Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Очистка газов термической переработки от сер

    На многих предприятиях в качестве топлива используют заводские газы — побочные продукты технологических установок. Ресурсы заводских газов зависят от глубины переработки углеводородного сырья. В производствах, процессы которых протекают под давлением водорода (риформинг, гидроочистка, изомеризация), образуются газы, не содержащие непредельных углеводородов, п их применение для сжигания в печах не вызывает затруднений. В то же время, состав побочных газов термических и некоторых каталитических процессов характеризуется заметным содержанием непредельных углеводородов. Их концентрация зависит, главным образом, от жесткости режима и в определенной степени от состава сырья и применяемых катализаторов. Входящая в состав заводских газов жирная часть (изобутан, этилены) является ценным исходным сырьем для получения высокооктанового бензина, а сухая часть (водород, метан п этан- -этилен) применяется в качестве технологического топлива. Заводские топливные газы, особенно с установок пиролиза бензина, необходимо подвергать очистке от непредельных углеводородов (фракций С4, С5 и диеновых соединений). Указанные непредельные углеводороды легко полимери-зуются и сополимеризуются с продуктами сероводородной коррозии и образуют плотные отложения в арматуре трубопроводов, в узлах газовых горелок и в капиллярах КИП. Это нарушает работу горелок или совсем выводит их из строя. [c.48]


    Технология переработки нефти и ее дериватов в СССР находится на достаточно высоком уровне, причем многие технологические процессы представлены в различных вариантах (каталитический крекинг, селективная очистка и депарафинизация масел, термический крекинг, очистка светлых, химическая переработка газов и т. д.). [c.101]

    В различных отраслях народного хозяйства широко распространены процессы, в которых сыпучий материал движется компактной массой под действием силы тяжести в направлении относительно узкого выпускного отверстия. К таким процессам относятся производство чугуна в доменных печах, обжиг и термическая переработка твердых топлив и минерального сырья в шахтных и камерных печах, каталитический крекинг и пиролиз нефтяного сырья, разделение и очистка газов и жидкостей, их нагревание и охлаждение, выпуск сыпучих материалов из бункерных устройств, руды из обрушенных блоков при подземной разработке рудных месторождений и др. [c.4]

    Поскольку при переработке сернистого сырья сернистые соединения разлагаются с выделением сероводорода, сероводород всегда присутствует в газах термического крекинга сернистого сырья, в газах гидрокрекинга и гидроочистки. Дальнейшая переработка газообразных углеводородов без очистки от сероводорода невозможна не только вследствие сильной коррозии аппаратуры, но и потому, что сероводород является ядом для большинства промышленных катализаторов. При выделении из газа сероводорода одновременно решаются две задачи очистка газа и получение концентрированного сероводорода, являющегося сырьем для производства серы и серной кислоты. [c.356]

    Из табл. 3 видно, что газ, полученный осле каталитической очистки бензинов термического крекинга и коксования, по содержанию таких ценных ко мпонентов, как бутилены, ше уступает по качеству газу, полученному при обычном крекинге вакуумного газойля, что особенно важно в условиях переработки высокосернистых нефтей, где установки термического крекинга переводятся на легкий висбрекинг, что значительно сокращает выработку газа. [c.16]

    Рассматриваются теоретические и практические вопросы -термической переработки топлива, получения сырья для химической промышленности, очистки сточных вод промышленных предприятий, использования природного газа в промышленности, разработки новых методов исследования и контроля и другие. Представлена аннотированная библиография отечественной и зарубежной литературы по горючим сланцам за 1962 г. [c.2]


    В сборнике помещены статьи, относящиеся к вопросам термической переработки топлива, получению сырья для химической промышленности, использованию минеральной части горючих сланцев, очистке промышленных сточных вод, использованию природного газа для отопления промышленных печей и другие. [c.239]

