Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

неводных средах определение в неводных раствора

    Измерение электропроводности можно использовать для определения концентрации электролита. Особенно удобно применять его в случае разбавленных растворов, а также когда электролит является микрокомпонентом в присутствии большого количества неэлектролитов, в частности в неводных средах. Определения можно проводить и в окрашенных, мутных и совсем непрозрачных растворах. [c.196]


    Нами разработан новый метод определения зависимости емкости смол в смешанных и в неводных средах от pH раствора, позволяющий получать серию кривых титрования за краткий срок. Данный метод основан на определении равновесных pH внешнего раствора в системах, состоящих из предварительно нейтрализованных в разной степени навесок катионита, погружаемых в водно-органические смеси с определенной ионной силой. Применение этого метода особенно целесообразно в тех случаях, когда процесс обмена в неводной среде протекает очень медленно. [c.14]

    Разработан новый простой и быстрый метод определения зависимости степени нейтрализации катионитов от pH среды в неводных растворах. [c.20]

    Ряд определений методами осадительного титрования, проводимых в водных растворах, можно осуществить при добавлении к воде смешивающегося с ней растворителя (для уменьшения растворимости осадка) или при использовании чистого неводного растворителя в качестве среды для титрования. Примером второго случая может служить титрование сульфата в среде уксусной кислоты раствором ацетата бария или титрование галогенидов и роданидов в среде метанола раствором нитрата серебра. [c.349]

    Методы кислотно-основного титрования характеризуются высокой точностью погрешность рядовых определений составляет 0,1...0,2%. Рабочие растворы устойчивы. Для индикации точки эквивалентности имеется набор разнообразных рН-индикаторов и разработаны различные физико-химические методы потенциометрические, кондуктометрические, термометрические и др. Область практического применения методов кислотно-основного титрования весьма обширна. Интенсивно развиваются методы кислотно-основного титрования в неводных средах. [c.219]

    Константа Кг (вак) представляет собой отношение двух копстант кислотности ионов лиония и гидроксония. Это — константа процесса, происходящего в вакууме. Конечно, невозможно определить эту величину в вакууме, но можно представить несколько измененный путь переноса ионов и определить экспериментально величину К, в неводной среде нутем изучения изменения свойств неводного, например спиртового, раствора кислоты при добавлении к нему небольших количеств воды, так как это изменение свойств раствора обязано реакции обмена протона МН -f RjO Н,0 M (в среде М). При таком определении константы Кг соотношение активностей будет соотношением их не в вакууме, а в данной неводной среде, и их следует отметить звездочкой. [c.200]


    Величина электродвижущей силы тесно связана с состоянием электролитов в растворах. Поэтому измерения э. д. с. широко применяются при исследовании многих свойств сильных и особенно слабых электролитов при определении констант диссоциации, констант гидролиза, ионного произведения среды, буферной емкости и т. д. Большое значение имеет измерение э. д. с. для определения pH. В тесной связи с изучением электродвижущих сил находятся вопросы стандартизации pH в водных и особенна в неводных растворах. Широкое применение имеет измерение электродвижущих сил в аналитической химии при потенциометрическом и полярографическом анализе и т. д. [c.378]

    Шкале pH для неводных сред можно придать определенный смысл различными методами. Если допустить, что имеют дело с протонным растворителем, то следовало бы построить ячейку с одним этим растворителем, чтобы кислотный характер был обусловлен только сольватированным протоном. Затем необходимо проделать тот же путь подбора стандартных растворов с известными значения.ми pH, как и для определения pH в водной среде. [c.378]

    Метод амперометрического титрования с двумя поляризуемыми электродами, который может быть назван методом конечной мертвой точки только в том случае, если используются очень небольшие напряжения ( 10 мВ) и при этом отпадает необходимость в построении кривой титрования, обладает рядом преимуществ. Он требует незначительных затрат на оборудование. Применение двух поляризуемых электродов дает возможность отказаться от применения электролитных мостиков, необходимых при применении электродов сравнения, что позволяет применить этот метод для титрования в неводных средах. В случае обратимых систем концентрация определяемого в растворе вещества не изменяется вследствие электрохимической реакции, так как то количество вещества, которое восстанавливается на катоде, вновь возникает в окислительном процессе на аноде. Это особенно важно при определении небольших количеств веществ. Применяют твердые электроды, чаще всего платиновые, равномерно перемешивают титруемый раствор или используют вращающиеся твердые электроды. [c.142]

