Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

неводных средах растворах

    При депарафинизации водными растворами карбамида, кроме фильтрации, применяют различные варианты отделения комплекса отстаиванием. Однако при отстое возникают свои трудности в основном из-за того, что поверхность комплекса, будучи гидро--фобной, предпочтительно смачивается неводными жидкостями. Поэтому при отстое продуктов комплексообразования комплекс оказывается в значительной своей массе не в водной фазе, а в среде раствора депарафинированного продукта, от которого отстаивается с трудом и не нолностью. Часть же комплекса, перешедшая в водную фазу, удерживает на поверхности значительные количества раствора депарафинированного продукта. Для удаления из ком- [c.148]


    Электропроводность раствора H I в метиловом спирте почти в 4 раза меньше, чем в воде, что трудно объяснить уменьшением скорости движения ионов. Низкая электропроводность в неводных средах определяется в основном малой степенью диссоциации веществ в этих растворителях. Так, если хлористый водород в водном растворе диссоциирован полностью, то в спир-то шм растворе степень его диссоциации гораздо меньше единицы, а в бензоле он образует совсем слабый электролит. [c.439]

    Одним из основных факторов, влияющих на образование сферической формы жидкого гомогенного золя в неводной среде, является время коагуляции. Скорость коагуляции золя в гель в зависимости от концентрации гелеобразующих растворов, их соотношения и температуры может изменяться в довольно широких пределах. При постоянной кислотности среды и химическом составе магнийсиликатного золя скорость схватывания золя по мере повышения концентрации гелеобразующих растворов - и температуры сильно возрастает. Поскольку концентрация гелеобразующих растворов и кислотность среды (pH золя) являются одними из основных факторов, влияющих на активность и стабильность катализаторов, для каждых оптимальных условий необходимо выбирать соответствующие температуры растворов. Так как формование сферических катализаторов проводится в среде легких минеральных масел (трансформаторное, турбинное), то в зависимости от поверхностного натяжения между золем и формовочным маслом требуется время для застывания золя в твердый гель. Обычно в производственных условиях время коагуляции равно 10—15 сек, исходя из чего формование магнийсиликатного гидрогеля ведут при температуре рабочих растворов 16—19° С, в то время как алюмосиликатные гидрогели [c.93]

    Велико значение теории кислот и оснований для неорганического синтеза. В результате реакций в неводных средах получено колоссальное число новых неорганических соединений многие из них весьма своеобразны и не похожи на вещества, существующие в водных растворах. [c.285]

    Подводя итог, можно сказать, что теория кислот и оснований Аррениуса полностью применима лишь при условии, что вещества реагируют в водном растворе. Поэтому детальное изучение процессов, протекающих без участия растворителя, а также реакций в неводных средах, потребовало существенного дополнения и обобщения этой теории. Естественно, что любая более общая теория кислот и оснований должна включать теорию Аррениуса как частный случай. [c.233]


    Единая схема диссоциации электролитов см., например, монографию Н. А. И з м а ft-ло и а. Электрохимия растворов. Изд. ХГУ, Харьков, 1959) позволяет рассматривать химические реакции, происходящие в различных растворителях, с общей точки зрения. Ниже приводится сопоставление некоторых реакций, протекающих в водных растворах, с аналогичными реакциями в неводных средах. [c.409]

    В битумные материалы каучуки могут быть введены в виде массивных форм (пластины, листы или куски) крошки или гранул растворов в низкоплавких битумах растворов в жидких углеводородах порошков композиций с твердым битумом или каменноугольным пеком латексов дисперсий в неводной среде. [c.230]

    В водном растворе мыла такого рода реакция не может протекать экстенсивно, так как в таком растворе десорбция жирной кислоты невозможна. Гидролиз все же происходит, но он очень быстро заменяется состоянием равновесия, В неводной среде, наоборот, указанная реакция полностью завершается, так ка один нз продуктов удаляется немедленно после его образования в результате его растворения в растворителе. [c.154]

    Известны производные аммиака, дающие в водных растворах в отличие от аммонийных солей, сильнощелочную реакцию. Эти соединения имеют ионное строение (соли) и включают анионы NH2 последние в воде дают щелочную реакцию вследствие быстро идущей протолитической реакции с образованием NH3 (разд. 33.4.2.5). Поэтому такие солеобразные амиды можно получать лишь в неводных средах (например, в жидком ЫНз). При этом окислительная способность молекулы NH3 достаточна для ее реакции с металлическим натрием, приводящей к образованию амида натрия и выделению водорода  [c.535]