    В сборнике помещены статьи, освещающие теоретические и практические вопросы, связанные с термической переработкой сланца, использованием природного газа в промышленности, очисткой сточных вод промышленных предприятий, получением сырья для химической промышленности и другие. [c.2]

    Первая часть учебника включает разделы, посвященные физико-химическим свойствам и классификации нефтей и нефтепродуктов, физическим методам переработки природных углеводородных газов, процессам подготовки нефти к переработке и технологии первичной переработки нефти. Вторая часть посвящена технологии вторичных методов переработки нефти и газа (термических, каталитических и гидрогенизационных), предназначенных для производства различных видов топлив и сырья для нефтехимической промышленности. В третьей части изучаются процессы очистки нефтепродуктов с целью придания им товарных качеств и технология производства специальных продуктов. [c.9]

    Энерго-химическое использование землистых бурых углей представляет значительный интерес для народного хозяйства. Переработку этих углей в моторное топливо, газ и ценные химические продукты целесообразно производить по описанной схеме переработки торфа — путем комбинирования процессов термического растворения угля, последующей жидкофазной гидрогенизации тяжелых продуктов растворения и гидрогенизационной очистки дестиллатных фракций. При этом из одной тонны органического вещества бурого угля Днепровского бассейна (Александрийское месторождение) получается 138 м газа термического растворения с теплотой сгорания 2600 ккал, 390 кг автомобильного бензина, 160 кг топлива для быстроходных дизелей, 36 кг ценных низших фенолов. [c.273]

    Изменение состава твердых бытовых отходов, особенно увеличение в них содержания пластмасс, резины и других компонентов, сжигание которых затруднено либо сопровождается образованием вредных соединений, обусловило разработку и применение нового метода термической переработки отходов — пиролиза. Целью этого процесса — разложения органических веществ путем нагревания материала в бедной кислородом среде, является получение горючего газа, смолы и угля. Пиролиз имеет некоторые преимущества перед сжиганием. Получаемое твердое, жидкое и газообразное топливо можно хранить и использовать для термической сушки осадков сточных вод в высокоэффективных аппаратах. При пиролизе образуются меньшие объемы шлака и отходящих дымовых газов в связи с небольшим расходом дутьевого воздуха. Вместе с тем возможен совместный пиролиз твердых бытовых отходов и механически обезвоженных осадков сточных вод, что создает более благоприятные условия для осуществления процесса и позволяет сократить число обслуживающего персонала по сравнению с раздельной обработкой. Размещение пиролизной установки на одной площадке с очистными сооружениями может иметь также то преимущество, что значительно упрощается решение вопросов очистки сточных вод, образующихся при газоочистке, охлаждении и грануляции шлака. [c.185]

    Очистка газов. Нефтезаводские газы, полученные при переработке сернистых нефтей, всегда содержат сероводород и некоторые другие сернистые соединения. Особенно много сероводорода в газах установок, перерабатывающих тяжелое сырье мазут, вакуумные дистилляты, гудрон. Например, в газе каталитического крекинга вакуумного дистиллята арланской нефти содержится 13—15% сероводорода, а в газах термического крекинга полугудрона этой же нефти —до 18% сероводорода. [c.309]

    Водные конденсаты и оборотные промывные воды (подсмольные и надсмольные), получаемые в улавливающей и газоочистной аппаратуре установок для термического разложения твердых топлив, резко отличаются друг от друга как по составу, так и по выходу. Это зависит от следующих основных факторов 1) режима термического разложения топлива 2) состава топлива, подвергаемого. переработке, и 3) системы и метода очистки газа и выделения из него воды и других жидких компонентов. [c.373]