    Можно проводить определение содержания в растворе любой соли, если сама соль и ее. кислота хорошо растворимы в воде. Для случаев определения солей, подвергающихся гидролизу, или солей, кислоты которых нерастворимы в воде, применяют обмен в неводных средах. В качестве сильнокислотных катионитов используют катиониты марок СБС, СДВ-3, КУ-2 и др. [c.213]

    Теория агрегации и модели в неводных средах строятся по аналогии с водным раствором и основываются на представлении о равновесии мономер — мицелла и величине ККМ. Однако анализ экспериментальных результатов, накопленный в последнее время, показал, что процесс ассоциации молекул ПАВ в неполярных средах имеет ряд особенностей, отличающих его от ассоциации в водной среде. Это — присутствие агрегатов при низкой концентрации ПАВ в растворе (10 —10 Л1) и непрерывность процесса агрегирования (стабильность агрегатов с малым числом мономерных единиц). Поэтому существование единственной концентрации, при которой образуются мицеллы, ставится под сомнение, что лишает смысла определение ККМ [c.358]

    Приводившиеся выше определения кислот и оснований с позиций классической теории электролитической диссоциации применимы лишь к водным растворам. Чтобы иметь возможность учитывать химический характер относящихся сюда веществ и в неводных средах, была разработана протонная теория кислот и оснований (Бренстед, 1923 г.), основанная на следующих определениях кислоты — вещества, отщепляющие протоны, основания — вещества, присоединяющие протоны. [c.143]

    Определение аминогруппы. Амины относят к основаниям, поэтому их можно титровать в водной среде или в органических растворителях. Алифатические амины представляют собой достаточно сильные основания, поэтому их можно титровать и водной среде кислотам ,. Ароматические амины являются более слабыми основаниями и плохо титруются в неводных растворах (например, в уксусной кислоте, ди-оксане, спиртах, нитрилах, эфирах и др.). Амины хорошо растворимы в этих растворителях, но не взаимодействуют с ними. Основность аминогруппы при этом не понижается. Количественное определение первичной аминогруппы можно также проводить, используя азотистую кислоту, согласно реакции [c.822]

    Методы количественного определения препаратов фенотиазинового ряда разнообразны и базируются на свойствах соединений. Фармакопейным методом является метод кислотно-основного титрования в неводных средах. Препарат растворяют в ледяной уксусной кислоте ли ацетоне, добавляют ацетат окисной ртути и титруют хлорной кислотой по индикатору кристаллический фиолетовый или метиловый оранжевый. [c.322]


    Для определения количественного содержания атропина сульфат ГФ X рекомендует метод кислотно-основного титрования в неводных средах. В качестве неводного растворителя служит ледяная уксусная кислота. Навеска препарата титруется хлорной кислотой по индикатору кристаллический фиолетовый до зеленого окрашивания раствора. [c.339]

    Обращает на себя внимание, что константы равновесия, определенные на фоне сульфатов, нитратов и перхлоратов щелочных и щелочно-земельных металлов в водных растворах не зависят или сравнительно мало зависят от ионной силы, в то время как солевой эффект в неводных средах значителен, зависит от природы электролита фона и растворителя (рис. 1.2). [c.29]

    Метод волюмометрического определения карбоновых кислот с использованием стандартного щелочного раствора в водных и неводных средах хорошо изучен [73]. Однако титрование с использованием стандартных растворов не столь удобно (а возможно, и не столь точно), как кулонометрическое титрование. В последнем методе стандартный раствор для титрования генерируется электролитически в процессе самого титрования непосредственно в сосуде с анализируемым раствором. Концентрацию неизвестного соединения вычисляют по измеренному количеству электричества, прошедшего через раствор, на основе законов Фарадея. В этом методе совершенно не требуется стандартных растворов, а во многих случаях и стандартных проб. Более того, измеряемым титрующим раствором здесь является количество электричества (а точнее интервал времени, в течение которого включен источник постоянного тока), и анализ легко автоматизировать подавать в анализируемый раствор определенное количество электричества и измерять его легче и дешевле, чем порции стандартного раствора. Системы детектирования в этом методе те же, что и в обычном титровании, так что метод потенциометрического определения конечной точки титрования можно успешно использовать и здесь. [c.144]