    Если появление первых исследований химических реакций в-неводных растворах относится к началу столетия, то бурное развитие теории и практики титрования в неводных средах наблюдается лишь в последние два десятилетия. Это находит отражение в быстро растущ,ем числе публикаций. Следует отметить, что препаративное применение растворителей предшествовало их использованию в аналитических целях оно стимулировало разработку различных теорий кислот и оснований применительно к неводным средам, расплавам солей, а также реакциям кислотно-основного взаимодействия, протекаюш.им в отсутствие растворителей. Развитие теории в свою очередь послужило основой аналитических исследований. [c.337]

    Образование ионных двойников, тройников и незаряженных комплексов является причиной особого поведения сильных электролитов в неводных средах уменьшения изотонического коэффициента, снижения осмотического давления, электрической проводимости и т. д. по сравнению с водными растворами равнозначных концентраций. [c.120]

    Методы кислотно-основного титрования характеризуются высокой точностью погрешность рядовых определений составляет 0,1...0,2%. Рабочие растворы устойчивы. Для индикации точки эквивалентности имеется набор разнообразных рН-индикаторов и разработаны различные физико-химические методы потенциометрические, кондуктометрические, термометрические и др. Область практического применения методов кислотно-основного титрования весьма обширна. Интенсивно развиваются методы кислотно-основного титрования в неводных средах. [c.219]

    Измерение электропроводности можно использовать для определения концентрации электролита. Особенно удобно применять его в случае разбавленных растворов, а также когда электролит является микрокомпонентом в присутствии большого количества неэлектролитов, в частности в неводных средах. Определения можно проводить и в окрашенных, мутных и совсем непрозрачных растворах. [c.196]

    Работы по созданию химических источников тока, использующих неводные растворители, по электросинтезу ряда веществ и электроосаждению металлов в неводных средах вызвали интерес к исследованию структуры двойного слоя и кинетики реакций в неводных растворителях. Измерения в неводных растворах позволяют решить и ряд теоретических проблем, например выяснить роль взаимодействия металл — растворитель, роль адсорбции атомов водорода и кислорода в структуре двойного слоя и др. [c.389]

    Хотя число проведенных адсорбционных исследований в неводных средах мало, однако имеющиеся в литературе данные для таких растворителей, как алифатические низкомолекулярные спирты и диметилформамид, свидетельствуют о сохранении в этих растворителях при высоких анодных потенциалах основных закономерностей адсорбции органических веществ, обнаруженных в водных растворах. [c.122]

    Некоторые важные, находящиеся в стадии активной разработки направления электрохимии органических соединений были лишь кратко освещены или только упомянуты в данной книге. К ним относится, например, использование нестабильных промежуточных продуктов в электросинтезе. Вступая в химические реакции с веществами, добавляемыми в раствор, эти продукты могут приводить к образованию новых ценных веществ, получить которые другими методами либо чрезвычайно трудно, либо вообще невозможно. Принципиально новые возможности открывает электросинтез органических соединений с использованием электрохимически генерируемых сольватированных электронов. Одним из эффективных способов интенсификации процессов окисления и восстановления органических соединений является применение катализаторов-переносчиков, которые позволяют окислять или восстанавливать органические соединения, не обладающие электрохимической активностью либо реагирующие на электроде с образованием нежелательных продуктов. Сравнительно мало внимания в книге было уделено электродным процессам в неводных средах, число которых увеличивается вместе с расширением ассортимента органических растворителей, применяемых в качестве среды при проведении электрохимических реакций. [c.304]


    Актуально развитие работ по изучению химии комплексных соединений в неводных средах. Неводные (в основном органические) растворители отличаются от воды полярностью и сольватирующей способностью. Поэтому, применяя их, как установлено в последние годы, можно получить устойчивые комплексы, которые в водных растворах легко разрушаются. [c.242]

