Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Высокоэластичность и молекулярная масса

    Степень высокоэластичности регулируют изменением температуры, молекулярной массы дисперсной фазы, введением различны добавок. Обычно в высокоэластическом состоянии из НДС формируют углеродные волокна, различные гранулы и др. В твердом состоянии НДС в зависимости от порядка и плотности упаковки частиц мол<ет иметь стеклообразную или кристаллическую структуру. [c.18]


    Отсюда следует, что среднеквадратичное расстояние между концами цепи (й ) = пропорционально корню квадратному из числа звеньев (степени полимеризации) или из молекулярной массы цепи. Из проведенного приближенного анализа уже ясно, что реальная цепочка в геометрическом плане эквивалентна линейной системе, состоящей из независимых элементов — статистических сегментов [10, с. 23 24, т. 2, с. 100—133]. Эта модель свободносочлененных сегментов (рис. 1У.4), несмотря на ее простоту, привела к полному - описанию основных черт высокоэластичности полимеров в блочном состоянии. [c.128]

    Из рис. 10.9 видно также, что с ростом молекулярной массы непрерывно ухудшается способность полимеров к необратимым деформациям. Это отражается в росте температуры текучести с ростом молекулярной массы. Рис. 10,9 показывает улучшение эксплуатационных характеристик полимеров вообще (эластомеров и пластмасс) с ростом молекулярной массы растут температурные интервалы высокоэластичности (Тт—Гс) н вынужденной эластичности (Гс Тхр). [c.154]

    Высокая молекулярная масса и гибкость макромолекул— важные характеристики, с которыми связаны особенности физико-химических свойств полимеров. Особенности полимеров выражаются в следующем 1) могут пребывать в характерном только для них высокоэластичном состоянии, обусловленном гибкостью их длинных молекул 2) способны набухать в жидкостях 3) растворы полимеров обнаруживают ряд аномалий по сравнению с растворами низкомолекулярных веществ 4) могут образовывать волокна, пленки, отличающиеся высокой анизотропией свойств 5) способны к своеобразным химическим превращениям. [c.469]

    Равновесный модуль сдвига согласно кинетической тео])ии высокоэластичности связан с молекулярной массой ЛЬ полимера и молекулярной массой между узлами сетки Мс соотношением [c.298]

    Для Б К начальный модуль высокоэластичности растворов не зависит от растворителя и молекулярной массы полимера, слабо зависит от температуры и очень сильно зависит от концентрации полимера и его ММР. В соответствии с уравнением Виноградова [3, с. 124  [c.259]

    Стирол очищают от ингибитора (см. опыт 3-01) и перегоняют в токе азота в специальный приемник (см. раздел 2.1.2). Бутадиен конденсируют из баллона в охлаждаемую ловушку, заполненную азотом, и помещают в смесь сухого льда с метанолом. Полимеризацию проводят в специальном сосуде емкостью 500 мл, испытанном на давление 25 атм. Сосуд заполняют азотом, затем в него наливают раствор 5 г олеата натрия (или лаурилсульфата натрия) в 200 мл кипяченой воды, 0,5 г додецилмеркаптана (используемого в качестве регулятора молекулярной массы) и 0,25 г (0,93 ммоля) персульфата калия. Содержимое перемешивают встряхиванием сосуда до полного растворения всех компонентов. Доводят pH раствора до 10—10,5 добавлением разбавленного раствора ЫаОН. В сосуд под азотом заливают 30 г (0,29 моля) стирола и 70 г (1,30 моля) бутадиена и плотно закрывают. Бутадиен переливают в полимеризационный сосуд следующим образом. Сосуд, погруженный в охлаждающую баню со смесью сухого льда с метанолом, ставят на весы (под тягой) и из ловушки быстро наливают бутадиен. Избыток бутадиена испаряют. Закрытый сосуд помещают за экран и нагревают до комнатной температуры. Сосуд заворачивают в ткань и интенсивно встряхивают для получения эмульсии. Полимеризацию проводят при 50 °С. Для этого сосуд ставят на термостатируемую переворачивающую качалку, а если ее нет, то его интенсивно встряхивают примерно через каждый час. Продолжительность реакции 15 ч (обязательно использовать защитный экран). Затем сосуд охлаждают вначале до комнатной температуры, а затем до О °С (в ледяной воде). Сосуд повторно взвешивают для проверки утечки бутадиена. Полученный латекс под тягой медленно выливают при перемешивании в 500 мл этилового спирта, содержащего 2 г Ы-фенил-р-нафтиламина для стабилизации полученного сополимера против окисления. Непрореагировавший бутадиен испаряется сополимер выпадает в виде слабо слипающихся хлопьев. Осадок фильтруют и сушат в вакуумном сушильном шкафу при 50—70 °С в течение 1—2 сут. Состав сополимера можно определить аналитически по содержанию двойных связей либо спектроскопически по содержанию стирола (см. раздел 2.3.9) конфигурацию звеньев бутадиена в цепи сополимера определяют по ИК-спектрам (см. опыт 3-30). Сополимер можно превратить в нерастворимый высокоэластичный продукт вулканизацией (см. опыт 5-10). [c.179]