    Инертные электроды, изготовленные из углеродных материалов, также можно использовать при проведении процессов окисления и восстановления в водных и неводных средах. В литературе имеются сообш ения о большом числе различных типов углеродных электродов. Среди них наиболее часто упоминаются электроды из графитовых стержней, используемых в спектроскопии. Они применяются для измерений, в которых не требуется знание плош ади поверхности электрода. Из-за высокой пористости эти электроды дают плохо воспроизводимые результаты. Пористость графитовых электродов устраняют путем их пропитки (импрегнирования) горячим парафином, воском, смесью парафина с полиэтиленом или полистиролом, эпоксидными смолами. Плош адь активной поверхности у импрегнированных электродов меньше, но зато она имеет значительно лучшую воспроизводимость. Эти электроды легче поддаются механической обработке по сравнению со стеклоугле-родом и не требуют определенной ориентации в растворе, как пирографит. [c.88]

    Механизм электролитической диссоциации, т. е. природа ионов, образующихся в системе электролит — растворитель и участвующих в переносе тока, стал предметом исследований лишь в последнее десятилетие. Причины несколько запоздалого обращения к столь важной проблеме заключаются, по-видимому, в том, что природа ионов, образующихся при электролитической диссоциации в водных растворах, часто представлялась априорно очевидной, и эта очевидность механически переносилась на неводные растворы. Углубленное изучение схемы возникновения электролитного раствора, в частности термодинамические исследования, показало, что даже в водных растворах установление чисел гидратации, границ ближней и дальней сольватации имеет решающее значение для полного описания электролитного раствора. В неводных же средах, где, в отличие от большинства водных растворов, в системе электролит — растворитель присутствует намного больше равновесных форм (см. схему (1—14)), определение природы и состава ионов имеет первостепенное значение для понимания процессов, происходящих в системе. Очевидно также и прикладное значение проблемы природы ионов в неводных растворах вряд ли процесс электроосаждення металлов из неводных растворов можно эффективно осуществлять, если не известна эта важнейшая характеристика системы. [c.57]

    Лаблюдаемый в последнее время быстрый научный и техниче- ский прогресс в области химии м химической технологии органических и неорганических веществ вызывает острую необходимость дальнейшего развития аналитической химии и разработки новых более эффективных химических, физических и физико-химических методов анализа, соответствующих современным требованиям науки и производства. Одним из перспективных путей развития аналитической химии является направление, которое связано с разработкой теории и практики методов анализа, основанных па использовании реакций, протекающих в неводных растворах [1—26]. Основное преимущество использования неводных растворителей в качестве сред для определения различных веществ состоит в том, что в среде неводных растворителей можно дифференцированно (раздельно) титровать смеси электролитов, которые в водном растворе характеризуются близкими значениями р/С, например смеои изомеров, смеси соединений одного гомологического ряда, смеси кислот, оснований и т. д. [c.5]

    Наиболее часто используемым методом определения азота в водных и неводных средах является прямое титрование после по-глош,ения аммиака избытком кислоты. Титрование проводится с внутренними индикаторами, изменяющ,имн окраску в интервале значений pH от 4 до 5 (в водной среде). В неводной среде чувствительность обнаружения КТТ увеличивается. Так, при использовании ледяной уксусной кислоты в качестве поглош,аюш,его раствора и титровании хлорной кислотой с кристаллическим фиолетовым как внутренним индикатором (либо с потенциометрической фиксацией КТТ) получаются хорошо воспроизводимые результаты [730, 949, 11681. [c.54]

    Для получения шарикового катализатора струйки золя при помощи формующего конуса направляют в слой турбинного масла. В масле под влиянием поверхностного натяжения на границе раздела жидкостей струйкп золя разбиваются на отдельные капли, которые принимают форму шариков определенных размеров. Время нахождения образовавшихся шариков в неводной среде должно быть достаточным для их затвердевания. Формование шариков осуществляют при строго заданных pH смеси гелеобразующих растворов и соотно- [c.50]

    Мицеллообразование а неводных средах, как правило, является результатом действия сил притяжения между полярными группами ПАВ и взаимодействия углеводородных радикалов с растворителем. Образующиеся мицеллы обращенного вида содержат внутри негидратироваиные или гидратированные полярные группы, окруженные слоем из углеводородных радикалов. Число агрегации (от 3 до 40) значительно меньше, чем для водных растворов ПАВ. Как правило, оно растет с увеличением углеводородного радикала до определенного предела. [c.299]

