Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Математическое описание структуры потоков в аппарата

    МАТЕМАТИЧЕСКОЕ ОПИСАНИЕ СТРУКТУРЫ ПОТОКОВ В АППАРАТЕ - ОСНОВА ПОСТРОЕНИЯ МОДЕЛЕЙ [c.57]

    МИКИ двухфазных систем. Дано теоретическое обоснование основной количественной характеристике двухфазной системы — фактору гидродинамического состояния двухфазной системы. Введено математическое описание структуры потоков, возникающих в промышленных аппаратах, как основы построения математических моделей процессов массопередачи. Даны количественные оценки неравномерности распределения элементов потока по времени пребывания в аппаратах, а также расчет параметров математических моделей структуры потоков. [c.4]


    Модели структуры потоков являются основой расчета гидродинамических процессов в аппаратах, выполняющих функции смесителей потоков различных количеств и составов. Для стационарных условий математическое описание смесителя емкостного тина состоит из уравнений материального и теплового балансов  [c.125]

    Для описания гидродинамического режима внутри аппарата широко пользуются различными типами гидродинамических моделей, которые дают приближенные представления о внутренней структуре потоков в аппарате. Математическое описание структуры потоков является основой построения математической модели процесса в целом. [c.57]

    Несмотря на простоту и эффективность рассмотренного выше математического описания структуры потоков для проточных аппаратов и возможных при этом методов моделирования протекающих в нем процессов, существует еще ряд не решенных до конца проблем. Речь идет о поиске математических методов формализованного построения топологических моделей аппаратов конкретной конструкции с учетом особенностей протекающего в нем процесса. Достигнутые в настоящее время успехи позволяют говорить о наличии в нашем распоряжении достаточно универсального метода, позволяющего осуществлять моделирование работы химических агрегатов неидеального перемешивания. [c.660]

    Для описания действительной картины изменения концентраций (или температур) в этих аппаратах необходимо иметь какую-то количественную меру степени перемешивания, т. е. степени отклонения реальной гидродинамической структуры потока от структуры, отвечающей идеальному вытеснению или идеальному смешению. Чтобы найти такую меру, выраженную численными значениями какого-либо одного или нескольких параметров, обычно прибегают к описанию структуры потока при помощи той или иной упрощенной модели, или физической схемы, более или менее точно отражающей действительную физическую картину движения потока. Этой идеализированной физической модели отвечает математическая модель — уравнение или система уравнений, посредством которых расчетом определяется вид функции распределения времени пребывания. Далее сопоставляют реально полученный опытным путем (из кривых отклика) вид функции распределения с результатом расчета на основании выбранной идеальной модели при различных значениях ее параметра (или параметров). В результате сравнения устанавливают, соответствует ли с достаточной степенью точности выбранная модель реальной гидродинамической структуре потока в аппарате данного типа, т. е. адекватна ли модель объекту. Затем находят те численные значения параметров модели, при [c.123]


    В работе [20] предложена и подробно рассмотрена двухконтурная ячеечная модель с переменной структурой химического реактора с мешалкой, которая представляет новый рациональный подход в математическом описании структуры потоков в реальных аппаратах на основе использования свойств стохастических марковских процессов. [c.235]

    Однако наличие сложного, на первый взгляд, математического описания структуры потоков, возникающих в реальных промышленных аппаратах (см. ниже), позволило получить аналитические зависимости эффективности для прямотока и противотока жидкости. И, как следствие, наметить пути оптимального конструирования массообменных аппаратов. [c.186]

    Так же, как и модель с застойными зонами, ячеечная модель с обратным перемешиванием между ячейками пшроко используется нри математическом описании структуры гидродинамических потоков в секционированных аппаратах в пульсационных тарельчатых [24] и роторно-дисковых [25] экстракторах, в аппаратах с нсевдоожиженным слоем [26], в реакторах барботажного типа [27]. Применение данного типа модели оправдано также и для насадочных аппаратов с непрерывно распределенными параметрами. В этом случае колонна рассматривается как последовательность участков с сосредоточенными параметрами, причем каждый из участков эквивалентен ступени идеального смешения. [c.392]

