Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Парафиновые углеводороды термический

    В зависимости от метода дегидрирования газообразных парафиновых углеводородов — термического пли каталитического — образуются разные продукты переработки (табл. 58). [c.52]

    Изопентены — 2-метилбутен-1, 2-метилбутеп-2, З-метилбутен-1 — являются важнейшим сырьем для получения изопрена. Многочисленные исследования [53] показали, что метод дегидрогенизации изопентенов до изопрена (725) является наиболее дешевым и перспективным. Одно из преимуществ этого метода — наличие большого запаса дешевого сырья, в отличие от других методов, которые в качестве сырья применяют ацетон и ацетилен или изобутилен и формальдегид. Метод дегидрогенизации основан на применении в качестве сырья изопентана, выделенного из газового бензина и изопентанов, полученных в процессах термокаталитической переработки средних и тяжелых парафиновых углеводородов (термический или каталитический крекинг), или в процессе каталитической дегидрогенизации фракции С5, выделенной из газового бензина. [c.496]


    Как было указано выше, из газообразных парафиновых углеводородов термическому дегидрированию без применения катализатора при определенных условиях можно подвергать лишь этан с получением соответствующего олефина-этилена. Уже следующий углеводород — пропан реагирует в двух направлениях параллельно с реакцией дегидрирования в пропилен, протекает также реакция распада углеводородной цепи с образованием этилена и метана, причем вторая реакция преобладает. В аналогичных условиях н-бутан, н-пентан и изопентан реагируют, главным образом, с распадом углеводородной цепи и образованием более иизкомолекулярных олефинов. Термическое дегидрирование в соответствующие олефины без распада углеводородной цепи имеет лишь подчиненное значение. Из углеводородов этого ряда, сравнительно устойчив к термическому распаду также и изобутан, который может термически дегидрироваться в изобутилен. При этом, конечно, имеет место также и распад на пропилен и метап, но в отличие от н-бутана значительное количество изобутана (около 60% мол.) превращается в изобутилен. Ус- [c.62]

    Термическое дегидрирование высших парафиновых углеводородов, как пропан или бутаны, с образованием олефипов, имеющих равное с исходным углеводородом число атомов С, или вообще невозможно или протекает с очень малыми выходами, так как сопровождается обычно крекингом. Однако возможно дегидрирование каталитическим путем — пропусканием сырья над смешанным катализатором (окись хрома — окись алюминия) при температуре около 500°. [c.35]

    Следовательно, нефтехимическая промышленность в полном смысле слова может быть построена на основе нефти и ее фракций. Прежде чем рассматривать эти процессы более детально, необходимо сделать некоторые основные замечания о процессах термической ароматизации парафиновых углеводородов. [c.58]

    Хлорирование парафиновых углеводородов может осуш,ествляться тремя способами фотохимическим, каталитическим и термическим. Оно протекает согласно реакции  [c.112]

    Г. ТЕРМИЧЕСКОЕ ХЛОРИРОВАНИЕ ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ [c.113]

    Для хлорирования газообразных прп нормальных условиях парафиновых углеводородов наибольшее значение имеет термический способ. Термическое хлорирование протекает в отсутствие воздуха и катализатора. Реакция эта протекает также по цепному механизму, она сильно тормозится кислородом и другими соединениями, способными обрывать течение реакционных цепей, например окислами азота. [c.113]


    Как правило, фотохимический процесс применяют для хлорирования жидких углеводородов и частично хлорированных углеводородов, газообразные же парафиновые углеводороды целесообразнее подвергать термическому хлорированию. [c.142]

    Фотохимическое хлорирование парафиновых углеводородов в газовой фазе практически не применяется. В тех случаях, когда хлорирование в газовой фазе легко осуществимо, например при переработке низкомолекулярных парафиновых углеводородов, обычно отдают предпочтение термическим или термокаталитическим процессам. [c.144]

    Термическое хлорирование протекает в отсутствие катализаторов и света. Этот метод предпочтительно применять для хлорирования низкомолекулярных парафиновых углеводородов, для которых ои, несомненно, является наиболее важным способом хлорирования. [c.155]

    Из всех этих наблюдений вытекает, что механизм термического хлорирования отличается исключительной сложностью. Поэтому его необходимо рассмотреть несколько детальнее, так как для газообразных парафиновых углеводородов чаще всего применяют термические процессы хлорирования. [c.158]

