Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фазовый переход равновесие

    Метод ДТА наиболее отчетливо регистрирует нонвариантные фазовые переходы, равновесие которых должно подчиняться условию А0°т = 0, откуда [c.67]

    Фазовые переходы, характеризующиеся равенством изобарных потенциалов двух сосуществующих в равновесии фаз и скачкообразным изменением энтропии и объема при переходе вещества из одной фазы в другую, называются фазовыми переходами первого рода. К иим относятся агрегатные превращения—плавление, испарение, возгонка и др. [c.140]


    Кроме фазовых переходов первого рода, существуют также фазовые переходы второго рода. Для них характерно не только равенство изобарных потенциалов, но и равенство энтропий и объемов сосуществующих в равновесии фаз, т. е. отсутствие теплового эффекта процесса и изменения объема при температуре превращения  [c.143]

    В самое последнее время получены данные о равновесии при втором фазовом переходе тройных псевдоожиженных смесей [1] и предложена корреляция для коэффициентов разделения [2], аналогичная формуле Розенгарта для жидких смесей. — Прим. ред. [c.490]

    В связи с явлением классификации представляют интерес приводимые в главе XI данные о равновесии при втором фазовом переходе. — Прим. ред. [c.547]

    Плавление и парообразование являются процессами фазовых превращений (к фазовым переходам относятся также сублимация и полиморфные превращения). Фазовые переходы характеризуются тем, что обе фазы могут сосуществовать, т. е. находиться в равновесии. Это значит, что путем сколь угодно малого изменения температуры и (или) давления можно вызвать сдвиг равновесия. Так, подвод небольшого количества теплоты к системе, состоящей из кипящей воды и сухого насыщенного пара, приводит к смещению равновесия в процессе,парообразования в одну сторону, небольшое сжатие — в противоположную. [c.178]

    Обычно при выводе соотношений для массопереноса через поверхность раздела фаз полагалось, что система находится в частичном неравновесном состоянии по химическим потенциалам фаз, все остальные параметры (Г, Р) равны в фазах [55]. На самом же деле фазовый переход происходит при существенном неравновесии химических потенциалов, температур, скоростей фаз. И, основываясь на гипотезе существования в локальной точке среды локального теплового равновесия в каждой из фаз, но отсутствия равновесия в целом в системе в этой точке, получаем соотношения [c.68]

    Общее условие фазовых равновесий. Равновесия в гетерогенных системах, в которых не происходит химического взаимодействия между компонентами, а имеют место лишь фазовые переходы, т. е. процессы перехода компонентов из одной фазы в другую (или в другие), называются фазовыми равновесиями. Рассмотрим сначала общее условие равновесия в гетерогенных системах, правило фаз и некоторые другие вопросы, относящиеся к любым случаям гетерогенных равновесий (как фазовым, так и химическим). Температуру и давление будем считать постоянными и одинаковыми для всех частей равновесной системы. [c.242]


    Для вывода условий фазового равновесия ( 88) и правила фаз ( 89) мы для области невысоких давлений пара пользовались сопоставлением давления насыщенного пара данного компонента над разными фазами. Это свойство тоже характеризует способность его к выходу из данной фазы. Однако такой путь рассуждений является достаточным только для области невысоких давлений пара, когда к парам применимы законы идеальных газов и, следовательно, применимо ур. (VIH, 16). В общем же случае вместо давления следовало бы сопоставлять фугитивность насыщенного пара или, что является более общим, сопоставлять химические потенциалы. Можно показать, что для общего случая условием равновесия для всех фазовых переходов в любой гетерогенной системе является следующее  [c.258]

    Так как развитие поверхности влияет и на химические равновесия, то явления пересыщения проявляются не только при фазовых переходах, но и в химических реакциях. [c.361]

    Применение термодинамических методов для исследования химических реакций в настоящее время дает возможность установить, какие из реакций в рассматриваемой системе при заданных температуре, давлении и концентрациях могут протекать самопроизвольно (т.е. без затраты работы извне), каков предел самопроизвольного их протекания (т. е. каково положение равновесия) и как следует изменить эти условия, чтобы процесс мог совершаться в нужном направлении в требуемой степени. На основе термодинамических методов можно определить также максимальное количество работы, которая может быть получена от системы, или минимальное количество работы, которое необходимо затратить извне для осуществления процесса. Вместе с тем термодинамические методы дают возможность определить тепловые эффекты различных процессов (химического взаимодействия и фазовых переходов). Все это имеет большое значение и для теоретического исследования, и для решения задач прикладного характера [c.13]