    ИССЛЕДОВАНИЕ И МАТЕМАТИЧЕСКОЕ ОПИСАНИЕ СТРУКТУРЫ ПОТОКОВ В АППАРАТАХ [c.178]

    Расчет процессов ионного обмена в реальных массообменных аппаратах требует математического описания структуры потоков жидкой фазы для аппаратов неподвижного слоя и описания структуры потока для движущегося слоя дисперсного материала, если рассчитывается непрерывнодействующий аппарат с движущимся слоем ионита. [c.253]

    Исходя ИЗ блочного принципа составления математических моделей описание процесса абсорбции должно включать описание фазового равновесия в системе жидкость — газ, кинетику протекания процесса, описание структуры потоков фаз в аппарате. Остановимся далее на каждом из указанных блоков. [c.279]

    Для описания структуры потоков в аппаратах используют ряд математических моделей [58, 59], которые сводятся к двум основным диффузионной и ячеечной. [c.43]

    Основой для составления математических описаний химикотехнологических процессов, как уже отмечалось, являются уравнения, описывающие гидродинамику потоков в аппаратах. Однако уравнения гидродинамики реальных потоков часто имеют очень сложный вид и поэтому не решены в общем виде или вообще отсутствуют, как, например, математическое описание двухфазных потоков. Вследствие этого при разработке математических описаний процессов используют приближенные представления о внутренней структуре потоков — моделях потоков. Применение указанных моделей позволяет получать математические описания процессов, которые при относительной простоте структуры удовлетворяют необходимой для инженерных расчетов точности. [c.25]

    Каждый из этих элементов (подсистем) характеризуется сложной иерархической структурой связей, к которой также применим системный подход. Так, клетка как сложная система может быть представлена многосвязной метаболической схемой, соответствующей внутриклеточным процессам. Биореактор с позиций системного анализа представляет многоуровневую систему, состоящую из гидродинамических, тепло-массообменных и биохимических процессов, осуществляемых в определенном конструктивном оформлении. БТС в целом включает технологические процессы и аппараты, связанные материальными и энергетическими потоками, и обеспечивает производство целевого продукта микробиологического синтеза. Рассмотрим качественные характеристики данных подсистем, что позволит оценить их сложность как больших систем и целесообразный уровень детализации при разработке формализованных методов математического описания БТС. [c.7]

    Для описания действительной картины изменения концентраций (или температур) в этих аппаратах необходимо иметь какую-то количественную меру степени перемешивания, т. е. степени отклонения реальной гидродинамической структуры потока от структуры, отвечающей идеальному вытеснению или идеальному смешению. Чтобы найти такую меру, выраженную численными значениями какого-либо одного или нескольких параметров, обычно прибегают к описанию структуры потока при помощи той или иной упрощенной модели или физической схемы, более или менее точно отражающей действительную физическую картину движения потока. Этой идеализированной физической модели отвечает математическая модель — уравнение или система уравнений, посредством которых расчетом определяется вид функции распределения времени пребывания. Далее сопоставляют реально полученный опытным путем (из кривых отклика) вид функции распределения с результатом расчета на основании выбранной идеальной модели при различных значениях ее параметра (или параметров). В результате сравнения устанавливают, соответствует ли с достаточной степенью точности выбранная модель реальной гидродинамической структуре потока в аппарате данного типа, т. е. адекватна ли модель объекту. Затем находят те численные значения параметров модели, при которых совпадение опытной и расчетной функций распределения наилучшее. Указанные значения в дальнейшем применяют при расчете процесса в конкретном аппарате. Обобщая эти данные, получают уравнения для расчета значений параметров модели при разных гидродинамических условиях работы и размерах аппаратов данного типа. [c.127]


