных условиях. По-видимому, предельное содержание (СО + СОг), пригодное для переработки в стационарных условиях, определяется величиной 27о. Но и в этом случае требуется установка теплообменных устройств с большой величиной поверхности обмена. [c.222]


    Если течение и теплообмен стационарны, то числа Ро и Zh выпадают из уравнений подобия. [c.56]

    Теплообмен излучением. Излучение происходит при квантовом переходе атомов и молекул из стационарных состояний с большей энергией в стационарные состояния с меньшей энергией. Для непрерывного излучения тело должно получать энергию извне. Так как переходы атомов и молекул из одного состояния в другое носят различный характер, излучение имеет различные длины волн. [c.58]

    Второй метод основывается на циркуляции через стационарный слой катализатора синтез-газа и масла. Теплота реакции в этом способе отводится в основном маслом, которое имеет значительно более высокую теплоемкость, чем газ, охлаждается вне реактора и возвращается в цикл. Следовательно, здесь имеется прямой теплообмен. Используемое масло является фракцией продуктов синтеза. Часть теплоты реакции может отводиться за счет испарения масла, что зависит от температурных Пределов ки,пения выбранного масла [57]. Обычно масло подбирается с таким расчетом, чтобы за счет испарения отводилась примерно половина тепла реакции. [c.116]

    Теплообмен в стационарном режиме (шары)  [c.156]

    На рис. IV. 19, а показаны результаты опытов по теплообмену в стационарном режиме и при локальном моделировании. Только зависимость I сильно отклоняется вверх при Кеэ > 100 по-видимому, авторам [70] не удалось преодолеть трудности измерения температур элементов слоя, о которых говорилось выше. [c.159]

    Первое краевое условие - равенство температуры флюида на кровле температуре закачки. Второе-стационарность притока теплоты из недр Земли. В такой постановке считается, что флюид, отбираемый на подошве залежи (х = Я), очень быстро выносится на дневную поверхность и в дальнейшем теплообмене участвовать не успевает. [c.328]

    Существование гистерезиса объясняется теплопередачей между нагретыми частицами катализатора в реакторе и менее горячим реакционным потоком. Когда в реакторе происходит теплообмен за счет радиации в начальной части слоя катализатора (горячий слой катализатора и холодный, еще не вступивший в химическую реакцию, газ), в реакторе [3, 4] возможно существование трех устойчивых стационарных состояний, разделенных двумя неустойчивыми. При этом влияние инертных наполнителей, уменьшающих температурный градиент между слоем и газом, расио-ложенных перед слоем катализатора и после него, рассмотрено в [4, 5]. Условия, при которых возможно зажигание, получены, например, в [6]. Анализ этих условий показывает, что для гетерогенных каталитических реакторов зажигание происходит тем эффективнее, чем длиннее слой. Следует поэтому предположить, что имеется предельное значение длины слоя катализатора, при превышении которой устойчивы лишь зажженные стационарные [c.284]

    Все изложенные варианты безградиентных проточно-циркуляционных и проточных реакторов обладают преимуществами в отношении исключения диффузионных, теплообменных и гидравлических помех, которые были перечислены для статических циркуляционных установок. Все эти реакторы, что весьма существенно, работают в условиях стационарного состояния катализатора. Общий их недостаток — необходимость применения дозирующих устройств и относительно большая длительность эксперимента. [c.413]

    В последнее время появилось значительное число теоретических и экспериментальных работ, из которых следует, что для большого класса процессов можно создавать нестационарные режимы, значительно превосходящие по эффективности стационарные. К таким процессам относятся массо- и теплообмен, адсорбция, ректификация, сепарация твердых частиц на фракции, разделение смесей жидкости или газа на основании принципа динамической сепарации. Искусственно создаваемое пульсирующее горение твердого топлива приводит к интенсификации процесса окисления, улучшению теплообмена, уменьшению расхода энергии на тягу и дутье, позволяет работать при малых избытках воздуха или кислорода, снижает концентрацию оксидов азота, способствует хорошей очистке поверхности теплообмена. [c.302]