    Газ коксования содержит значительно меньше непредельных углеводородов, чем газ термического крекинга. Например, в газе термического крекинга содержится 20—26% олефинов Сг—С4, а в газе замедленного коксования 5—15%, поэтому он является менее ценным сырьем для дальнейшей переработки. Но если температуру в кипящем слое мазута, например, арланской нефти поднять с 520 до 625° С, то выход газа возрастет в 4 раза и содержание в нем олефинов — в 1,4 раза. Бензины коксования хотя и содержат меньше олефинов, чем бензины термического крекинга, но тоже нестабильны и при хранении быстро осмоляются. Их октановое число (по моторному методу) составляет 57—67. Дистилляты коксования могут служить сырьем для других процессов или после очистки и фракционирования использоваться соответственно как компоненты бензина и дизельного топлива. Нефтяной кокс представляет собой твердый пористый продукт черного цвета с металлическим блеском. Его элементный состав (в %) углерода 90—97, водорода 1,5—8%, остальное— сера, азот, кислород и различные металлы. [c.120]


    Стабилизированные нанесенные металлы. Хотя металлы, по-видимому, непригодны для непосредственного применения в качестве катализаторов прямого ожижения угля из-за их сульфидирования, ожидается, что в стабилизированной форме они могут иметь важное значение в реакциях синтеза на основе оксида углерода и водорода и как полиметаллические системы — для обеспечения заданного распределения продуктов реакции и увеличения устойчивости катализатора к действию серы. В этой области и в процессах переработки и очистки жидких продуктов гидрогенизации каменного угля могут быть очень полезны новые методы стабилизации использование биметаллических [54, 55, 67] и триметаллических [70] систем. Предполагается, что методы стабилизации посредством взаимодействий металл — носитель, разработанные для катализаторов очистки выхлопных газов автомобилей [68, 69], будут важны для приготовления катализаторов, термически стабильных и стойких к сернистым соединениям (см. разд. 3). [c.61]

    Очистка или химическая стабилизация дестиллата процесса совместной переработки нефтяных газов и жидких нефтепродуктов не отличается от соответствующих нроцессов для дестиллата термического крекинга. [c.270]

    В шунгитсодержащей породе установлены гювышенные содержания рения как в исходных образцах гравия, так и в продуктах его термической переработки (пылях сухой очистки отходящих газов). Содержание рения в исходнььх пробах достигает 1,3 г/т, а в пылях - 2,0 г/т. Рений может переходить в растворы системы мокрой газоочистки, которая предусмотрена по технологическому регламенту получения шунгизита. [c.80]

    На территории России значительная доля газоконденсатных месторождений содержит в составе пластовых газов сероводород и сероорганические соединения, без очистки от которых газ не может быть подан в систему магистральных газопроводов и потребителям. Организация добычи газа на Оренбургском, а затем на Астраханском месторождениях, потребовала использования технологий по очистке газа от сероводорода, производству газовой серы и доочистке хвостовых газов производства серы, а также очистке газа и конденсата от се-роорганпческпх соединений. В последние годы появилось множество новых технологических процессов переработки природных газов, в том числе очистка газа физическими абсорбентами, окислительными и микробиологическими методами, термическая и плазмохимическая диссоциация сероводорода, мембранные процессы газоразделепия и т.д. [c.7]

    Стабилизированные носители. Стабилизированные носители необходимы при проведении сильно экзотермических каталитических реакций (например, метанирование, реакция водяного газа) и для процессов, в которых применяют окислительную регенерацию катализаторов. Операции изготовления термически стабилизированных оксидов алюминия и цеолитов будет иметь существенное значение для процессов получения новых катализаторов прямого ожижения угля или реакций синтеза на основе оксида углерода и водорода. Уже существуют катализаторы гидросероочистки, гидронитроочистки и гидрокрекинга, стабильные при 1000Х [39—43]. Поэтому воздействие этих методов на процессы очистки и облагораживающей переработки очевидно. [c.61]