    Константа Кг (вак) представляет собой отношение двух копстант кислотности ионов лиония и гидроксония. Это — константа процесса, происходящего в вакууме. Конечно, невозможно определить эту величину в вакууме, но можно представить несколько измененный путь переноса ионов и определить экспериментально величину К, в неводной среде нутем изучения изменения свойств неводного, например спиртового, раствора кислоты при добавлении к нему небольших количеств воды, так как это изменение свойств раствора обязано реакции обмена протона МН -f RjO Н,0 M (в среде М). При таком определении константы Кг соотношение активностей будет соотношением их не в вакууме, а в данной неводной среде, и их следует отметить звездочкой. [c.200]

    Константу обмена К, можно найти в неводной среде путем исследования изменения свойств растворов кислот при добавках очень небольшого количества воды к неводному раствору, таких добавок, которые не вызывают заметного изменения свойств растворителя его диэлектрической проницаемости и других физических свойств. [c.201]

    Вычисленные из этих измерений значения pH не представляют собой точных величин, так как они осложнены не только диффузионными, но и фазовыми потенциалами, возникающими на границе раздела водный стандартный раствор — неводный исследуемый раствор. Если при измерении в одном растворителе имеется возможность снизить значения диффузионных потенциалов, то в случае измерений в разных средах скачок потенциала на границе раздела нельзя ни устранить, ни оценить, в связи с чем ошибки при измерениях оказываются неопределенными. [c.408]

    Простым примером самопроизвольного внедрения металла в металл может служить система Ыа+/Си°, в которой ионы Ыа+ содержатся в неводной среде (раствор МаСЮл в ацетонитриле) [34]. Из-за относительно небольшого различия стандартных потенциалов Ма+/Ыа°- и Си+/Си°-элек-тродов в неводном растворе происходит окислительно-восстановительная реакция -. .  [c.27]

    Паульсеи и Певзнер применяли этот реагент [746] для колориметрического определения золота. Интенсивная фиолетовая окраска развивается за несколько минут и затем не меняется в течение 1—2 час. Закон Бера выполняется, точность метода 2%. Определению золота мешают небольшие количества меди, цинка, свинца и железа. Окраска изменяется в присутствии сильных кислот, шелочей, избытка хлорида натрия и палладия. Уэст и Мак-Кой [747] применяли этот же реагент для определения золота в неводных средах. Растворы хлорида золота [c.276]

    Для получения шарикового катализатора струйки золя при помощи формующего конуса направляют в слой турбинного масла. В масле под влиянием поверхностного натяжения на границе раздела жидкостей струйкп золя разбиваются на отдельные капли, которые принимают форму шариков определенных размеров. Время нахождения образовавшихся шариков в неводной среде должно быть достаточным для их затвердевания. Формование шариков осуществляют при строго заданных pH смеси гелеобразующих растворов и соотно- [c.50]

    Если пользоваться такими индикаторами в концентрированных растворах или в неводных средах, то соотношения рКа = pH и —рКь = pH уже не имеют места. Гаммет и Дейрап [18] предложили определять кислотность таких сред с помощью функции НоГ [c.38]

    I (СНзСОО) 3, 1(С104)з, ГРО4, которые можно считать солями 1+ -При электролизе растворов солей 1+ в неводных средах иод выделяется на катоде. Получен также ряд солей иодила, содержащих ионы (Ю) , имеющие цепное строение [c.474]

    Получение мыл щелочных и щелочноземельных металлов не представляет больших трудностей, получаются при этом средние соли. В случае поливалентных металлов (алюминий, свинец и др.) получаются преимущественно смеси средних и основных мыл. Для предотвращения гидролиза реакцию омыления целесообразно проводить в неводных средах. С целью получения натриевых и литиевых мыл (стеаратов металла) исходную кислоту нейтрализуют снир- вода товым (водньсм) раствором щелочи в лабо-раторном приборе (рис. 91). Теоретически необходимое количество щелочи рассчитывают по уравнению  [c.257]

    Мицеллообразование а неводных средах, как правило, является результатом действия сил притяжения между полярными группами ПАВ и взаимодействия углеводородных радикалов с растворителем. Образующиеся мицеллы обращенного вида содержат внутри негидратироваиные или гидратированные полярные группы, окруженные слоем из углеводородных радикалов. Число агрегации (от 3 до 40) значительно меньше, чем для водных растворов ПАВ. Как правило, оно растет с увеличением углеводородного радикала до определенного предела. [c.299]