    Вместе с тем пачечная модель встретилась с рядом трудностей, связанных с объяснением явлений высоко-эластичности и вязкого течения полимеров. Так, например, известно, что статистические теории равновесной высокоэластичности и вязкого течения полимеров, основанные на модели индивидуальных статистических клубков со случайными зацеплениями, довольно хорошо согласуются с экспериментом, хотя в них учтены только молекулярные характеристики отдельной цепи или ее фрагментов. В соответствии с этими теориями равновесная упругая сила определяется при данной температуре величиной относительной деформации статистического клубка между зацеплениями (сшивками), а макроскопическая деформация однозначно связана со степенью растяжения гауссовой цепи. Протяженность плато высокоэластичности по температуре при данной величине деформирующей нагрузки точно так же, как и вязкость расплава для линейных полимеров, однозначно связана с молекулярной массой. Энергия активации вязкого течения во многих случаях соответствует диффузии отдельных сегментов в расплаве. В рамках исходной пачечной модели, которая, по существу, предполагает, что деформационные свойства полимера определяются кооперативным поведением ассоциата, а вклад теплового движения отдельных макромолекул и ее сегментов игнорируется, преодолеть указанные противоречия весьма затруднительно. [c.44]

    При изучении многими методами микроструктуры смешанных в расплаве термодинамически несовместимых полимеров ПЭ и ПС различных молекулярных масс при всевозможных соотношениях компонентов было установлено [428], что степень дисперсности частиц в двухфазной системе определяется не химической природой дисперсной фазы, а различием в реологических свойствах и в составе фаз. Чем больше различие в вязкости и высокоэластичности компонентов, тем сильнее влияние состава смеси на ее дисперсность. Основные закономерности формирования структуры в смеси расплавов сводятся к следующему если вязкость и высокоэластичность компонента, количество которого недостаточно, значительно больше, чем основного компонента, то образуется грубодисперсная композиция если, наоборот, меньший компонент хорошо распределяется в системе. Если вязкости компонентов близки, то образуется высокодисперсная смесь независимо от того, какой компонент является дисперсной фазой, какой — дисперсионной средой. Образование взаимопроникающей двухфазной структуры возможно только в том случае, когда соотношения между вязкостью и высоко- [c.214]

    Более точные расчеты показывают, что величина М в формуле (3.7) представляет собой верхний предел некоего интеграла. Один из создателей кинетической теории высокоэластичности — Марк считал, например, что М характеризует молекулярную массу подвижной части полимерных молекул, подчеркивая тем самым, что М в формуле (3.7) не совпадает с молекулярной массой полимера, определяемой обычными методами. [c.78]