    К электрохимическим методам исследования физических и химических процессов в различных средах (водных и неводных растворах, солевых расплавах, коллоидных, твердофазных и других системах) относят те, которые основаны на измерении электрической проводимости растворов, определении разностей окислитель-но-восстановителы1ых потенциалов, изучении электрофоретических явлении, построении и анализе полярограмм и т. д. [c.79]

    В другом способе определения pH в неводной среде используют гу же основную ячейку, которую применяли для водных растворов, включая каломельный электрод сравнения с водным раствором КС1. Если для данного растворителя применены водные стандартные растворы, то может быть получен ряд величин, которые дадут оценку, чему-то , что можно лишь смутно связать с кислотностью. Если система представляет собой смешанный растворитель, содержащий воду, или водоподобный растворитель, то о системе можно узнать достаточно, чтобы связать полученные величины с величинами концентрации водородных ионов посредством калибровочной кривой. Однако вследствие того, что величина потенциала в месте контакта жидкостей меняется от растворителя к растворителю, очевидно, что нельзя сравнивать величины pH в одном растворителе с величинами pH в другом. Например, если рН-метр дал показание 5,0 для определенного раствора в смеси этанол — вода и то же самое показание для раствора в смеси метанол — вода, причем в обоих случях был применен один и тот же стандартный раствор, нельзя делать вывод, что в обоих растворах активность водородного иона одинакова. На самом деле между ними не будет никакого сходства, прежде всего потому, что на границе между растворителем этанол — вода и насыщенным водным раствором КС1 каломельного электрода и на границе между растворителем метанол—вода и водным раствором КС1 будут совсем разные потенциалы. [c.379]

    При определении pH неводных растворов необходимо заменять насыщенный водный раствор КС] в каломельных электродах не метаноло-вым раствором КС1 (как это обычно делают), а соответствующими растворами КС1 в неводных растворителях, в среде которых проводят титрование. Только при, этом условии измеренное значение pH неводного раствора может быть сопоставлено с точно известным значением pH стандартного неводного раствора. [c.415]

    Титрование в неводных растворах по методу осаждения. Применение невлдных растворителей для титрования по методу осаждения представляет 0ольщой интерес, так как под влиянием растворителя сильно изменяется растворимость веществ. Соединение, хорошо растворимое в воде, может оказаться малорастворимым в каком-либо неводном растворителе, и наоборот, соединение, нерастворимое в воде — хорошо растворимым в органическом растворителе. Например, сульфат и оксалат натрия хорошо растворимы в воде, а в среде безводной уксусной кислоты эти соединения настолько мало растворимы, что становится возможным весовое определение ионов натрия осаждением их в виде оксалата или сульфата. В среде жидкого аммиака А С1 реагирует с Ва(ЫОз)2 с образованием осадка ВаСЬ—соли, хорошо растворимой в воде, и т. д. [c.430]

    Селективность. Под селективностью понимают свойство ионита в одних, и тех же условиях по-разному вступать реакции ионного обмена с разными ионами. Для пояснения селективности существуют определенные модели, но область их применения крайне ограниченна [44]. В соответствии с молекулярной теорией селективность ионита по отношению к ионам равных зарядов определяется степенью ассоциации активных групп ионитов с про-тивоионами. В зависимости от плотности активных групп в ионите между ними (группами, способными к ионному обмену) возникает сила отталкивания, что является фактором, способствующим набуханию ионитов. Действию этой силы противодействует сила структурного взаимодействия. На основании изложенного можно сделать вывод, что селективность ионита возрастает с увеличением степени сшитости ионита, обменной емкости и с увеличением концентрации раствора, проходящего через ионит. Райс и Харрис-153] дали количественное описание селективности, применимое для оценки селективности ионита в неводных средах, но непригодное для ионитов с низкой степенью сшитости и с высокой набухаемостью. В ряде теорий исходят из представления о границе раздела фаз ионит — раствор как о полупроницаемой мембране. В этом случае применимо уравнение Доннана 142], и можно сделать вывод, что селективность ионита зависит от его набухания или-обменного объема. При этом не учитывают межионные взаимодействия, особенно сильные в случае ионитов с высокой обменной емкостью. Поскольку все указанные теории не являются общими, при оценке селективности ионита применяют следующие простые правила [54]  [c.376]