    Термическое хлорирование высокомолекулярных парафиновых углеводородов [c.182]

    Процесс термического хлорирования высокомолекулярных парафиновых углеводородов от гексана до ундекана в последние годы детально изучался советскими исследователями. Исходные углеводороды выделяли из нефти ректификацией в колоннах четкого фракционирования и хлорировали в газовой фазе при различной температуре и различном молекулярном отношении углеводород хлор. Полученные этими исследователями интересные результаты, во многих отношениях противоречащие ранее опубликованным данным, рассмотрены в других статьях [78]. [c.183]

    Чисто термическим путем, т. е. только нагревая парафиновые углеводороды до высокой температуры, нельзя их изомеризовать. Шульце и Веллер [8] крекировали н-бутан и изобутан при 700° и 0,32 сек. времени пребывания газов в нагретой зоне, получив около 20% продуктов разложения. В продуктах крекинга н-бутана нельзя было обнаружить ни изобутана, ни изобутилена, и, наоборот, в газах крекинга изобутана н-бутан или н-бутен отсутствовал. Отсюда следует, что для изомеризации необходимо присутствие катализатора. [c.514]

    Аналогично этому и газофазное хлорирование парафиновых углеводородов также нужно проводить в условиях, когда пиролиз только что образовавшихся продуктов замещения пс наступает. Известно, что термическая стойкость галоидных алкилов снижается в направлении от первичных к третичным. [c.540]

    Цетановые числа дизельных топлив зависят от их углеводородного состава. Парафиновые углеводороды являются лучшими компонентами для получения дизельного топлива, т. е. они имеют самые низкие температуры самовоспламенения и, следовательно, самые высокие цетановые числа. Самые низкие цетановые числа у ароматических углеводородов, более стойких к термическому распаду и самовоспламенению. Нафтеновые и олефиновые углеводороды занимают промежуточное положение. Цетано%ые числа зависят также от, температуры кипения фракций с повышением температуры кипения цетановое число повышается. [c.37]

    В виду того, что свободные радикалы в противоположность ионам карбония способны в условиях алкилирования отнимать водород как от нормальных, так и от разветвленных парафиновых углеводородов, термическому алкилированию (но не каталитическому) могут легко подвергаться пропан и другие н-алканы. Так, при алкилировании пропана с этиленом получается смесь н- и изопентанов, образующихся в результате присоединения радикалов к- и изопропилов к этилену [16]. [c.232]

    Нефтяные смеси термически нестойкие. Среди входящих в их состав компонентов менее стойки к нагреву сернистые и асфаль-тосмолистые соединения. Парафиновые углеводороды термически менее стойки, чем нафтеновые. Последние при нагреве легче разлагаются, чем ароматические. Термическая стабильность нефтяных смесей зависит в основном от температуры нагрева и времени ее воздействия. Порог термической стабильности для непрерывной перегонки выше, чем для периодической. На практике нефть и полученпые из нее продукты (мазут, масляные фракции) можно без заметного разложения нагревать до следующих температур, °С  [c.68]

    Легкие фракции бензинов термического крекинга примерно на 50% СОСТОЯТ из н-пентана, 2-метилбутана и 2-метилбу-тена-2 при значительном преобладании -пентана. Содержание -парафинов и этих фракциях в 1,5—2,5 раз больше, чем изопарафинов. Среди олес )иновых углеводородов легких фракций соотношение концентраций -олефинов и изоолефинов примерно составляет 1 2. Для индивидуальных парафиновых углеводородов термического крекинга характерно преобладание норм шьных изомеров (-75% от суммы парафинов) 2-ме-тилзамещенных (-20%). Парафиновые углеводороды бензинов термического крекинга преимущественно состоят из -гептана (-20%), -гексана (-15%), -октана и -нонана (более 12% каждого). Нафтеновые углеводороды бензинов термического крекинга представлены преимущественно циклогексановыми (около 60%). Содержание циклопенпановых составляет -37% и циклобутановых -3%. Последние в прямогонных бензинах не обнаружены. Ароматические углеводороды бензинов термического крекинга в основном состоят из толуола (-30%) и л -ксилола (-25%) [12]. [c.66]