    До конца 20-х годов в химической термодинамике наибольшее внимание исследователи уделяли изучению фазовых переходов и свойств растворов, а в отношении же химических реакций ограничивались преимущественно определениями их тепловых эффектов. В известной степени это объясняется тем, что именно указанные направления химической термодинамики стали первыми удовлетворять потребности производства. Практическое же использование методов термодинамики химических реакций для решения крупных промышленных проблем долгое время отставало от ее возможностей. Правда, еще в 70—80-х годах методы химической термодинамики были успешно применены для исследования доменного процесса. К 1914 году на основе термодинамического исследования Габер определил условия, необходимые для осуществления синтеза аммиака из азота и водорода, что привело в конечном результате к возможности промышленного получения в больших количествах аммиака, азотной кислоты, азотных удобрений, взрывчатых веществ и порохов из дешевых и широко доступных исходных материалов. В 20-х годах, лишь после того, как термодинамическое исследование реакции синтеза метанола из Н2 и СО дало возможность определить условия, при которых положение равновесия благоприятно для этого, синтеза, наконец была решена проблема создания производства метанола из дешевого сырья. Полученные результаты показали также, что проводившиеся ранее поиски более активных катализаторов не были успешными не из-за их малой активности, а вследствие недостаточно благоприятного положения равновесия в условиях, в которых пытались осуществить эту реакцию. Известны и другие примеры успешного применения методов термодинамики химических реакций для решения промышленных задач. Однако только с конца 20-х годов плодотворность применения этих методов исследования начинает получать все более широкое признание. [c.19]

    В связи с этими трудностями общий объем данных о равновесии и связанных с ним термодинамических параметрах химических реакций первоначально был сравнительно ограниченным. Открытие третьего закона термодинамики дало возможность определять химические равновесия на основе расчета абсолютных значений энтропии путем измерения низкотемпературных теплоемкостей и теплот фазовых переходов. В настоящее время этот путь часто оказывается более доступным, чем путь прямого определения равновесия, в особенности, если имеется возможность использовать для тех или иных составляющих величин готовые справочные данные. [c.32]

    Как эти, так и другие простые соотношения между термодинамическими параметрами химических реакций и фазовых переходов при сопоставлении их в условиях, отвечающих одинаковому значению констант равновесия, связаны по существу с описанными в 10 соотношениями для процессов, происходящих в условиях, когда /С = 1 и, следовательно, AG = 0. В этих условиях [c.185]


    Уравнения (V, 34) и (V, 35) выражают соотношения, аналогичные правилу Трутона, но относящиеся не только к процессам испарения жидкостей, но и к другим термодинамическим процессам— химическим реакциям, фазовым переходам, процессам адсорбции и т. д., и не только для условий, когда константа равновесия равна единице, но и для любых иных одинаковых значений. С другой стороны, применение этой закономерности для расчета термодинамических функций химических реакций ограничивается только однотипными реакциями и процессами. Правда, требования [c.192]

    Описанные в 30 и 31 простые соотношения между некоторыми параметрами химических реакций и фазовых переходов при сопоставлении их в условиях, когда их константы равновесия имеют одинаковые значения, относятся и к органическим соединениям, и к реакциям 2 . Интерес представляет вопрос о применимости этих соотношений к аналогичным реакциям гомологов, сходных по структурной формуле. [c.295]

    При равновесии энергии Гиббса фаз равны, что видно из рис. 34. Для фазового перехода 1-го рода теплоемкость при Гф.п равна бесконечности, чго можно показать, дифференцируя выражение (9.34) по Г  [c.166]