    Указанные обстоятельства обусловливают третий подход к синтезу операторов ФХС, основанный на модельных представлениях о внутренней структуре процессов, происходящих в технологических аппаратах. Основу этого подхода составляет набор идеальных типовых операторов, отражающих простейшие физико-хими-ческие явления (модель идеального смешения, модель идеального вытеснения, диффузионная модель, ячеечная модель, комбинированные модели и т. п.). Математическое описание технологического процесса сводится к подбору такой комбинации простейших операторов, чтобы результирующая модель достаточно точно отражала структуру реального процесса [1 ]. Такой подход позволяет сравнительно просто учесть влияние важнейших гидродинамических факторов в системе на макроуровне (зон неидеальности смешения, циркуляционных токов, байпасных потоков и других гидродинамических неоднородностей в аппарате), а также стохастических свойств ФХС (распределения элементов потока по времени пребывания в аппарате, коалесценции и дробления частиц дисперсной фазы, распределения частиц по размерам, вязкости, плотности, поверхностному натяжению и т. д.). [c.14]

    В последние годы интенсивно исследуются процессы каталитического крекинга в восходящем потоке катализатора, создаваемом параллельным скоростным потоком углеводородов. Гидродинамика восходящего потока изучена недостаточно. Сообщается [53]. что этот поток, как и поток в транспортной линии реактора с кипящим слоем, характеризуется идеальным вытеснением. В этом случае структурой математического описания (табл. Х-1) можно пользоваться и для восходящего потока. Однако в условиях высоких и близких линейных скоростей потоков катализатора и сырья определение вида ю требует анализа внешнедиффузионных эффектов (см. главу IX). Второе существенное обстоятельство, которое нужно учитывать для рассматриваемых типов аппаратов, — это блокирование поверхности микрозерен катализатора коксом (см. стр. 348). [c.373]

    Массообменные процессы. Эта группа процессов отличается значительной сложностью по сравнению с предыдущими и соответственно большим числом моделей для их расчета. Массообменный процесс в большинстве случаев (ректификация, экстракция, абсорбция, кристаллизация) является системой, включающей как необходимые другие аппараты (например, теплообменники, конденсаторы, декантаторы и т. п.). Поэтому и математические модели как для описания, так и для алгоритмизации являются более сложными. Рассмотренные ранее модели структуры потоков и теплообмена могут использоваться при описании массообменных процессов на ступени разделения (тарельчатые колонны) и в слое насадки (насадочные колонны). При описании массообменного процесса уравнения гидродинамической структуры потоков фаз (см. табл. 4.4) должны быть дополнены членом, учитывающим массоперенос компонента через поверхность раздела фаз, например, в матричном выражении  [c.129]

    Эти модели можно выбирать для математического описания процесса в реальных теплообменных аппаратах, если структура потоков теплоносителей в них приближается к структуре идеального перемешивания либо идеального вытеснения . Например, для двухтрубных, элементных, кожухотрубчатых, спиральных и пластинчатых теплообменников применима модель вытеснение — вытеснение , для погружных теплообменников — модель перемешивание — вытеснение и т. п. [c.189]

    Качественный анализ структуры ФХС. Основу структурного анализа ФХС составляет обобщенная система гидромеханических уравнений с учетом физико-химических процессов, протекающих в технологическом аппарате. Замкнутая система уравнений термогидродинамики многокомпонентной неидеальной двухфазной смеси, в которой протекают химические реакции, осложненные процессами тепло- и массопереноса, сформулирована в работе [6 ] и подробно рассмотрена в 1.2—1.4 настоящей монографии. Эта система уравнений, во-первых, может служить исходным пунктом при переходе к математическому описанию частной инженерной задачи во-вторых, она вскрывает структуру движущих сил и потоков, развивающихся в локальном объеме аппарата и отражающих специфику физико-химических процессов в нем. [c.10]

    Таким образом, передаточная функция динамической системы или ее дифференциальное уравнение могут быть определены с заданной точностью, если известно достаточное число моментов весовой функции. И, наоборот, если известна передаточная функция, то, раскладывая ее в ряд, можно определить моменты весовой функции системы. Это обстоятельство важно при математическом описании гидродинамической структуры потоков в аппаратах, когда поведение потока с точки зрения времени пребывания его элементов в аппарате отождествляется с поведением некоторой динамической системы так, что функция распределения времени пребывания потока рассматривается как весовая функция этой динамической системы [8] Е (1) = К (1)=С ( ). [c.217]

