Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

неводных средах в растворах кислот в растворах температурах

    Чаще всего в качестве окислителей применяют перманганат калия, бихромат калия (или хромовый ангидрид) и разбавленную азотную кислоту. Преимущество перманганата калия состоит в том, что он не только является сильным окислителем, но и образует в результате реакции нерастворимую двуокись марганца, легко отделяемую от калиевой соли кислоты, растворимой в водной среде. К числу его недостатков следует отнести низкую растворимость в неводной среде и нестабильность, приводящую к выделению кислорода при кипячении в водном растворе или при кипячении с обратным холодильником в растворе пиридина в воде. Эта тенденция усиливается в щелочных растворах [1]. По-видимому, наилучших результатов можно достичь, осуществляя тесный контакт между спиртом и водным раствором перманганата путем энергичного перемешивания при возможно более низкой температуре, хотя в приведенных здесь примерах это и не использовано. [c.237]


    Те теоретические принципы, которые легли в основу всей электрохимии водных и неводных растворов, в общем имеют решающее значение также и для области расплавленных сред, т. е. главным образом расплавленных солей, оснований и отчасти индивидуальных кислот. Рассмотрение электролиза расплавов отдельно от электролиза неводных растворов вызвано не столько принципиальными соображениями, сколько различием в методике, применяемой в том и другом случае, так как в области расплавленных сред часто приходится работать при высоких температурах, что требует совсем особого экспериментального подхода. Следует, однако, иметь в виду, что во многих случаях эти две области неотделимы друг от друга. Так, например, электролиз стеариновой кислоты, растворенной в расплавленной пальмитиновой кислоте, может быть отнесен к области явлений в расплавленных средах, а электролиз раствора уксусной кислоты в пропионовой кислоте, жидкой при комнатной температуре, может быть отнесен к области неводных растворов. Очевидно, что принципиальной разницы в двух этих случаях нет, но благодаря разности температуры при изучении таких бинарных смесей несомненно возникают методические различия, которые становятся очень большими, когда дело идет о средах, плавящихся, например, лишь при 1000° С и выше. [c.386]

    Если источником каталитически активного водородного нона является слабая кислота, то необходимо учитывать равновесие диссоциации слабого электролита и изменение константы диссоциации в зависимости от концентрации электролита, среды и температуры. Бренстед [71 назвал это явление вторичным кинетическим солевым эффектом , но правильнее будет опустить слово кинетический , а слово солевой заменить термином электролитический . Стремление понять этот эффект привело к изучению констант диссоциации кислот в растворах солей [8 . Отсутствие количественных данных по константам диссоциации в неводных растворах тормозит изучение кислотного катализа в неводных средах. [c.68]

    Титранты для неводных сред. а. Хлорная кислота. С тех пор как Конант и Холл впервые продемонстрировали возможность титрования слабых органических оснований в уксуснокислой среде хлорной кислотой, она заняла уникальное положение в неводной, ацидиметрии. Было показано, что в уксуснокислых растворах хлорная кислота является сильной кислотой, значительно более сильной, чем серная или соляная При этом 0,01 н. растворы хлорной кислоты легко готовить и они устойчивы а Кин и Фриц предложили 0,001 н. раствор хлорной кислоты для ультрамикротитрования. В качестве растворителя обычно рекомендуют ледяную уксусную кислоту но были предложены также диоксан и трифторуксусная кислота Если анализируемое основание растворено в смешанном гликоль-углеводородном растворителе, то и хлорную кислоту надо растворять в той же среде. Нельзя забывать, что хлорная кислота является сильным окисляющим средством и обладает взрывоопасными свойствами. Хотя такая опасность исключена при использовании 0,01 н. растворов, склянку для хранения 70%-ной хлорной кислоты нужно тщательно оберегать от попадания в нее восстановителей и металлов. Если 0,01 н. уксуснокислый раствор хлорной кислоты хранится в микробюретке с резервуаром, желательно, чтобы микробюретка была снабжена краном с игольчатым регулирующим клапаном Если используется обычный кран и колбу для титрования встряхивают от руки, необходимо убедиться, что кран не подтекает. Надо также следить за тем, чтобы температура титранта не изменялась, так как ускусная кислота имеет высокий коэффициент объемного расширения [c.396]