    Важной характеристикой пространственной сетки зацеплений является параметр Мс — молекулярная масса среднего участка цепи, заключенного между соседними узлами сетки зацеплений. Представление о существовании пространственной сетки зацеплений в линейных аморфных полимерах распространено достаточно широко 17—20]. Сведения о параметре М , для ряда полимеров приведены в обзоре Портера и Джонсона [20]. Рассмотренные варианты кинетической теории высокоэластичности хорошо согласуются с экспериментальными данными лишь в области малых деформаций. При больших деформациях наблюдается существенное расхождение. Это расхождение связано с исходными положениями и допущениями кинетической теории. Действительно, в этой теории не учитывается вклад изменения внутренней энергии в величину упругой силы, что противоречит ряду экспериментальных фактов, имеющих место при больщих деформациях. Использование гауссовского распределения также должно приводить к расхождению с экспериментом в области больших деформаций. Особенностью (а может быть и недостатком) кинетической теории высокоэластичности является то, что в ней практически не учитывается межмолекулярное взаимодействие, которое в высокоэластическом состоянии хотя и невелико, но все-таки существует. Тем не менее кинетическая теория высокоэластичности добилась большого успеха в описании и объяснении ряда физических (в том числе и механических) свойств полимеров, в установлении связи между пространственной структурой и физическими свойствами каучукоподобных полимеров. Эта теория является одной из наиболее хорошо разработанных областей физики полимеров. [c.89]

    Влияние молекулярной массы на высокоэластичность полимеров [c.7]

    Существование плато высокоэластичности на частотной зависимости д (а>) является характернейшей особенностью Механических свойств резин, обусловленной присутствием трехмерной сетки химических связей. При этом значение модуля на плато р связано со строением структурной сетки и выражается через величину молекулярной массы отрезка цепи между соседними поперечными связями Мс следующим образом  [c.273]


    Протяженность плато высокоэластичности по частотной оси А О) зависит от молекулярной массы. Этот важный экспериментальный результат может быть представлен в обобщенной форме, если в качестве меры длины молекулярной цепи различных полимеров использовать число динамических сегментов. Обработка экспериментальных данных, полученных при исследовании динамических свойств ряда полимеров в блоке, позволила построить общую зависимость протяженности плато высокоэластичности Д lg м от числа динамических сегментов (рис. 3.20). Эта зависимость описывается формулой [c.275]

    Величина углового коэффициента а несколько зависит от способа оценки границ плато высокоэластичности, поскольку переход к нему и со стороны низких частот, и в высокочастотной области совершается довольно плавно, но, во всяком случае, а близко к показателю степени 3,4 в зависимости вязкости от молекулярной массы (см. гл. 2). Это обусловлено тем, что высокочастотная граница плато высокоэластичности не зависит от молекулярной массы цепи, ибо она определяется сегментальной релаксацией, а низкочастотная граница плато, как и вся область медленных релаксационных процессов, смещается по частотной оси пропорционально вязкости полимера. [c.275]

    Исходя из сказанного выше, форма релаксационных спектров, отвечающая области медленных релаксационных явлений (до выхода на плато зависимости ( (со) и достижения максимума зависимости ( " (со)), нечувствительна к длине полимерной цепи и концентрации раствора. Одинакова должна быть и форма спектра, ответственная за комплекс релаксационных явлений в области плато высокоэластичности и минимума потерь, если только сравниваются полимеры с одинаковым числом динамических сегментов в цепи. Последнее положение иллюстрируется рис. 3.22, на котором построены частотные зависимости тангенса угла механических потерь для двух различных полимеров — полибутадиена и полистирола, но молекулярные массы сравниваемых образцов подобраны так, чтобы приведенная длина цепи была примерно одной и той же. Нормировка по частотной оси осуществлялась таким выбором характерного времени релаксации 0 о, чтобы совпадали положения минимумов. Как видно из рис. 3.22, это обеспечивает практическую идентичность частотных зависимостей tg б для различных полимеров. [c.277]