    Приводившиеся в основном тексте определения кислот и ось ований с точки зреаня классической теории электролитической диссоциации применимы лишь к в о д-н ы м растворам. Чтобы иметь возможность учитывать химический характер таких веществ и в неводных средах, была разработана протонная теория кислот и [c.179]

    Во многих случаях четко проявляется э.пектроката.питиче-ский характер процесса, так как в пределах одной и той же группы металлов с высоким перенапряжением водорода довольно значительно колеблются выходы спиртов и пинаконов. Одному из этих двух конкурирующих процессов, а именно образованию пинакона, обычно благоприятствуют высокие концентрации исходного соединения и фонового электролита, щелочная среда, слегка повышенная температура. Повышение плотности тока благоприятствует протеканию реакций сочетания до определенного предела вследствие сдвига потенциала к более отрицательным значениям, при которых идет образование спирта. В неводных растворах повышению выхода пинакона благоприятствует наличие иоиа. пития, с которым легко образуются ионные пары. [c.341]

    Количественное содержание нитроксолина в препарате определяется методом кислотно-основного титрования в неводных средах. Препарат растворяют в муравьиной кислоте и титруют 0,1 н раствором хлорной кислоты до желтого окрашивания при индикаторе малахитовый зеленый (0,5% раствор в ледяной уксусной кислоте). В конце титрования прибавляют 5 капель индикатора Расчет ведут на сухое вещество. Для количественного определения нитроксолина в препарате можно применить нитритометрический метод после восстановления китрогруппы в аминогруппу. [c.320]

    Контроль за процессом титрования и определение его конечной точки осуществляют рН-метром. Для автоматического выключения источника тока при достижении конечной точки титрования рН-метр можно соединить с реле или датчиком другого типа. Генерируюи ие растворы. Титрование в неводной среде ведут в бескислотном 70%-ном изопропаноле, содержащем 0,001 М Li l в качестве электролита. [c.145]

    В неводной среде уран может быть определен с 2-п и р и д и н-<1-азо - 1>-2-нафтолом [419, 540]. В водных растворах реагент дает с ураном ярко-красный осадок, переходящий в органический слой при взбалтывании с о-дихлорбензоломили с хлороформом. Осаждение проводят из аммиачных растворов, содержащих комплексон III и цианиды для маскирования прочих элементов. Маскирующие уран вещества (фосфаты, HgOg и другие) мешают. Чувствительность—2—10 мкг урана в 10 мл органического растворителя. [c.54]

    Новак и Кратки [206] предложили полярографическое определение малеиновой и фумаровой кислот в гидролизатах некоторых сложных видов полиэфиров. Поскольку составные части таких гидролизатов мешают определению указанных кислот за счет адсорбции на границе электрод — раствор, была разработана методика параллельного определения малеиновой и фумаровой кислот в неводных средах. [c.138]

    В неводных средах, например в смесях метанол — бензол (1 1), в качестве оптимального фона для определения пероксидов рекомендуется 0,3 М Li l (Льюис, Квакенбуш и Фриз), в связи с чем этот раствор во многих работах принят в качестве основного фона при полярографическом определении различных пероксидов. [c.161]

    Экстракты сливают в другую делительную воронку. Полученный неводный раствор дитизоната металла и дитизона обрабатывают несколько раз разбавленным раствором аммиака или буферным раствором с pH > 9. При этом свободный дитизон полностью переходит в водную фазу, а в неводной фазе остается дитизонат металла. Далее измеряют поглощение одноцветного экстракта при соответствующей длине волны по сравнению с поглощением чистого растворителя или контрольной пробы. Содержание металла рассчитывают по калибровочной кривой. Для определения дитизоната ртути Нк (НВ2)а создают уксуснокислую среду и отделенную органическую фазу фотометрируют при 485 нм. По данным [845], точность определения +3%. [c.107]

    Серебро с дитизоном определяют также безэкстракционными методами в водной или водно-неводной средах. В растворе пирофос-фата [6] (растворяют дитизон в 0,1 N пирофосфате натрия при pH 10) определению не мешают Т1, Аз(111) и (V), А1, В1, Те, РЬ, и, 2п, N1, Со, Мо, Си и Сг измеряют интенсивность окраски розово-красной суспензии соединения серебра с дитизоном. [c.110]