    Конечно же, здесь названы далеко не все необычные или малоизвестные свойства хлорида натрия. Он, например, в неводных средах образует коллоидные растворы желтокрасного цвета. Даже знакомый каждому вкус соли и тот непостоянен. В присутствии сахара или при повышенной температуре соленый вкус поваренной соли ослабляется, а в присутствии кислот-усиливается. [c.10]

    При проведении реакции в водном растворе температуру поддерживают не выше 35 °С. Эту реакцию проводили также и в неводной среде — в хлороформе. Важным условием для успешного ведения такого процесса является низкая температура (около О °С) и незначительный избыток азотной кислоты. Выход гликольнитрата, как и в водной среде, составлял около 58%. [c.100]

    Сурьма в кристаллическом виде злектролитически может быть получена как из водных, так и из неводных сред. К сожалению, нередко в зависимости от условий электролиза, в частности от концентрации ионов сурьмы в растворе и температуры, на катоде осаждается металл в смеси с солями 5Ь (П1), что приводит к образованию взрывоопасного осадка. Получение таких осадков характерно для обеих сред. Осадки имеют губчатую форму и аморфную структуру, после взрыва переходят в обычную кристаллическую форму. Электроосаждением сурьму получают из многих неводных растворителей спиртов, аминов, кислот, эфиров. Б, АЦ, НМ [702, 414, 641, 146, 1218, 1272, 406, 99, 100, 1191, 415]. Использу- [c.159]

    Кислотный катализ в неводной среде инверсия /-ментона в хлорбензольном растворе температура 99,4 0,05° С, образуются комплексы между /-ментоном и 3 молекулами хлор5 сусной кислоты, фенилпропионовой кислоты, ж-нитро-бензойной кислоты, бензойной и уксусной кислот в хлорбензоле, предполагается протолитическая реакция Кетонное расщепление а, а-диметилуксусной кислоты в о-хлоранилин и анилин в хлоридных буферных растворах Бромирование ацетона, энолизованного в легкой воде и в смеси легкой и тяжелой воды при 25° скорость броми-рования ацетона эквивалентна скорости обмена первого атома водорода Бромирование ж-нитрацетофенона, о-нитранилина и р-хлор-о-нитранилина Образование анилидов из органических кислот и анилина [c.212]

    Исторический обзор возникновения интереса к неводным растворителям, а следовательно, и к выяснению роли растворителя в природе растворов, дан в известных монографиях Вальдена 121 иЮ. И. Соловьева [3]. Еще в середине XVI в. Бойль заинтересовался способностью спирта растворять хлориды железа и меди. Позднее ряд химиков отмечает и использует растворяющую способность спирта. В 1796 г. русский химик Ловиц использует спирт для отделения хлоридов кальция и стронция от нерастворимого хлорида бария, как будто положив начало применению неводных растворителей в аналитических целях. В первой половине XIX в. подобные наблюдения и их практическое применение встречаются чаще, причем химики устанавливают случаи химического взаимодействия растворителя с растворенным веществом, показывая, что и в органических жидкостях могут образовываться сольваты (Грэхем, Дюма, Либих, Кульман). Основным свойством, которое при этом изучалось, была растворимость. В 80-х годах XIX в. Рауль, исследуя в целях определения молекулярных весов понижение температур замерзания и повышение температур кипения нри растворении, отмечает принципиальное сходство между водой и неводными средами. Но систематическое физико-химическое изучение неводных растворов наряду с водными начинается только в самом конце столетия, когда Каррара осуществляет измерение электропроводности растворов триэтилсульфония в ацетоне, метиловом, этиловом и бензиловом спиртах, а также ионизации различных кислот, оснований и солей в метиловом спирте. В этот же период М. С. Вревский проводит измерения теплоемкостей растворов хлорида кобальта в смесях воды и этилового спирта [4], а также давлений и состава паров над растворами десяти электролитов в смесях воды и метилового спирта [5]. Им впервые четко установлено явление высаливания спирта и определено как .. . следствие неравномерного взаимодействия соли с частицами растворителя . Несколько раньше на самый факт повышения общего давления пара при растворении хлорида натрия в смесях этанола и воды, на первый взгляд противоречащий закону Рауля, обратил внимание И. А. Каблуков [6]. Пожалуй, эти работы можно считать первыми, в которых подход к смешанным растворителям, к избирательной сольватации и к специфике гидратационной способности воды близок современному пониманию этих вопросов. Мы возвратимся к этому сопоставлению в гл. X. [c.24]