    Отсюда видно, что в области медленных релаксационных процессов теория предсказывает очень сильную зависимость времен релаксации от молекулярной массы (так как г) — М , то для малых значений р величина 0р — M ). Так же, как и в теории,высокоэластичности резин, рассматриваемая модель приводит к выводу о том, что модуль высокоэластичности, выражаемый как отношение вязкости к максимальному времени релаксации, должен быть обратно пропорционален молекулярной массе. Протяженность плато высокоэластичности в релаксационном спектре должна зависеть от молекулярной массы как (М Мс) , ибо она определяется фактором I, который разделяет область быстрых и медленных релаксационных процессов. [c.280]

    Отсутствие хорошего количественного согласия изложенной теории с экспериментом связано с недостаточной точностью описания релаксационных свойств отдельной цепи моделью КСР. Неудовлетворительным в теории является также предсказание полного отсутствия релаксационных процессов в области значений времен от бг М/Р л РерНТ) до (бцМЫ РерНТ), причем для высокомолекулярных образцов, где I велико, эта область оказывается весьма широкой. Неверен также вывод относительно обратной пропорциональности модуля высокоэластичности молекулярной массе полимера. [c.281]

    С увеличением, а также с повышением сегментальной подвижности макромолекул высокоэластичность системы возрастает. Вследствие этого наличие высокомолекулярных фракций в полимере при увеличении т и у приводит к заметному проявлению эффектов, обусловленных большими (более 100%) высокоэластическими деформациями, т.е. эффектов Барруса и Вайссенберга. По мере повышения т и у высокоэластичность проявляется у фракций с меньшей молекулярной массой. Связь [c.201]

    Определяющей характеристикой сетчатой структуры полимера является молекулярная масса, или размер участка цепи между двумя сшитыми звеньями (узлам1и). От размера этих участков зависит проявление свойств индивидуальных макромолекул в сетчатой структуре полимера. Если эти участки значительно больше размеров сегмента макромолекулы, то сетчатый полимер сохранит, в принципе, основные свойства, присущие исходному полимеру (например, высокоэластичность. химическая реакционноспособность). Такой сетчатый полимер будет ограниченно набухать в характерных для исходного полимера растворителях. Если же размер участка цепи между сшитыми звеньями (узлами) близок к размеру сегмента или меньше его, то свойства исходного полимера существенно изменяются резко падает гибкость цепи, а, следовательно, уменьшаются высокоэластические свойства, снижается или теряется совсем способность к набуханию в растворителях данного полимера. [c.296]

    В десятой главе на основе представления сетчатого полимера в виде упругой и поворотно-изомерной подсистем и с учетом его строения в виде линей-ньЕ< фра гментов и узлов получены формулы для расчета равновесного модуля высокоэластичности и молекулярной массы межузлового фрагмента полимера. Последующий анализ полученных зависимостей позволил сформулировать условия получения полимеров с необычными свойствами - разномодульных и градиентных, имеющих широкий диапазон изменения равновесного моду ля высокоэластичности при низкой температуре стеклования. Наличие [c.16]

    В области эти. тсмпсрат>ф деформация образца мала и лишь незначительно увеличивается по мере роста температуры. При достижении определенной для каждого полимера температуры де( ормация начинает быстро возрастать. Если нагрузка мала, возрастание деформации проис.кодит не беспредельно, а довольно быстро заканчивается. На графике образуется плато, получившее название площадки высокоэластичности . Протяженность этой площадки по оси темперэту ры может быть достаточно велика и, как будет видно дальше, она зависит от молекулярной массы полимера. При дальнейшем нафевании деформация вновь резко начинает возрастать и образец полимера растекается. [c.87]

    Для оцен1си равновесного модуля высокоэластичности и молекулярной массы межузлового фрагмента Л/ в случае сетчатых эластомеров с достаточно редкими сшивками пользуются известным уравнением классической теории высокоэластичности. [c.270]