    МЕХАНИЗМ АЛКИЛИРОВАНИЯ ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ Термическое алк11лпрование [c.178]

    Олефины получают термическим или каталитическим дегидрированием парафиновых углеводородов. Термическое разложение или пиролиз этана и пропана приводит к образованию этилена и пропилена [15, 55, 88]. Пропилен, i-бyтилeны и изобутилен получают каталитическим расщеплением газойля,, хотя бутилены можно получать и каталитическим дегидрированием. Каталитическое дегидрирование н-бутана и и-бутена ведет к образованию бутадиена [7, 13, 22, 76]. Стирол можно получать каталитическим дегидрированием этил-бензола [9]. При всех этих реакциях олефин часто является лишь одним из компонентов сложной углеводородной смеси. Выделение и очистка чистого целевого олефина представляют при его производстве значительные трудности [8, 13]. [c.283]

    Как было найдено Faragher oM и Сагпег ом, дихлор- и трихлорпроизводные циклогексана разлагаются гораздо легче, чем хлориды парафиновых углеводородов. Термическая обработка дихлорциклогексана уд. в. df 1,179 при действии неглазурованного фарфора и окиси алюминия дает при различных температурах продукты со следующими иодными числами (табл. 141). Теоретическое йодное число ожидаемого дигидробензола 317. [c.885]

    Наибольший интерес представляет попытка осуществить с помощью катализаторов селективное хлорирование метана, например с преимущественным образованием хлористого метила. Здесь наилучшие результаты были достигнуты при использовании в качестве катализатора хлористой меди, отложенной на пемзе. Выход хлористого метила составлял 75—80% от теорет. температура хлорирования была близкой к 450°С, т. е. обычной для чисто термического хлорирования [107]. Однако следует иметь в виду, что при получении монохлоридов метана или других парафиновых углеводородов термическим хлорированием преимущественное образование целевого продукта сравнительно легко достигается регулированием соотношений между углеводородом и хлором в реагирующей смеси. Мы уже указывали, что, например, при хлорировании н-бутана удается получить практически только монохлорбутаны. [c.61]

    Во-вторых, получением высокомолекулярных относительно однородных олефинов термическим крекингом парафина. Парафин из нефти, полученный синтезом Фишера-Тропша или из бурого угля, разлагается при высоком нагреве (пример 550°) в присутствии перегретого водяного пара. Образующиеся при этом олефины смешаны с парафинами, так как нри крекинге парафиновых углеводородов образуются олефины и парафины, причем сумма атомов С олефина и парафина равна числу атомов С исходного парафина. [c.61]

    Фотохимическое хлорирование может с успехом применяться для газообразных и жидких парафиновых углеводородов. При хлорировании жидких углеводородов газообразный хлор подают нри перемешивании и облучении ультрафиолетовым светом непосредственно в углеводород. Для хлорирования газообразных углеводородов целесообразно применять инертный к хлору растворитель, например четыреххлористый углерод, в который нри облучении ультрафиолетовым светом одновременно вводят хлор и парафиновый углеводород. Фотохимическое хлорирование легко идет уже при низких температурах — важное нреимуш ество перед рассматриваемым ниже термическим хлорированием, нозволяюш ее полностью избежать разложения, вызываемого пиролизом, а также реакций перегруппировки. [c.112]

    Для термического хлорирования низкомолекулярных парафиновых углеводородов предло/копы различные технические способы, выбор которых определяется тем, какая степень хлорирования должна быть достигнута в том или ином случае. Значительная трудность в осуществлении этих процессов обусловливается тем, что парафиновый углеводород и хлор не дают абсолютно гомогенной смеси. Этим вызывается опаспост . местного чрезмерно глубокого хлорирования и связанного с этим образования сажи. [c.114]

    Американские исследователи Хэсс и Мак-Би разработали универсальный процесс термического хлорирования -газообразных парафиновых углеводородов, который может использоваться и для [c.160]

    Для непрямого получения фторалканов применяется метод, основанный на взаимодействии фтористой сурьмы, фтористого серебра или фтористой ртути с алкилгалогенидами [138], Лишь в последние год фторированные парафины привлекли большой интерес вследствие их исключительной термической и хим.ической стойкости. За немногими исключениями, фторированные парафины и в настоящее время еще не получают прямым воз,действием элементарного фтора на парафиновые углеводороды [139]. [c.201]