    Из этих агентов алкилсернокислые соли AlkOSOsNa действуют наименее энергично. Диметилсульфат при взои.модействии с двумя молекулами первичного амина (в водной суспензии при встряхивании) дает вторичное основание и метил-сернокислую соль первичного амина как результат взаимодействия образовавшейся по уравнению (3) метилсерной кислоты с второй молекулой первичного амина. При нагревании первичного амина с диметилсульфатом до более высокой температуры можно по желанию направлять реакцию в сторону образования преимущественно моно- или диалкильных производных. Выходы продуктов алкилирования. выше у гомологов анилина, чем у самого анилина. Третичные основания В неводной среде, (например, в эфирном бензольном растворе) действием того [c.534]


    При.мепение катионита в качестве катализатора органических реакций или сорбента в неводной среде в некоторых случаях требует его предварительного высушивания. Температура сушки КУ-2-8 в .-+ и N3 -формах не выше 110 С, Катионит отличается высокой химической стойкостью к разбавленным растворам п1,елочей и кислот, органически.м растворителям и некоторым окислителя.м. Так его кипячение в 5 и, растворе серной кислоты илп едкого натра, в 1 н. азотной кислоте и 10%-пой перекиси водорода (ГОСТ 10899-64) не снижает полную обменную емкость в статических условиях, КУ-2-8 стабилен прп 20Х в 0,1 н. растворах бромата калия, персульфата аммония, хлорного железа, перманганата и бихромата калия, при 80°С деструкция [c.6]

    Аналогично кальций может быть отделен и от стронция (растворимость хромата стронция немного уменьшается с повышением температуры и значительно уменьшается в среде, содерн ащей 50% этанола). В аммиачных растворах, содержащих этанол, осаждение хромата стронция в присутствии кальция селективно и имеет преимущества перед сульфатным разделением этих ионов, так как хромат-ион не мешает дальнейшему определению кальция при помощи оксалата [1074[. При отделении кальция от других щелочноземельных металлов часто используют метод, оспованный на различной растворимости неорганических солеи (а иногда и органических) в неводных растворителях или их смесях, а также в концентрированной азотной кислоте. Наиболее надежным является метод Фрезениуса [108], заключающийся в обработке сухой смеси нитратов спиртово-эфирной смесью. Нитрат кальция при этом полностью переходит в раствор, нитраты стронция и бария не растворяются. Разделение возможно также, если на смесь карбонатов разделяемых ионов действовать 50%-ным спиртово-эфирным раствором азотной кислоты [760]. Кальций может быть отделен от Зг, Ва и РЬ прибавлением азотной кислоты к разбавленному этанольному раствору, содержащему смесь катионов в виде сульфатов. Когда концентрация азотной кислоты в растворе становится 1,43 N, сульфат кальция избирательно растворяется. [c.161]