    Изготовление слоев оксидов редкоземельных элементов, тория, урана, протактиния, нептуния и транснептуниевых элементов электроосаждением из неводных сред имеет неоспоримые преимуш,ест-ва по сравнению с водными растворами. Образуюш,иеся на катоде при электролизе в водной среде гидроксиды лантаноидов и актиноидов аморфны. При дальнейшей термической обработке они образуют оксидные слои с большим количеством структурных дефектов. При электролизе из органических растворов на катоде образуются кристаллические структуры, которые при прокаливании легко переходят, теряя органическую составляюш,ую, в кристаллические структуры оксидов РЗЭ и актиноидов. Кроме того, метод электроосаждення из неводных растворов характеризует большая скорость проведения процесса, полнота выделения металла, прочность сцепления о подложкой слоев толщиной 1—5 мг/см , равномерность распределения покрытия на больших площадях. Наилуч-шие результаты получены из спиртовых растворов нитратов и ацетатов РЗЭ и актиноидов. Растворимость солей данных металлов в органических растворителях низка, поэтому в основном применяют насыщенные растворы. Из-за низкой проводимости растворов и окисной пленки на электроде используются высокие напряжения (порядка сотен вольт), плотности тока низкие. Большое значение при подборе оптимальных условий осаждения имеют площадь электродов, расстояние между ними, объем электролита, предварительная обработка электродов. Катодный процесс сопровождается газовыделением, вызывающим образование неравномерной пленки. Для уменьшения газовыделения добавляют специальные добавки, в частности этиловый спирт [221]. Катодный продукт наряду с металлом и кислородом содержит обычно азот, водород и углерод. Результаты количественного анализа показывают загрязнение катодного осадка растворителем или продуктами его разложения, но не образование соединений определенной стехиометрии [1077]. При термической обработке катодного осадка происходит уменьшение объема и перестройка кристаллической решетки, в результате чего слои растрескиваются и осыпаются, и лишь в случае тонких слоев оказывается достаточно поверхностных молекулярных сил сцепления для сохранения прочной связи с подложкой. Для получения покрытий толщиной порядка 1—5 мг/см необходимо многослойное нанесение продукта [1060]. [c.156]

    Электроосаждение из неводных сред металлов четвертой группы представляет интерес прежде всего для германия и подгруппы титана, поскольку эти металлы электролитически из водных растворов не осаждаются [484, 404]. Наилучшие результаты получены в случае германия. Из спиртовых растворов (преимуш ественно в двухатомных спиртах) галогенидов германия выделены тонкие катодные пленки металлического германия [702, 641, 1225, 482, 381, 292, 650, 291, 293]. Наряду с осаждением германия на катоде происходит выделение водорода, на последний процесс расходуется основная часть тока. Выход по току германия низкий (порядка 1—3 %) Большое влияние на процесс злектроосаждения оказывает природа металлической подложки. При определенных концентрациях галогенида германия, повышенных плотностях тока и температурах возможно катодное образование диоксида германия [482, 196]. Пример оптимальных условий получения металлического германия растворитель — этиленгликоль, концентрация ОеСи — 3—5 %, температура — комнатная, интервал плотности тока 5—50 А/дм . При этих условиях на подложках из меди, серебра, платины и алюминия осаждаются ровные, хорошо сцепленные с подложкой, компактные германиевые покрытия светло-серого цвета. В качестве анода использовали графит или германий, выход по току германия составляет 2 % [291, 293]. Возможно катодное получение пленок германия и из других неводных сред, например из низкотемпературных расплавов ацетамида [147]. Из растворов в ацетамиде с добавками хлорида аммония при температуре 90—130 °С двухвалентный германий восстанавливается, образуя тонкослойные (1—2 мк) осадки, прочно сцепленные с подложкой. Выход по току еще ниже, чем в спиртовых растворах (приблизительно 0,1—0,5 %) Из-за выделяющегося водорода осадок германия при этом достаточно наводорожен. [c.157]


Смотреть страницы где упоминается термин неводных средах определение в неводных раствора: [c.156]    [c.141]    [c.326]    [c.172]    [c.245]    [c.64]    [c.37]    [c.85]    [c.233]    [c.28]   
Основы аналитической химии Часть 2 (1965) -- [ c.157 ]




ПОИСК





Смотрите так же термины и статьи:

Растворы неводные

неводных средах

неводных средах растворах



© 2025 chem21.info Реклама на сайте