    Перейдем к описанию особенностей использования метода моментов при определении коэффициентов математических моделей структуры потоков. Заметим, что применение метода моментов для определения коэффициентов математической модели структуры потоков не зависит от того, является ли аппарат открытым или закрытым . Следует однако учитывать, что для закрытого аппарата моменты функции отклика 0вых( ) характеризуют моменты распределения времени пребывания частиц в аппарате — среднее время пребывания и дисперсию, а для открытого аппарата моменты выходных кривых — формально введенные величины. [c.285]

    Комбинированная структура (диффузионная модель с распределенной застойной зоной). Широкое распространение при математическом описании потоков в проточных аппаратах получила схема (см. 7.1) [c.254]

    Использование рассмотренного выше математического описания при проектировании снимает проблему масштабного перехода, поскольку кинетическая модель процесса ректификации (на первом уровне иерархии) инвариантна относительно размера аппарата, а изменение эффективности контактного устройства обусловлено изменением гидродинамической обстановки на контактном устройстве, что количественно описывается уравнениями деформации параметров комбинированной модели структуры потока жидкости. [c.148]

    Многие процессы химической технологии характеризуются сложностью и недостаточной изученностью гидродинамических и физико-химических явлений, сопровождающих процесс. В таких случаях говорят, что процессы плохо обусловлены для математического описания. При этом технологические расчеты базируются на приближенных модельных представлениях о внутренней структуре гидродинамической и физико-химической обстановки в промышленном аппарате (используются модели структуры потоков, модели химической и диффузионной кинетики, модели термодинамического равновесия и т. п.). Модельные принципы описания ФХС приводят к необходимости вместо энергетических диаграмм строить так называемые модельные диаграммы, являющиеся топологическим (диаграммным) представлением описаний сложных физико-химических процессов, протекающих в технологической аппаратуре. Характерным примером последних могут служить модели структуры потоков в аппаратах совместно с механизмами источников и стоков субстанций. [c.23]

    Исходя из блочного представления математической модели элемента технологической схемы, описание явлений, характеризующих перенос и распределение субстанции по координатам и по времени и базирующихся на фундаментальных законах гидромеханики многокомпонентных многофазных систем, составляет основу будущей модели. Учет реального распределения температур, концентраций компонентов и связанных с ними свойств, например плотности, вязкости и т. д., по пространственным координатам аппарата и во времени позволяет оценивать степень достижения равновесности тепломассопереноса, химического превращения, т. е. эффективность конкретного аппарата. Описание гидродинамической структуры потоков основано на модельных представлениях о гидродинамической обстановке в аппарате, использующих ряд идеализированных типовых моделей. Аппарат такого представления достаточно развит для однофазных потоков, разработаны и методы идентификации параметров отдельных моделей применительно к реальным условиям протекания процесса. Математическое описание типовых моделей структуры потоков приведено в табл. 2.1. [c.84]

    Гидродинамическая структура в аппарате (по каждому из потоков) создается его конфигурацией (наличием перегородок и их расстановкой, диаметром аппарата, числом труб и числом ходов), скоростью течения потоков. Поэтому модели структуры обменивающихся потоков могут различаться (например, для теплообменников типа смещение - смещение, смещение - вытеснение и т. п.). Коэффициенты теплоотдачи обычно рассчитывают по критериальным соотношениям для различных режимов течения потоков тепло- и хладагента. При сложной конфигурации аппарата обычно представляют его в виде ряда зон различной структуры (или с комбинированной моделью потоков), а общая поверхность определяется как сумма поверхностей отдельных зон. Математическое описание типовых моделей теплообменников для стационарных условий приведено в табл. [c.92]