    Хингидронный электрод прост по устройству, приходит к равновесию быстрее, чем водородный электрод, более устойчив к ядам и окислительным агентам и может быть применен в присутствии веществ, восстанавливаемых водородом. С помощью хингидронного электрода возможно измерение pH растворов, содержащих растворенные газы. Его можно применять на воздухе, хотя лучшие результаты получаются в условиях, исключающих присутствие кислорода. Он применим во многих неводных и смешанных средах, включая водно-этанольные растворители, ацетон, фенолы и муравьиную кислоту. Основной недостаток хингидронного электрода заключается в том, что измерения с ним ограничены растворами с pH, меньшими 8. Он дает неверные значения при наличии белков, некоторых окислителей и при высоких концентрациях солей. Показания электрода с течением времени становятся неустойчивыми, особенно при температуре выше 30° С. Полезное обобщение свойств и теории хингидронных электродов даны Джанцем и Айвесом [12, глава 6]. [c.223]

    Для анализа летучих жирных кислот А. Джемс и А. Мартин [13] применили автоматическую титрацион-ную ячейку. Элюированные из колонки соединения поступали в камеру, содержащую водный или неводный растворитель. Цветной индикатор pH среды в сочетании с фотоэлементом и реле контролировал подачу титрующего раствора. Положение поршня бюретки, выполненной в виде шприца, регистрировалось самописцем. Такой титрационный детектор регистрирует интегральную кривую выхода кислот из колонки. Он позволяет селективно определять кислоты (или амины) в смеси с другими соединениями. Рабочая температура ячейки ограничена давлением пара титрующей среды. Чувствительность детектора 0,002—0,02 мг кислоты или щелочи. Применение детектора с кулонометрическим титрованием соединений, элюируемых из газохроматографической колонки, описано в работе [14]. Метод регистрации хромато-графически разделенных метилхлорсиланов по изменению электропроводности раствора, которое возникает в результате образования соляной кислоты при гидролизе хлорсиланов, предложен в работе [15]. [c.174]

    Соотношение между каталитической активностью протолита и его силой было 5гетановлено Бренстедом в 1924 г. в форме известного уравнения кл = СаК. а для кислотного катализа и кв = СвКв для катализа основанием, где кл кв — константы скорости. Ка К в — константы ионизации кислоты и основания, С А, Ов, а, р — постоянные величины, характеризующие не только реакцию, но среду и температуру. Они зависят также от знака и величины заряда катализатора. Соотношение Бренстеда было подтверждено нри широкой проверке на примере многих каталитических реакций в водных и неводных растворах, см. [60, стр. 82]. [15, стр. 181]. [c.65]

    Электрохимическое исследование поведения пиролитических пленок хрома, полученных разложением бмс-ареновых соединений хрома, в водных и неводных электролитах показало [432], что высокая коррозионная устойчивость покрытий объясняется легкой пассивируемостыо поверхности электрода в водных электролитах. По своей пассивирующей способности ионы можно расположить в следующей последовательности С1 > Р0 > 80 Повышение температуры электролита приводит к восстановлению пассивирующего слоя. Полная активация электрода в серной и фосфорной кислотах наступает при температурах выше 140° С. При этом электрод растворяется с переходом в раствор иона хрома в трехвалентном состоянии. В растворах соляной кислоты активное состояние по достигается вследствие специфической адсорбции хлора. Химические свойства покрытий зависят от рН среды. Авторами установлена закономерность изменения пассивирующих свойств слоев от концентрации ионов ОН". [c.260]


Смотреть страницы где упоминается термин неводных средах в растворах кислот в растворах температурах: [c.206]    [c.90]    [c.44]    [c.534]    [c.20]   
Коррозия металлов Книга 1,2 (1952) -- [ c.713 , c.720 ]

Коррозия металлов Книга 2 (1952) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Растворы неводные

Температура среды

неводных средах

неводных средах в растворах кислот

неводных средах в растворах кислот в растворах

неводных средах растворах



© 2025 chem21.info Реклама на сайте