    Объектами исследования в термодинамике являются только макроскопические системы, т. е. системы, состоящие из очень большого количества частиц. При термодинамических исследованиях любого процесса не рассматривается молекулярная структура вещества, характер сил взаимодействия между молекулами, механизм процесса, ничего не говорится и о скорости процесса. Та часть термодинамики, которая имеет дело с применением указанных трех законов к химическим процессам и фазовым переходам, называется химической термодинамикой. Химическая термодинамика разрабатывает наиболее рациональные методы расчета тепловых балансов при протекании химических и физико-химических процессов раскрывает закономерности, наблюдаемые при равновесии определяет наиболее благоприятные условия для осуществления термодинамически возможного процесса выясняет условия, при которых можно свести к минимуму все побочные процессы определяет термодинамическую устойчивость индивидуальных веществ. [c.181]

    Раздел химической термодинамики, посвященный исследованиям тепловых эффектов химических реакций, теплотам фазовых переходов, теплотам растворения веществ, разбавления растворов и т. п. называется термохимией. Значение термохимии в области теории и практики весьма велико. Тепловые эффекты широко используются не только при расчетах тепловых балансов различных процессов,, но и при исследовании химического равновесия. [c.205]

    Третий закон термодинамики позволяет вычислять так называемые абсолютные значения энтропии для любого вещества в любом агрегатном состоянии, если известны экспериментальные значения теплоемкостей от О К до данной температуры, а также теплоты фазовых переходов (см. 71). Данным путем могут быть вычислены значения энтропии S°(298) веществ при стандартных условиях (нормальном атмосферном давлении и температуре 298,15 К). Другой путь определения стандартных энтропий основан на использовании спектроскопических данных о строении вещества. Значения S°(298) широко используются при вычислении изменения стандартной энергии Гиббса и стандартной константы химического равновесия. Утверждение, что 5(0) = О, нельзя распространять на твердые растворы. Для них при О К появляется остаточная (нулевая) энтропия. В частности, для одного моля твердого раствора, если допустить, что он является идеальным вплоть до абсолютного нуля, и если для каждого /-го компонента 5(0) i = О, то при О К согласно уравнению (71.32) остаточная энтропия будет равна [c.265]

    Фазовые переходы второго рода происходят в критических условиях, далеких от термодинамического равновесия. Структура вещества, образующегося в подобных условиях, как правило, не образует плотной упаковки и наилучшим образом описывается при помощи математического аппарата фрактальной геометрии. Парамагнитные ядра образующихся в НДС частиц дисперсной фазы можно описать как фрактальные кластеры. Фрактальное описание строения ядра парамагнитных ассоциатов дает ряд преимуществ [11]  [c.6]

    Согласно нашей модели, возможен редкий случай, когда в непосредственной близости от критической точки фазового перехода на протяжении относительно длительного отрезка времени устанавливается равновесие между процессами образования парамагнитных частиц и процессами их седиментации на внутренней поверхности труб за счет развитой турбулизации. В этом случае будет наблюдаться повышенное закоксовывание длинных участков труб, а ввод турбулизатора оказывает отрицательный эффект. [c.22]

    При повышении температуры равновесие фазового перехода смещается влево, поэтому степень кристалличности полимера при нагревании уменьшается. [c.374]

    Если ограничиться вопросами фильтрации нефтеводяной смеси, то в первом приближении ее можно рассматривать как двухфазную двухкомпонентную среду, состоящую из нефти, воды, водяного пара и природного газа. При этом будем учитывать фазовые переходы нефти в природный газ, воды в водяной пар. Иначе говоря, необходимо учитывать, что в процессе движения жидкая и парообразная фазы находятся в постоянном термодинамическом равновесии. [c.143]

    Рассмотрим элемент объема пласта, насыщенный нефтью, водой и парогазовой смесью, находящейся в термодинамическом равновесии с соответствующими компонентами жидкости. Предположим, что в начальный момент времени температура, давление и насыщенность в элементе объема распределены равномерно. Предположим далее, что в рассматриваемом элементе появляется градиент температуры, сопровождающийся фазовыми переходами и соответствующими изменениями давления и насыщенности. Сжимаемостью скелета пласта и гравитационными эффектами пренебрегаем. Найдем распределений температуры, давления и насыщенности, возникающие в элементе объема пласта. [c.154]