    Описаны исследования по созданию наз ных основ получения 1,3- и 1,2-дихлорпропанолов, 3-хлор-1,2-эпоксипропана, пропантриола-1,2,3 (экстракция хлорноватистой кислоты органическими растворителями, хлоргидринирование олефинов в водной и неводной средах, дегидрохлорирование концентрированных хлоргидринов и их водных растворов). [c.5]

    Как было отмечено ранее (глава 1.1), хлориды металлов, а по мнению некоторых авторов — катионы металлов вообще, оказывают каталитическое воздействие на процёсс разложения НСЮ. При разработке процесса получения хлоргидринов в неводных средах было интересно выяснить влияние некоторых примесей как неорганического, так и органического характера на скорость разложения НСЮ в среде органического растворителя, в частности в среде МЭК. Кроме того, необходимо было проанализировать влияние неорга1шческих добавок в водно-солевом растворе при совместном их присутствии с высококонцентрированным хлоридом натрия.. [c.71]

    Гайек в своем труде (см. ссылку 90) ставит под сомнение важность значения зета-потенциала для неводной среды. Он определил подвижность суспензий углерода в керосине и цетане (нормальном гексадекане) как в присутствии, так и в отсутствие агентов, способствующих сохранению взвешенного состояния. В качестве таких агентов он пользовался рядом поверхностноактивных средств. Гайеку удалось установить, что в некоторых случаях частицы оказались положительно заряженными, в других случаях — обладающими отрицательным зарядом, а в третьих случаях — нейтральными. Он наблюдал также случаи постоянства подвижности и, наоборот, случаи изменчивости таковой. Однако ему не удалось установить явно выраженной связи между подвижностью частиц и устойчивостью углеродной суспензии. На основании этого он пришел к заключению, что создание для частиц углерода условий, обеспечивающих их нахождение в нефтяном растворителе во взвешенном состоянии, не зависит в сколько-нибудь значительной степени от заряда, которым обладают частицы. Такой вывод, казалось бы, противоречит открытиям Стёбблбайна (см. ссылку 91). Однако последний добавлял к своим растворам ацетон, с целью увеличения проводимости. Возможно, что в таком случае уравнение Гельмгольца-Смолуховского сохраняет овою силу. [c.101]

    При переходе от одного протрлита к другому в пределах одного класса соединений -(/2 (рЛ д сс) нейна. Эта зависимость позволяет судить о дифференцирующем действии растворителей. Чем круче прямая, тем более высоким дифференцирующим действием обладает растворитель. По сравнению с рК величина -1/2 более полно отражает специфику кислотно-основного равновесия в неводной среде. Приведенные ниже данные иллюстрируют изменение /2 трех ортозамещенных бензойной кислоты относительно , 2 бензойной кислоты. Значения рЛ д ны для водных растворов соответствующих кислот  [c.92]

    Мы не будем рассматривать здесь различные типы измери тельных ячеек и приборов, выпускаемых промышленностью, и технику работы на них — для этого существуют специальные руководства. Типы кривых осциллометрического титрования в основном сходны с кондуктометрическими. Но в осциллометрии ветви кривых линейны только в том случае, если измерения проводят в области перегиба характеристических кривых и не происходит слишком сильных изменений электропроводности. В противном случае на кривых в большей или меньшей степени возникают плавные изгибы. При проведении измерений в выбранной оптимальной рабочей области получают такую же, а иногда даже большую точность измерений, чем в кондуктометрии. Поэтому области применения осциллометрии и кондуктометрии совпадают, иногда осциллометрия даже более предпочтительна. Это происходит в тех случаях, когда важны такие преимущества осциллометрии, как возможность безэлектродных измерений и увеличение чувствительности с уменьшением диэлектрической проницаемости. Осциллометрик используют для индикации кислотно-основного, осадительного и комплексометрического титрования различных типов, а также при титровании агрессивных растворов и в неводных средах. Она пригодна и для решения различных кинетических проблем при исследовании процессов кристаллизации, растворения (на- пример, гидраргиллита в алюминатном щелоке), омыления, этерификации, полимеризации, самоокисления и т. д. Метод ос-Циллометрии находит применение в фазовом анализе, например при изучении процесса плавления, затвердевания, фазового обмена, расслоения, для построения диаграмм состояния и т.д. Особенно важным является использование осциллометрии для Контроля и регулирования процессов производства. Этот метод пригоден для неразрушающего анализа ряда продуктов или содержимого ампул. [c.336]