    Технологическое и аппаратурное оформление установок, в которых осуществляется обработка газов, обусловливается требованиями потребителя и особенностями термической переработки горючих ископаемых. Например, при получении энергетических газов, сжигаемых под котлами тепловых электростанций, необходима лишь очистка от механических примесей и сернистых соединений, тогда как в производстве синтез-газа или высококалорийного газа (заменителя природного) требуется тонкая очистка от всех примесей. При газификации мелкозернистых топлив в псевдоожиженном слое (метод Winkler) или в пылегазовом потоке (метод Koppers-Totzek) не происходит образования смолы, поэтому отпадает необходимость извлечения ее из газового потока. В то же время газификация в плотном слое топлива, коксование и полукоксование связаны с выделением достаточно больших количеств смолы и требуют специальной аппаратуры для ее улавливания из газа. [c.136]

    Затраты на переработку солей в основном определяют технико-экономические показатели окислительных способов. Судя по литературным данным [ 4], перера отка растворов сероцианоочистки в восстановительной атмосфере характеризуется более низкими затратами, по сравнению с процессом сжигания в окислительной среде. Но указанный метод рекомендуется применять для переработки натриевых солей, т.е. в тех процессах очистки газа, в которых в качестве поглотителя используют содовые растворы. Кроме тог , термическое расщепление в восстановительной атмосфере может быть приемлемо при относительно малом количестве утилизируемых солей, поскольку увеличение количества солей приведет к разбавлению коксового газа продуктами сгорания. [c.29]

    Рассмотрим движение низкомолекулярных потоков на Уральском заводе без использования промежуточных резервуаров. Продукты стабилизации бензина термического крекинга, пройдя очистку, поступают на аб-сорбционно-газофракционирующую установку (АГФУ) для дальнейшей переработки. Сухой газ термического крекинга используют в качестве топлива. Жирный газ каталитического крекинга после очистки поступает на блок абсорбции для дальнейшей переработки, а бутан-бутиленовая фракция, пройдя щелочную очистку, направляется на установки алкилирования. Газ прямой перегонки компримируют и подают в газовую сеть завода. Конденсат компрессии газов прямой перегонки откачивают совместно с продуктами стабилизации бензина риформинга и вторичной перегонки в емкости товарного парка для последующей передачи на завод органического синтеза туда же откачивают нормальный бутан с установок алкилирования. [c.28]

    В сборник включены статьи различного характера, рас-сматриваюпще теоретические и практические вопросы, связанные с термической переработкой топлива, получением сырья для химической промышленности, очисткой сточных вод промышленных предприятий, использованием природного газа в промышленности, разработкой новых методов исследования и контроля и др. [c.2]

    Все искусственные горючие газы, полученные в результате термической переработки твердого топлива, содержат в том или ином количестве серусодержащие соединения. Первоисточником сернистых соединений в газе является сера исходного топлива. В процессе термической переработки топлива (полукоксования, коксования, газификации и др.) входящие в него вещества, содержащие серу, претерпевают изменения и в некоторой части переходят в газ в виде неорганических и органических соединений в зависимости от характера соединений серы в топливе и от способа переработки его. Например, при коксовании в газ переходит 25—40% серы, при газификации 65—90%. В газе сера содержится главным образом в виде неорганических соединений Нг8 (до 95%) и в небольшом количестве в виде органических сероуглерода ( Sa), сероокисиуглерода OS, меркаптанов (RSH), тиоэфиров R—S—R и др. Содержание сернистых соединений в газе зависит от количества серы в исходном топливе. Наличие сернистых соединений в газе во многих случаях нежелательно, а иногда и вовсе недопустимо. Бытовой газ может содержать лишь незначительное количество соединений, содержащих серу. Сероводород является сильным ядом предельно допустимая концентрация его в воздухе производственных помещений принята 0,01 мг л. При горении сернистые соединения образуют сернистый ангидрид, который также вызывает отравления организма. Сернистые соединения, содержащиеся в газе, который применяется в металлургической и стекольной промышленности, значительно снижают качество металла и стекла. Серусодержащие соединения, находящиеся в газе, корродируют аппаратуру. Особенно большие требования предъявляются к синтез-газу по содержанию сернистых соединений, так как они отравляют контактную массу, снижая тем самым ее активность. Поэтому в синтез-газе допускаются лишь следы сернистых соединений. При очистке газа от сероводорода можно получать товарную серу. [c.297]