    Прямое сульфирование парафиновых углеводородов серной кислотой, олеумом или серным ангидридом, несмотря на многочисленные попытки, все еще остается неразрешенной проблемой. В ароматическом ряду эту реакцию применяют довольно часто, и протекает она очень гладко. У парафинов же эта реакция не всегда еозадожна из-за нерастворимости сульфирующего агента в углеводороде и термического разложения алкилсульфокислот. [c.356]

    Хлорангидриды алкилфосфиновых кислот термически очень устойчивы. В случае высокомолекулярных парафиновых углеводородов эти хлорангидриды можно еще перегонять в вакууме в отличие от соответствующих сульфохлоридов. Под действием воды они гидролизуются в соответствующие фосфиновые кислоты. Они вступают в те же реакции, что и сульфохлориды с аммиаком дают диамиды, с анилином — дианилиды, с фенолами — диариловые эфиры фосфиновых кислот и ариловые эфиры хлорфосфиновых кислот, со спиртами — диалкиловые эфиры фосфиновых кислот и ариловые эфиры хлорфосфиновых кислот, со спиртами — диалкиловые эфиры фосфиновых кислот. [c.502]

    Полученные авторами данные по термическому газофа1Э НОму хлори- рованию высших парафиновых углеводородов отличаются от результатов всех остальных исследователей и нуждаются в дополнительной проверке. Следовало бы проверить, были ли найдены условия, настолько благоприятствуюш.ие хлорированию первичных атомов водорода, что в будуш,ем основным продуктом мог бы стать наиболее желательный первичный мо нохлорид. До сих пор этого сделать не удавалось. [c.559]

    Между термическим хлорированием и нитрованием газообразных парафиновых углеводородов имеется существенное различие в том, что нитрование при 400° приводит к получению наряду с ожидаемыми язо-мерными мононитросоединениями также нитропроизводных с меньшим молекулярным весом. Так, при газофазном нитровании -бутана, кроме обоих изомерных мононитробутанов, образуются нитропропан, нитроэтан и нитрометан. [c.567]

    Все эти расчеты и выводы являются точными лишь в том случае, если в процессе реакции не происходит дегидрохлорированля с образованием олефинов. Образование дихлоридов путем последующего присоединения хлора по двойной связи протекает по другим закономерностям, чем при прогрессирующем хлорировании монохлорпроизводных поэтому, в смеси дихлориды содержатся в значительно большем количестве, чем в отсутствие реакции дегидрохлорироваиия. Это особенно легко проходит при термическом хлорировании, при переработке высших парафиновых углеводородов или при рециркуляции непрореаги-ровавшего углеводорода, содержащего заметные количества олефинов.  [c.595]

    Для парафиновых углеводородов характерны реакции распада. Жидкие продукты каталитического крекинга высококппящпх парафиновых углеводородов содержат значительные количества насыщенных углеводородов разветвленного строения, являющихся ценными компонентами автомобильных и авиационных бензинов. Прп термическом крекинге образуется мало таких соединений и много ненасыщенных углеводородов. [c.18]

    Продолжительность этих периодов времени недостаточна, чтобы произошли заметные изменения состава насыщенных углеводородных масел, вызываемые одним нагреванием при температурах, полученных при измерениях на забое скважин, что подтверждается расчетами Сейера, а также Мак-Нэба с сотрудниками, упомянутыми выше. На это указывает и тот факт, что состав нефтей не соответствует термическому равновесию смесей при температурах, наблюдаемых в нефтяных пластах. Относительное содержание углеводородов в нефтях определяется, с одной стороны, стерическими факторами, а с другой стороны, факторами, связанными с природой промежуточного карбоний-иона (см. ниже) в реакциях образования углеводородов. Так, неопентан не образуется в алкилатах и очень редко находится в нефтях и притом только в очень малых количествах, хотя при низких температурах он является наиболее устойчивым из пентанов. Катализаторы, принимая участие во многих химических реакциях, могут также оказывать влияние на природу образующихся углеводородов, как, например, в процессе Фишера-Тропша в присутствии кобальтового катализатора получается бензин, содержащий высокий процент нормальных углеводородов и обладающий октановым числом 40, в то время как в присутствии железного катализатора при прочих равных условиях получается бензин с малым содержанием нормальных парафиновых углеводородов и обладающий октановым числом порядка 75 и выше. [c.87]