    Однако стабилизация дисперсных систем значительно более эффективна при добавлении к ним поверхностно-активных веществ (ПАВ) и Бысокомолеку.ляр-ных соединений, адсорбирующихся на границе раздела фаз. Адсорбционные слои ПАВ и высокомолекулярных соединений, обладая упругостью и механической прочностью, предотвращают слипание дисперсных частиц. Образование таких молекулярно-адсорбционных твердообразных поверхностных слоев П. А. Ребиндер назвал стпруктурно-механически.и фактором стабилизации дисперсных систем. Этот механизм стабилизации играет основную роль при получении предельно устойчивых высококонцентрированных пен, эмульсий, коллоидных растворов и суспензий не только в неводных, но и в водных средах. Для структурномеханической стабилизации дисперсий н водной среде применяют мыла щелочных металлов, белки, крахмал, а в неводных средах — мыла щелочноземельных металлов, смолы, каучуки. Такие вещества называют защитными коллоидами. [c.311]

    Галогенсеребряные электроды сравнения очень удобны при работе в ячейках без жидкостного соединения они ггрименимы как в водных, так и во многих неводных средах. Они представляют собой серебряную проволоку, покрытую галогенидом серебра, который может быть нанесен как путем термического осаждения, так и электрохимически. Преимущество хлорсеребряного электрода по сравнению с каломельным состоит в том, что он устойчив при повышенных температурах. Хлорид серебра растворяется в концентрированных растворах хлорида калия, поэтому при приготовлении хлорсеребряного электрода необходимо насыщать раствор хлорида калия хлоридом серебра. [c.23]

    Измеренная по отношению к стандарту в данном растворителе величина pH не является абсолютной мерой кислотности неводного раствора и может быть использована для характеристики кислотности только в пределах данного растворителя. Это следует ид того, что начало шкалы кислотности РаНр = о не соответствует равенству абсолютных активностей ионов водорода во всех растворителях. Величины р Н нейтральных растворов в разных растворителях не совпадают друг с другом, так как протяженность шкал, зависящая от ионного произведения растворителя, различна. В верхней части рис. 105 в качестве примера приведены шкалы рНр в воде и некоторых неводных средах. В воде шкала pH изменяется от О до 14 нейтральным раствором называется раствор с pH = 7. Если раствор имеет pH = О, это раствор кислоты с активностью ионов №, равной единице если раствор имеет pH = 14, это раствор щелочи с активностью ионов ОН", равной единице, но это не значит, что не может быть растворов в воде с pH меньше нуля и больше 14. [c.409]


Смотреть страницы где упоминается термин неводных средах растворах: [c.291]    [c.141]    [c.336]    [c.257]    [c.301]    [c.37]    [c.40]    [c.118]    [c.347]    [c.350]    [c.57]   
Основы аналитической химии Часть 2 (1965) -- [ c.151 ]




ПОИСК





Смотрите так же термины и статьи:

КИНЕТИКА РЕАКЦИЙ В НЕВОДНЫХ РАСТВОРАХ , Общие вопросы влияния среды на скорость реакций

Неводные растворы эффект среды

Погрешности стеклянного электрода в кислых растворах i и поведение стеклянного электрода в неводных средах

Применение неводных растворов для улучшения условий и расширения возможности титроваиия в неводных средах

Растворы неводные

влияние контакта в неводных средах в пресной воде в растворах

неводных средах

неводных средах в растворах кислот

неводных средах в растворах кислот в растворах

неводных средах в растворах кислот в растворах коррозионное растрескивани

неводных средах в растворах кислот в растворах металлами влияние

неводных средах в растворах кислот в растворах очистка образцов химический состав хроматные покрытия

неводных средах в растворах кислот в растворах скорости движения воды

неводных средах в растворах кислот в растворах солей в растворах щелочей под напряжением

неводных средах в растворах кислот в растворах температурах

неводных средах определение в неводных раствора

неводных средах поведение в неводных растворах



© 2025 chem21.info Реклама на сайте