    Самые различные процессы в природе сопровождаются выделением или поглощением тепла, количество которого определяется характером процесса и калорическими свойствами исследуемого вещества (твердого тела, жидкости, газа и др.). Важнейшим из термодинамических свойств является теплоемкость, которая позволяет исследовать структуру образца и силы взаимодействия атомов и атомных групп в молекуле детально изучить и выявить энтропию системы, фазовые переходы, критические явления, состояние адсорбированного вещества определить количество примесей в веществе или растворе многокомпонентной жидкости вычислить характеристические термодинамичеокие функции различных систем и сред и констант равновесия их и др. [c.29]

    Если рассматривается физическое равновесие в двухкомпонентной системе, то фазовый переход обоих компонентов можно представить в виде реакции. Например, для системы вода— этанол можно написать  [c.130]

    Необходимо отметить также, что у систем со многими независимыми реакциями и многими независимыми фазовыми переходами может появиться разница между Кр или К/ из-за большого различия порядков величин. Весьма различными могут оказаться также скорости, с которыми наступает равновесие, и в приемлемый промежуток времени может наступить равновесие только в отношении отдельных реакций или фазовых переходов. В этом случае можно ставить вопрос лишь о частичном равновесии. Авторами настоящей работы было, например, доказано [6], что в системе СО, СО2, С2Н3, На, Н2О идут две независимые реакции  [c.134]

    В отличие 01 лого при давлениях выше 5,1 атм СО2 так же плавится и испаряется, как 1Г0 происходит с водой и другими веществами, проходящими через привычную для нас жидкую фазу. Если на рис 18-6 провести горизонтальную линию при давлении 6 атм, точка ее пересечения с кривой равновесия твердая фа1а -жидкая фаза указывает температуру плавления твердого СО2, а точка пересечения с кривой равновесия жидкость-пар указывает температуру кипения жидкости при давлении 6 атм. Обитатели планеты, где нормальное атмосферное давление превышает 5,1 атм, могли бы купаться в озерах ит жидкого диоксида углерода. При давлениях выше 72,8 атм различие между жидкостью и газом исчезает и возможен только один фазовый переход -между твердой фазой и флюидом (боЛбе точное название фазы в последнем случае дать невозможно). [c.132]

    Концентрация ПАВ, при которой в растворе появляются мицеллы, называется критической концентрацией мицеллообразования (ККМ) или точкой Крафта. В этой точке на диаграмме состояния (рис. 108) линия равновесия концентрация — температура (молекулярная растворимость) раздваивается на линию фазового перехода макрофаза ПАВ — мицеллы и на линию, отделяющую мицеллярный раствор от молекулярного. Величина ККМ любого ПАВ как показателя свойства самих мицеллярных растворов сильно зависит от присутствия электролитов и других веществ, природы растворителя, наличия солюбилизирующейся составляющей и т. д. Показатель ККМ — один из важнейших и для мицеллярных растворов, [c.186]

    Химические термодинамические свойства разных веществ и параметры химических реакций приводятся как в физико-химических справочниках общего характера, так и в специальных термо-динамических. Фундаментальным справочником первой группы является шестое издание таблиц Лаидольта — Бернштейнавышедшее в период 1950—1961 гг. в четырех томах (22 книги), в которых ряд разделов посвящен величинам, характеризующим тепловые эффекты, равновесия и другие параметры химических реакций и фазовых переходов, а также термодинамические свойства химических соединений и простых веществ. Так, четвертая часть второго тома содержит данные по термодинамике химических реакций и соответствующим свойствам химических соединен и простых веществ по теплоемкости энтропии (5"), теплотам образова- [c.74]

    Эти таблицы посвящены в основном органическим соединениям и отличаются по виду рассматриваемых величин. Основные элементы, составляющие эти соединения (С, Н, О, М), не имеют фазовых переходов в рассматриваемой области температур (298—2000 К). Это дает возможность для выражения температурной зависимости тепловых эффектов химических реакций и их констант равновесия вместо функций И]. — и 5 — 52дд применить величины J  [c.494]

    Фазовые равновесия. Основные понятия и общие закономерности фазовых переходов. Фазовые равновесия в однокомпонентных системах. Диа1раммы состояния веществ. Бинарные растворы и основные их свойства. Фазовые равновесия в двухкомпонентных системах. Теоретические основы различных процессов разделения бинарных смесей. Некоторые сведения из фазовых равновесю в трехкомпонентных системах. Теоретические основы экстракции. Физико-химический анашз. [c.8]