    Энергия активации реакции термического разложения бензола является удивительно низкой. Мид и Бэрк [26] получили в своих работах величину, равную только 50 калориям на ыоль в интервале температур от 750 до 852° С, что значительно меньше величины 65 калорий, которая, как указывается в литературе, необходима для разложения парафиновых углевоцородов. На основании этого можно ожидать, что бензол разлагается еще легче, чем парафиновые углеводороды с открытой цедью. Это подтверждается экспериментально, но в то же время при разложении бензола наблюдается только отщепление водорода, а но разрыв связей С—С в ядре. [c.94]

    Особый интерес представляет сравнение углеводородных составов исходного сырья, бензина термического риформинга и бензина платформинга , представленных на рис. 3. Как видно из графика, в исходном сырье с интервалом кипения 60—200° С нафтеновые углеводороды распределяются почти равномерно в области 20—100% смеси. Ароматические углеводороды распределяются также довольно равномерно в области 40—100%. Для бензина термического риформинга характерно образование олефинов и циклоолефинов. Вместе с этим происходит некоторая потеря нафтеновых и увеличение содержания ароматических углеводородов. В действительности, исходя из солава сырья, трудно допустить новообразование ароматических углеводородов. Увеличение концентрации последних в продукте объясняется разрушением неароматических компонентов. Концентрация парафиновых углеводородов в низкокипящих фракциях и ароматических в высококипящих фракциях обусловливается тем фактом, что в процессах изомеризации и гидрокрекинга парафиновых углеводородов средняя температура кипения их понижается, тогда, как в процессе пре- [c.182]

    Между дегидрированием бутена-1 и бутена-2 большой разницы ые наблюдается. Продукты конверсии любого из этих углеводородов содержат обычно все три изомерных нормальных бутена, что, несомненно, указьшает на смещение двойной связи. В то же время при этом образуются незначительные количества изобутилена и дегидрированием последнего получается лишь незначительное количество бутадиена. Парафиновые углеводороды, папример, и-бутан, в условиях дегидрирования бутена с добавкой водяного пара также не претерпевают заметной конверсии. Однако в случае рециркуляции заводского сырья, содержащего около 70% м-бутенов, накопление в ном изобутилена и бутанов не происходит. В неочищенном бутадиене могут присутствовать в небольших количествах такие вещества, как аллен, метилацетилен, винилацетилен, этилацетилен, бутадиен-1,2, диацетилен и димотилацетилен. В больших количествах эти продукты содержатся в бутадиене, полученном при высокотемпературном термическом крекинге. [c.206]

    В настояш,ее время кислотный характер алюмосиликатных катализаторов крекинга не вызывает сомнения. Например, такие катализаторы можно титровать едким калием или такими органическими основаниями, как хинолин. Кислотные свойства катализаторов обусловлены, вероятно, присутствием протонов на их поверхности, активной частью которой может быть либо кислота трша (НА13104)ж [62], либо атомы алюминия с дефицитом электронов [37, 61]. Обсуждение теорий, предложенных для объяснения кислотности алюмосиликатных катализаторов не является целью, настоящей главы. Для данного изложения необходимо только указать, что ион карбония Д" ", инициирующий ценную реакцию, может образоваться либо [1] в результате реакции кислотного катализатора с олефином, который образуется при начальном термическом крекинге, либо путем дегидрирования парафинового углеводорода,. либо в результате отщепления гидридного иона от молекулы парафинового углеводорода атомом алюминия с дефицитом электронов [2]. [c.236]

    Термический крекинг нафтеновых углеводородов происходит по аналогичному сБободнорадикальному цепному механизму. Дополнительно-к процессам, имеющим место при крекинге парафиновых углеводородов, при крекинге нафтенов происходит дегидрогенизация (путем отщепления водорода от радикалов) до ароматических угловодородов. [c.238]


Смотреть страницы где упоминается термин Парафиновые углеводороды термический: [c.50]    [c.114]    [c.117]    [c.170]    [c.50]   
Технология переработки нефти и газа (1966) -- [ c.115 , c.116 , c.118 , c.121 ]




ПОИСК





Смотрите так же термины и статьи:

Парафиновые углеводороды



© 2025 chem21.info Реклама на сайте