    Перенос тепла. Высокотемпературная зона возникает в результате экзотермической реакции. Необходим какой-либо эффективный механизм переноса тепла, исключающий неограниченный рост температуры в зоне реакции. Перенос тепла в слое катализатора возможен благодаря теплопроводности слоя, внешнему теплообмену (между наружной поверхностью зерна катализатора и реакционной смесью) и внутреннему переносу тепла в таблетке катализатора. В отличие от стационарного случая механизм переноса тепла - необходимый элемент моделирования процесса с реверсом. [c.308]

    Принятые допущения позволяют рассмотреть задачу о стационарном теплообмене между потоком жидкости и погруженной в него изотермической сферой с мгновенным диаметром Д. Примем сферическую осесимметричную систему координат (г, 0), связанную с центром пузырька (рис. 30). Будем считать, что паровая фаза находится в верхней части пузырька и ограничена углом 2 3, а жидкая — в нижней и ограничена углом 2(л—р), причем тепловой поток через поверхность г = R и 0 = Р отсутствует. [c.55]


    Рнс. XV-29. Стационарные режимы для аппарата с внутренним теплообменом. [c.517]

    Пилотные установки Сасол использовались при давлениях до 80 атм как было установлено, конверсия не зависит от давления. Однако подача сырья и рециркулируемый поток всегда возрастают пропорционально увеличению давления. Поэтому при повышении давления от 20 до 80 атм должно происходить четырехкратное увеличение скорости образования углеводородов. При проведении реакции в пилотном реакторе с внутренним диаметром 5 см трудностей с теплообменом не возникало. Следовательно, реакторы со стационарным кипящим слоем катализатора перспективны для повышения скоростей подачи синтез-газа. [c.169]

    В настоящем обзоре мы сформулируем некоторые из этих результатов и продемонстрируем их на конкретных задачах химической технологии. Будет проведен качественный анализ стационарных задач, описывающих процессы на зерне, в слое катализатора, в реакторах с внутренним теплообменом. Результаты [c.83]

    В последнее время появилось значительное число теоретических и экспериментальных работ, из которых следует, что для большого класса процессов можно создавать нестационарные режимы, значительно превосходящие по эффективности стационарные. К таким процессам относятся массо- и теплообмен, адсорбция, ректификация, сепарация твердых частиц на фракции, разделение смесей жидкости или газа на основании принципа динамической сепарации. Искусственно создаваемое пульсирующее горение твердого топлива при- [c.3]

    Массовый баланс стационарного состояния автотермического реактора такой же, как и для проточного реактора с перемешиванием, но тепловой баланс отличается тем, что для адиабатической реакции не учитывается теплообмен  [c.50]

    Теплообмен со стационарным и нестационарным потоками тепла. При стационарном потоке тепла температурный режим в любых сечениях теплообменивающихся сред не меняется во времени. При нестационарном потоке тепла, имеющем место в случае периодического нагрева или охлаждения твердого материала, температурный режим с течением времени меняется. [c.594]

    В полостях камер происходят неустановившиеся теплообменные процессы. Коэффициент теплоотдач а и температурный напор АГ, как показали экспериментальные исследования, переменны по поверхности стенок камер р1 и по углу поворота коленчатого вала ф. Для определения AQ используется в математической модели формула Ньютона, справедливая для стационарного процесса. За период поворота вала Аф величина А<Э определяется уравнением [c.62]

    Так, например, если в окрестности неустойчивого режима увеличивают начальную температуру или начальные концентрации исходных реагирующих веществ, то новый стационарный режим отвечает более низким значениям температур. Общий анализ устойчивости стационарных решений указанным методом удается провести для пористого зерна, адиабатического слоя неполного смешения и реактора с внутренним теплообменом. Некоторь1е результаты нахождения области устойчивых стационарных режимов для экзотермических реакций первого порядка приведены на рис. 27 и в табл. 62. [c.515]