    Итак, технологический расчет аппарата заключается в разработке соответствующего математического описания, выборе метода рещения системы уравнений этого описания, определении необходимых параметров, установлении адекватности модели реальному объекту, т. е. в разработке математической модели объекта. Независимо от функционального назначения элемента схемы математическая модель должна строиться по модульному принципу, причем таким образом, чтобы можно было иметь возможность при необходимости достаточно легко внести нужные изменения (дополнения или расширения функций) в модель без ее значительной переработки. Основная функция модели состоит в сведении материального и теплового балансов -получении выходных данных потока по входным данным. В зависимости от назначения математического описания отдельных явлений процесса (фазовое и химическое равновесие, кинетика массопередачи, гидродинамика потоков и т. д.) общее математическое описание может существенно различаться. Важно при создании модели не нарушать общей ее структуры, т. е. иметь возможность использования единых алгоритмов решения. [c.101]

    Поведение потоков в рея 1ьнь.х аппаратах настолько сложно, что в настоящее время дать строгое математическое описание их в большинстве случаев не представляется возможным. В то же время известно, что структура потоков оказывает существенное ыияние на эффек1Ивность химикотехнологических процессов, поэтому ее необходимо учитывать при моде лировании процессов. При этом математические модели структуры потоков являются основой, на которой строится математическое описание химико-технологического процесса. Как уже отмечалось, точное описание [c.57]

    На рис. П-19 показана схема потоков в аппарате, определяющая структуру математического описания. "Ректификационная колонна представляет собой совокупность трех аппаратов собственно колонны, содержащей N тарелок куба, в котором происходит испарение части жидкости за счет подвода тепла конденсатора, где поднимающиеся по колонне пары конденсируются конденсат [c.70]

    На основании конкретного представления об условиях осуществления процесса различают следующие типовые математические модели по структуре потоков в аппаратах модель идеального смешения модель идеального вытеснения однопараметрическая ди№гзионная модель явухпараметьическая диф-й)узионная модель ячеечная модель комбинированные молели. Математические описания перечисленных моделей будут рассмотрены в последующих разделах учебного пособия. [c.11]

    Как было показано выше, расчет массоотдачи в однокомпоиент-пых подвижных средах заключается в совместном решении уравнений переноса массы и количества движения. По аналогии с этим современный метод описания процессов массообмена в двухфазных системах с подвижной границей раздела фаз заключается в решении уравнений переноса вещества совместно с рассмотренными в гл. И уравнениями математических моделей структур потоков (из числа последних наиболее распространены диффузионная и ячеечная модели). В диффузионной модели перенос вещества рассматривается как результат массообмена, переноса за счет массового движения потока и обратного перемешивания ( диффузии ), обусловленного крупномасштабными турбулентными пульсациями и неоднородностью потока. Уравнение материального баланса составляется для бесконечно малого объема аппарата. Это уравнение формулирует тот факт, что убыль количества произвольного компонента в одной фазе равна увеличению его количества в другой фазе. Для случая массообмена при противотоке фаз уравнение материального баланса имеет вид  [c.580]

    Данный тип модели здянмает промежуточное положение между ячеечной и диффузионной моделями, сохраняя основные преимущества обеих квантованную структуру ячеечной модели и у чет величины обратного заброса, специфичный для диффузионной модели. Вместе с тем, являясь моделью с сосредоточенными параметрами, модель с обратными потоками в сравнении с диффузионной лучше поддается алгоритмизации рас четов на ЦВМ, что является немаловажным фактором, учитывая сложность обеих моделей. Кроме того-, указанная модель в большей мере соответствует структуре потоков в секцио НИ-рованных аппаратах, как, цапример, в роторно-дисковом, тарельчатом пульсационном, центробежном, каскаде смесителей-отстойников при наличии не абсолютно полной сепарации фаз в отстойных камерах и т. д. Ячеечная модель с обратными потоками нашла широкое распространение при математическом описании секционированных экстракционных аппаратов (РДЭ и тарельчатых пульсационных) [3—6]. [c.101]

    В /чебном пособии рассмотрены основные понятия и определения, принятые в моделировании химико-технологических процессов на ЭВМ. Приведены методы построения математических моделей. Рассмотрены типовые модели структуры потоков в аппаратах и математические описания некоторых химических, тепло-обменных и массообменных процессов. [c.2]