    Переработка ОСК и КГ в серную кислоту и олеум включает все стадии классического производства серной кислоты по длинной схеме. Однако особенностью этих процессов является то, что сырьем для производства серной кислоты служат серосодержащие отходы переменного состава как по содержанию серной кислоты, так и органических примесей. Образующийся в результате термического расщепления ЗОгЧюдер-жащий газ характеризуется повьппенным содержанием водяных паров, что существенно влияет на все стадии производства и, в первую очередь, на стадию очистки газов. [c.63]

    В последнее время проф. Л. А. Кульский со своими сотрудниками из Института общей и неорганической химии Академии наук УССР работает в области подготовки адсорбционных материалов. Им удалось при помощи активирования антрацита получить активные материалы, которые по своим свойствам близки к специально изготавливаемым активированным углям. Активирование их производится водяным паром и дымовыми топочными газами. Полученные материалы оправдали себя в производственных условиях, причем, насколько нам известно, они пока еще не были применены для очистки сточных вод, образующихся при термической переработке угля, а были использованы только для очистки фенольных сточных вод комбината по производству анилиновых красок. Был также разработан метод термической регенерации, при котором адсорбированные вещества не возвращаются, а также был сконструирован новый тип адсорбера с непрерывной сменой адсорбционного материала. [c.167]

Рис. 6. Продукты, получаемые на установках АВТ, и пути их использования г / — вторичная перегонка, гидроформинг 2 — пиролиз, производство ароматических углеводородов 3 — депарафиннзация, компаундирование 4 — компаундирование керосина, гидроочистка 5 — депарафиннзация, пиролиз 6 — каталитический крекинг 7. 8, 9, 10 — селективные очистки дистиллятных масел депарафиннзация карбамидом, адсорбционная очистка //—I3 — производство кокса, котельного топлива, сортовых мазутов /4 — переработка газа полученне сырья для нефтехимических производств 15—17 — деасфальтизация, производство кокса, термический крекинг. /—V — компоненты светлых нефтепродуктов (°С) н. к.— 62. 62—85, 85—105, 105—120, 120—140, 140—240, 240—300, 300—350 V/— мазут, >350 V//— газ V///— гудрон, >500 /Х—Х///— вакуумные фракции ("С) 350—400, 400—420, 420—490 (500) >490 (500). Рис. 6. Продукты, получаемые на установках АВТ, и пути их использования г / — <a href="/info/309778">вторичная перегонка</a>, гидроформинг 2 — пиролиз, <a href="/info/404901">производство ароматических углеводородов</a> 3 — депарафиннзация, компаундирование 4 — компаундирование керосина, гидроочистка 5 — депарафиннзация, пиролиз 6 — <a href="/info/25178">каталитический крекинг</a> 7. 8, 9, 10 — <a href="/info/63444">селективные очистки</a> дистиллятных масел депарафиннзация карбамидом, <a href="/info/310106">адсорбционная очистка</a> //—I3 — <a href="/info/652480">производство кокса</a>, <a href="/info/80857">котельного топлива</a>, сортовых мазутов /4 — <a href="/info/1619770">переработка газа полученне</a> сырья для <a href="/info/1469975">нефтехимических производств</a> 15—17 — деасфальтизация, <a href="/info/652480">производство кокса</a>, <a href="/info/66231">термический крекинг</a>. /—V — <a href="/info/1455545">компоненты светлых нефтепродуктов</a> (°С) н. к.— 62. 62—85, 85—105, 105—120, 120—140, 140—240, 240—300, 300—350 V/— мазут, >350 V//— газ V///— гудрон, >500 /Х—Х///— вакуумные фракции ("С) 350—400, 400—420, 420—490 (500) >490 (500).
    Смешанный поток поступает в сепаратор 12 для очистки от коксовой пыли, образующейся в процессе деструктивной переработки сырья в зоне реакции. Отсепарированный поток поступает в систему теплообменников-холодильников 13, а затем в сепаратор 14. Часть жидкого потока возвраш,ается в продуктовый поток, большая же часть направляется в колонну 19. Крекинг-газы подаются на газоразделение в колонны 17 и 18. Природный газ подавляет реакцию коксообразования и повышает турбулизацию потока, что способствует снижению коксообразования в процессе термического крекинга. Метакрекинг позволил повысить октановое число прямогонного бензина с 68—64 до 72—76. [c.217]