    В нестационарном потоке величины а отличаются от квази-стационарного из-за пульсации давлений и скоростей газа. Однако для практических расчетов температуры газа с учетом и без учета влияния пульсаций на теплообмен оказывались в конечном итоге очень близкими. [c.102]

    B. И. М у к о с е й, Л. М. П и с ь м е н, Ю. И. X а р к а ц. Стационарные режимы химических реакторов с внутренним и внешним теплообменом. Инж.-физ. ж. J1967).] [c.303]

    Изложены теоретические основы расчета колонных аппаратов. Рассмотрены стационарные и нестационарные режимы обтекания жидких, твердых и газообразных частиц потоком ньютоновской и неньютоновской жидкости, массо- и теплообмен в зтих системах с учетом химических реакций и поверхностных явлений на границе раздела фаз. Результаты теретических исследований сопоставлены с зкспериментальными данными и использованы для расчета конкретных промышленных аппаратов. [c.2]

    Характерное время установления нового стационарного гидродинамического режима в затопленном аппарате с дисперсным потоком сравнительно невелико. Оно составляет величину порядка Я/г/ц,, где Я — высота рабочей зоны аппарата, а — скорость распространения возмущения концентрации дисперсной фазы, и может изменяться в пределах от нескольких секунд до нескольких минут. Для сравнения отметим, что время установления нового стационарного распределения концентрации растворенного компонента или температуры в сплопшой фазе иногда может достигать нескольких часов и более. Поэтому при модели-рствании переходных химических, массо- и теплообменных процессов в затопленных аппаратах учет гидродинамической обстановки в целом ряде случаев может быть проведен в квазистационарном приближении. Однако, когда характерные времена протекания этих процессов соизмеримы с характерным временем установления нового стационарного гидродинамического режима в аппарате, квазистационарное приближение приводит к значительным погрепшостям при определении динамических характеристик аппарата. В этом случае переходные гидродинамические процессы должны быть учтены при разработке динамических моделей химических и тепломассообменных процессов. [c.113]

    Мы рассмотрим задачу управления процессом в реакторе с псевдоожиженным слоем катализатора в окрестности неустой чивого стационарного режима, исследуем устойчивость распределенной системы без управления и с введенным с помощью обратной связи управлением. Аппроксимация распределенной модели проводится с помощью метода ортогональных коллокаций. Величина воздействия обратной связи определяется методом модального управления путем сдвига нескольких собственных значений соответствующей задачи в левую полуплоскость, чтобы сделать выбранный стационарный режим устойчивым. Аналогичный подход для управления раснределенпыми системами использован в [5] для реактора с неподвижным слоем катализатора с охлаждающей рубашкой и одинаковой температурой хладоагента ио длине реактора, где рассматривалась квазигомогенная модель, состоящая из системы уравнений параболического типа. В [6] нами дано управление процессом в реакторе с псевдоожи-женпым слоем катализатора. Управление процессом в трубчатом реакторе с нротпвоточным внутренним теплообменом нриведе-ио в [7]. [c.116]

    VIII.3. СТАЦИОНАРНЫЕ РЕЖИМЫ И УСТОЙЧИВОСТЬ АДИАБАТИЧЕСКИХ РЕАКТОРОВ С ВНЕШНИМ ТЕПЛООБМЕНОМ [c.344]

    Последний член в правой части уравнения (VIII.142) учитывает теплообмен между тонким реакционным слоем и внутренностью частицы катализатора п обозначает направление внешней нормали к активной поверхности. Таким образом, при данной постановке задачи уравнения процесса в тонком реакционном слое ( 111.140), ( 111.142) служат граничными условиями для уравнения теплопроводности ( 111.140). Вводя безразмерные переменные и линеаризуя граничные условия ( 111.141), ( 111.142) в окрестности стационарного режима, имеем  [c.362]