    Прн химических преврянтениях в гетерогенных системах существенную роль играют фазовые переходы, об энергетике которых см. гл. IV, 4. При установлении химических раиновесип в гетеро-ренных системах устанавливаются и фазовые равновесия, т. е. гетерогенные равновесия в процессах перехода вещества из одной фазы в другую, которые могут и не сопровождаться изменением химического состава этого вещества. [c.98]

    Лекция 9. Влияние дисперсносги на реакционную способность, на растворимооть, на константу равновесия. Влияние дисперснооги на температуру фазового перехода. Молекулярно-кинетические свой-сгва. [c.217]

    Изменение размеров дисперсных частиц оказывает влияние иа показатели фазового перехода (перегрев, переохлаждение, Т кпп, Тпл). В процессе фазового перехода при заданном давлении различают две температуры первая Тгт п, при которой начинается фазовый переход, для случая Гщгп и вторая Г тах, при которой он прекращается, — Гтах. Процесс кипения происходит тем интенсивнее, чем больше перегрев Тп—7 rmax), а процесс конденсации — чем больше переохлаждение (Гк—Г тах). Температура пара в пузырьке должна равняться температуре окружающей жидкости 7 ж, т. е. она находится в равновесии с температурой перегретой жидкости (7 ж = 7 п).В результате перегрева в пузырьке возрастает давление pi = p+Ap. [c.120]

    Транспорт флюидов по стволу скважины и инертного сырья по. магистральным трубопроводам различается. Под нормальным технологическим режимом эксплуатации скважин подразумеваются усилия, прн которых обеспечиваются наибольшие дебиты нефтяного сырья. Наряду с экстремальными, технологическими факторами (смятие эксплуатационной скважины, ее разрушение, вибрация и т. д.) ограничивают дебит скважины факторы, связанные с физико-химическими свойствами потока, движущегося по сквал сине в условиях изменяющегося давления и температуры. К ним, прежде всего, относятся песчаные пробки, образующиеся в результате скрепления частиц при помоиди вяЛ Сущих компонентов нефти, парафиноасфальтеновые отложения, кристаллогидраты природных газов и т. д. Все эти явления так или иначе связаны с фазообразованием, изменением размеров различных типов элементов структуры дисперсной фазы, динамикой расслоения дисперсной системы и могут быть решены па основе теории регулируемых ММВ и фазовых переходов. По мере перемещения от забоя скважины на дневную поверхность снижаются температура и давление, что ведет к изменению условий равновесия в потоке нефтяного сырья и выпаданию из него парафинов, асфальтенов, воды, песка с образованием структурированных систем на внутренних поверхностях эксплуатационных колонн (осадков, газогидратов). [c.189]

    На рис. 10 приведена по М. М. Дубинину схема трех типов пор (а — до адсорбции, б — после адсорбции). Переход пар- -— жидкость осуществляется, как и всякий фазовый переход, через стадию дисперсного состояния в виде межфазного слоя. На поверхности поры устанавливается равновесие между адсорбирующимися и десорбирующимися соедипепиями (или продуктами реакции), которое в значительной степени зависит от природы и размера ССЕ, попадающих и уходящих с поверхности адсорбционного слоя. Это равновесие обусловливает определенную толщину адсорбционного слоя, в котором под действием силового поля слоя ири определенных температурах происходит деструкция молекул при энергиях активации значительно меньших, чем энергия активации деструкции молекул в объемной фазе. Толщина адсорбционных и межфазных слоев зависит от размеров адсорбируемых и десорбируемых ССЕ на поверхности катализатора и влияет на выход и качество получаемых продуктов реакции. [c.203]


Смотреть страницы где упоминается термин Фазовый переход равновесие: [c.138]    [c.18]    [c.186]    [c.146]    [c.160]    [c.331]    [c.156]    [c.166]    [c.60]    [c.54]    [c.110]    [c.120]   
Фазовые равновесия в химической технологии (1989) -- [ c.64 , c.138 , c.227 , c.250 , c.289 , c.291 , c.293 , c.295 ]




ПОИСК





Смотрите так же термины и статьи:

Переходы фазовые

Равновесие фазовое



© 2025 chem21.info Реклама на сайте