    П.т рнс. П-19 показана схема потоков в аппарате, определяющая структуру математического описания. Ректификационная колонна представляет собо11 совокупность [c.66]

    Биохимические процессы в основе осуществляют превращение Одной субстанции в другую с помощью живых клеток, однако более рационально и экономично, чем химическое превращение. И в основе их описания широко используется математический аппарат описания многофазных химических реакторов. Ферментационная среда представляет собой многофазную систему, содержащую пузырьки газа (аэрирующий газ — источник кислорода), питательную жидкость и квазитвердую фазу (клетки — продуценты биомассы). Гидродинамика такой системы чрезвычайно сложна, поэтому чаще всего анализ структуры потоков сводится к псевдогомоген-ной системе (водная фаза — клетки). Но даже и в общем случае модели структуры потоков и массопереноса, полученные для процессов химического превращения, с учетом характерных особенностей могут быть использованы при исследовании биохимических реакторов [1, 50, 511. [c.141]

    Исходя из специфики режима фонтанирования тонких дисперсий, можно заключить, что основной вклад в гидродинамическую структуру потоков в аппаратах с фонтанируюш,им слоем вносит газовая фаза. Это накладывает свои особенности на стратегию формирования математического описания физико-химических нроцессов в аппаратах фонтанирующего слоя. Основные этапы этой стратегии сформулируем на примере построения математической модели фонтанирующего слоя в специальных аппаратах с плоскими камерами, снабженными наклонными перегородками (см. рис. 3.7). Аппараты такой конструкции находят широкое применение, например, для сушки термонеустойчивых порошкообразных препаратов в фармацевтической промышленности [63]. Эффективность протекающих в них процессов тепло- и массообмена в значительной мере определяется аэродинамикой фонтанирующего слоя. [c.173]

    Решение задачи идентификации модели нелинейного химико-технологического процесса [10]. Построение адекватной модели технологического процесса предполагает адекватное отражение гидродинамической структуры потоков в аппарате и адек-кватное описание кинетики процесса. В настоящее время решение первой задачи сводится в основном к обработке кривых отклика системы на типовое (импульсное, ступенчатое, гармоническое) или произвольное (детерминированное, случайное) возмущение по концентрации индикатора в потоке с использованием методов теории линейных систем автоматического регулирования. Эти методы, подробно рассмотренные выше, ограничиваются линейным случаем и не пригодны для решения нелинейных задач. Решение задачи идентификации линейных кинетических уравнений не представляет математических трудностей и ограничивается в основном использованием аппарата линейной алгебры. [c.461]

    Математическое описание процесса существенно усложняется, однако за счет этого удается получить необходимую точность воспроизведения свойств объекта моделирования. При построен комбинированных моделей аппарат представляют состоящим Щ Отдельных зон, в которых наблюдается различная структура потоков. При этом используются комбинации всех либо неско (ы1их из [c.225]

    Согласно рассмотренной иерархической схеме процессов в БТС гидродинамическая составляющая модели является основой в структуре математического описания процесса в целом. Действительно, законы движения физических потоков в технологических аппаратах или гидродинамическая структура потоков в них определяют эффективность проведения процессов химической, физической и биохимической природы. Как отмечалось выше, происходящие в технологических элементах БТС процессы являются по своей природе в основном детерминированно-стохастическими. При этом детерминированная составляющая определяется фундаментальными законами переноса массы и энергии и позволяет теоретически строго определить скорость протекания, глубину превращений и время завершения процесса. Однако наличие стохастической составляющей, характеризующей статистическое распределение частиц потока массы и энергии в объеме аппарата [c.65]


Смотреть страницы где упоминается термин Математическое описание структуры потоков в аппарата: [c.126]    [c.97]    [c.66]   
Теоретические основы типовых процессов химической технологии (1977) -- [ c.178 ]




ПОИСК





Смотрите так же термины и статьи:

Аппараты потоков

Аппараты структура потоков

Математическое описание

Описание аппаратов

Структура потоков



© 2025 chem21.info Реклама на сайте