    Задача нагрева решается в рамках задач теплообмена излучением, т.е. определяют плотность излучения, на поверхностях теплообмени-вающихся тел по заданным температурным распределениям (прямая задача), либо отыскивают температуры по значениям радиационных потоков (обратная задача). В более общей постановке эти задачи относятся к процессам переноса энергии излучения [5]. Дифференциальное уравнение переноса, определяющее изменение интенсивности излучения в поглощающей и излучающей среде, в стационарном случае имеет вид  [c.95]

    Потоки внутри теплообменной системы, называемые промежуточными, составляют множество Р. Промежуточный поток,- определяемый как исходный поток в некотором стационарном состоянии между двумя последовательными операциями теплообмена, будет иметь параметры, зависяпще от конкретных условий взаимодействия и возможностей используемых теплообменников. Число и параметры потоков зависят от количества и параметров теплообменников системы чем больше число теплообменников, тем выше размерность задачи синтеза. [c.453]

    Устойчивость колонн синтеза аммиака с внутренним теплообменом. Число стационарных состояний и их свойства можно найти по методу, примененному для анализа стационарных режимов в зерне и в слое катализатора. Аналогичная задача об устойчивости колонн синтеза решена В. И. Мукосеем Он провел численный анализ системы уравнений знаковой модели колонны синтеза и построил зависимость конечной температуры реакционной смеси от начальной (рис. ХУ-35). Как видно из рисунка, имеются области начальных температур, для которых суш,ествует одна или три температуры на выходе из колонны и соответственно одно или три стационарных решения (рис. ХУ-Зб). Верхняя кривая отвечает норхмальному режиму (/ к), средняя —неустойчивому, а >лижняя кривая (Тд ) не представляет практического интереса. Анализ устойчивости колонн синтеза аммиака методом исследования параметрической чувствительности выполнил В. С. Бесков [c.520]

    Динамические характеристики. Из-за внешних воздействий и (или) изменений внутренних свойств катализатора и реактора в целом температурные и концентрационные поля в слое катализатора меняются во времени. При этом, как было показано, те параметры, влияние которых в стационарном режиме можно было не учитывать, часто оказываются существенными в нестационарном процессе. К таким параметрам можно отнести, например, дисперсию вещества вдоль слоя катализатора, массоемкость и теплоемкость слоя, неравподоступность наружной поверхности зерна, внешний тепло- и массообмен. В стационарном режиме значительное число факторов воздействует на состояние системы независимо и часто аддитивно. Это позволяет использовать более узкие модели и эффективные параметры, отражающие суммарное влияние этих факторов. В нестационарном режиме степень влияния этих же факторов может быть иной и, кроме того, сильно зависеть от состояния системы. Р1х влияние необходимо учитывать порознь. Так, например, дисперсию тепла вдоль адиабатически работающего слоя катализатора в стационарном режиме вполне достаточно представить коэффициентом эффективной продольной теплопроводности. В нестационарном режиме это недопустимо — необходимо учитывать раздельно перенос тепла по скелету катализатора, теплообмен между реакционной смесью и наружной поверхностью зерна и иногда перенос тепла внутри пористого зерна. Из-за инерционных свойств в нестационарном режиме имеют место большие, чем в стационарном, градиенты температур и концентраций на зерне и в слое катализатора. Это приводит, иапример, к отсутствию пропорциональной зависимости между температурой и степенью превращения, непродолжительному, но большому перегреву у поверхности зерна с наилучшими условиями обмена, значительным перегревам слоя — динамическим забросам, на-Л1Н0Г0 превышающим стационарные перепады температур между входом и выходом из слоя могут быть в несколько раз больше адиабатического разогрева при полной степени превращения. Сдвиг по фазе между температурными и концентрационными полями иногда приводит к возникновению колебательных пере- [c.13]