    Кроме того, В. С. Гутыря занимался изучением каталитической очистки жидкофазного пресс-дистиллята, гидратации олефинов, термической дегидрогенизации пропана и бутана, а также получением данных для проектирования пефтестабилизационных и газолиновых заводов, технико-экономического анализа перегонки мазутов, подготовки нефтей к переработке, переработки искусственных нефтяных газов бакинских заводов. Несмотря на большое разнообразие изучаемых вопросов в основе всех разработок В. С. Гутыри зало-/кеи единый принцип бережного отношения к нефти как бесценному народному достоянию, универсальному сырью, из которого мояшо получить множество полезных продуктов. [c.8]

    В целях увеличения ресурсов сырья для риформинга можно использовать бензины, полученные при вторичных процессах переработки нефти. Такие бензины нуждаются в очистке, так как содержат довольно много серы (0,3—1,6%), азота (до 0,005%) и непредельных углеводородов (до 60%). Данные [70] о подготовке бензинов прямой перегонки и термического крекинга к каталитиче-скому риформингу приведены в табл. 15. Опыты проводили на установке при повышенном давлении с рециркуляцией газообразных продуктов реакций. При гидроочистке использовали алюмоко-бальтмолибденовый катализатор, а при каталитическом риформинге— алюмоплатиновый. Подобранные условия гидроочистки (380°С, 5 МПа, циркуляция 500 л водородсодержащего газа на [c.120]

    Основная масса бутенов получается на установках термиче ского крекинга, подавляющее количество изобутана — на уста новках каталитического крекинга и каталитической очистки Таким образом, сосредоточение бутанов и бутенов для их даль нейшей переработки требует полной дебутанизации как бензи нов, так и газов всех перечисленных четырех процессов Дебутанизация бензинов каталитических процессов является чэбязательной по условиям технологии и товарных норм, тогда как дебутанизация бензинов термических процессов лишает эти бензины пусковых качеств. Возврат н-бутана, прошедшего неизмененным через установку для алкилирования, поэтому обязателен для получения автомобильного бензина. [c.429]

    ИХ термическую стабильность, фракционный состав перерабатывае-М№с войденсатов необходимо учитывать при выборе температурных параметров Процесса стабилизации. Необходимость последующей очистка и переработки газов стабилизации диктует поддержание оравнительно высоких давлений в этом процессе. [c.33]

    Сырой крекинг-бензин содержит много летучх1х углеводородов (5—7%), которые удаляются путем стабилизации, т. е. ректификации с отделением газов. Газы могут быть направлены на химиче-скз ю переработку, а бензин после охлаждения подвергается очистке. Существует много систем про.мышленного крекинга. Описание их можно найти в курсах технологии нефти. Здесь мы остановимся лишь на главных принципиальных чертах наиболее важных видов термического крекинга. [c.226]


Смотреть страницы где упоминается термин Очистка газов термической переработки от сер: [c.31]    [c.223]    [c.223]    [c.138]    [c.23]    [c.100]    [c.5]    [c.62]    [c.225]    [c.33]    [c.361]   
Химия и технология синтетического жидкого топлива и газа (1986) -- [ c.143 ]




ПОИСК





Смотрите так же термины и статьи:

Очистка термическая



© 2025 chem21.info Реклама на сайте