    В области параметров модели, соответствующей практическим условиям, в кипяпд,ем слое может иметь место до пяти стационарных режимов. Наряду с сильпонеизотермичным режимом (кривая 5 рис. 10, а) существуют режимы со значительно меньшим перепадом температуры по слою. В зависимости от вида оптимального температурного профиля можно выбрать тот или иной режим. Неравномерным размещением теплообменной поверхности по высоте можно существенно деформировать профиль в желаемом направлении. [c.58]

    Как показано в разделе 4.1, в неподвижном слое катализатора, работающем с периодическим изменением направления подачи реакционной смеси, может установиться температурный режим, при котором разность Гтах Тщ мбжду макйимальной температурой в слое и начальной температурой свежей смеси намного превосходит величину адиабатического разогрева смеси при полной (или равновесной) степени превращения. Это происходит из-за того, что тепло реакции выделяется главным образом в зоне высоких температур, а периодические переключения направления движения газа как бы запирают эту зону внутри слоя. Предложенный нестационарный способ по сравнению с традиционными стационарными дает возможность создания оптимальных условий для осуществления обратимых экзотермических реакций в одном слое катализатора без сооружения промежуточных теплообменных устройств. Кроме того, этим способом можно перерабатывать слабокопцентрированные газы без их предварительного подогрева. [c.106]

    Технический трихлорбензол хлорируют взятым в избытке хлором в стационарном слое катализатора, отводя выделяющееся реакционное тепло через теплообменную поверхность. Съем ГХБ превышает 1 кг с 1 кг катализатора в час. Выходящая из реактора 2 парогазовая смесь содержит ГХБ, НС1 и избыточный хлор. Конденсацию паров ГХБ осуществляют в две ступени. На первой ступени реакционные газы охлаждают до 230—240 °С в трубчатом теплообменнике 3 и получают жидкий ГХБ. На второй ступенн в аппарате 4 (пленочный кристаллизатор с принудительным удалением кристаллов с поверхности теплообменника) получают кристаллический продукт с помощью дальнейшего охлаждения водой до 30—50 °С. Получаемый кристаллический ГХБ содержит более 95% основного вещества. [c.426]

    Авторы выражают благодарность сотрудникам НИФХИ им. Л. Я. Карпова и других организаций, оказавшим помощь при подготовке следующих Разделов Методы сопряженных направлений (А. Р. Беляевой), Расчет стационарных режимов химико-технологической схемы изомеризации н-пентана (Н. Н. Зиятдинову и В. Б. Покровскому), Оптимизация процесса полимеризации изопрена в производстве синтетического каучука (С. Л. Подвальному и Е. М. Михайловой), Расчет отделения синтеза аммиака (Д. Н. Мотылю), Оптимизация конструкционных параметров в теплообменной системе (Г. В. Михайлову и В. С. Виткову). [c.5]

    В зависимости от качества исходного кокса, условий облагора-живаьп1я н требований, предъявляемых к качеству готовой продукции, могут быть применены различные комбинированные аппараты, сочетающие положительные стороны разных способов высокотемпературного иагрева и охлаждения иефтяиых коксов. Для непрерывного охлаждения потока нефтяных коксов после облагораживания можно осуществлять непосредственный их контакт с хладоагентом (в стационарном, подвижном и кипящем слоях) и теплообмен через металлическую стенку (холодильные бараба- [c.232]


Библиография для Теплообмен стационарный: [c.182]   
Смотреть страницы где упоминается термин Теплообмен стационарный: [c.193]    [c.330]    [c.353]    [c.314]    [c.516]    [c.105]    [c.546]    [c.269]   
Основные процессы и аппараты химической технологии Кн.1 (1981) -- [ c.270 , c.280 , c.342 , c.373 ]

Тепловые основы вулканизации резиновых изделий (1972) -- [ c.141 ]




ПОИСК







© 2024 chem21.info Реклама на сайте