    Термомсханичсска кривая также очень чувствительна ) изменению молекулярной массы полимера и конфигураци макромолекул, С уменьшением молекулярной массы плат( высокоэластичности уменьшается, при определенном ее значе НИИ (М,I,) исчезает (см рис 4.1, б) и поведение материал  [c.230]

    Высокоэластичность является причиной механической деструкции макромолекул прн течении. При высокоэластической деформации происходят локальные разрывы связей, что приводит к уменьшению молекулярной массы, увеличению разпетв-ленности и, следовательно, к росту аномалии вязкости. [c.313]

    Скорость (и продолжительность) дозирования ЛВ зависит от структуры используемого полимерного элемента от макроуровня (пористая или непористая мембрана или матрица) через такие структуры промежуточных уровней, как неоднородности сшитых полимерных структур (трехмерные нерастворимые мембраны и матрицы) и распределения кристаллических и аморфных областей (кристаллизующиеся мембраны и матрицы), до неоднородностей молекулярного уровня (изменение состава, молекулярной массы и микроблочности сополимеров). Наибольшие скорости дозирования (от 10 до 500 мкг/ч) обеспечивают только микропористые мембраны и матрицы [26] однако это приводит к быстрому исчерпанию ЛВ, заключенного в TT , и время работы TT с микропористыми дозирующими элементами не превышает суток [27]. Более низкие скорости дозирования (не выше десятков микрограммов в сутки) достигаются при использовании непористых мембран и матриц, полимерный материал которых находится в стеклообразном состоянии [28]. При переходе в высокоэластичное состояние проницаемость увеличтгеается в сотни и тысячи раз [26, 28]. Такое увеличение может быть достигнуто не только повышением температуры дозирующего элемента (например, при воспалительном процессе), но и при изменении состава сополимера (СПЛ) - материала мембраны (например, для этилена с винилацетатом (Э-ВА) при увеличении содержания В А в СПЛ). Хотя и не столь сильно, как изменение состава СПЛ, на проницаемость полимерных материалов влияют и такие структурные и морфологические изменения полимера, как молекулярная масса, кристалличность и структура кристаллических областей, природа и количество других, помимо ЛВ, низкомолекулярных включений [29, 30]. [c.763]

    Высокомолекулярные водорастворимые полимеры с молекулярной массой порядка 10 —10 (полиокс — США алкокс — Японий), из которых получают высокоэластичные нити и пленки, защитные оболочки при микрокапсулировании (с. 77). Низкая токсичность этих полимеров обеспечила им широкое применение в качестве добавок (загустителей) в косметике, медицине и пищевой промышленности (при изготовлении мазей, таблеток и т. д.). Большой интерес представляет способность полиокса в незначительных концентрациях (0,001—0,003%) снижать гидродинамическое сопротивление при перекачивании растворов, пульп и других жидкостей по трубопроводам. [c.317]

    Э.<спериментально найдена прямолинейная зависимость между и УИ , причем для многих полимеров сравнительно небольшой степени полимеризации а=1. При увеличении молекулярной массы и достижении некоторою критического значения ее (критическая молекулярная масса, УИ р), ко(да возникает флуктуационная сетка с очень большим временем жизни , а возрастает до 3,4—3,5 С появлением этой сетки связаны все аномалии вязкости и образование плато высокоэластичности на термомеханических кривых Величина УИ р определяет длину отрезков между узлами сегки, как правило, превосходящих по размерам кинетический сегмент и содержащих в зависимости от природы полимера от десятков до сотен атомов в основной цепи, например, для полиизобутилена и полистирола УИ р равна соответственно 18 000 и 40 000 [c.405]

    Мехаяодеструкция происходит при самых разнообразных воздействиях на полимеры вальцевании, дроблении, экструзии, измельчении, обтачивании, сверлении, шлифовании, полировании, одно- и много кратных деформациях и т. д. Известно, что относительно небольшие многократные деформации даже высокоэластичных полимеров, в которых сравнительно благоприятны условия для выравнивания напряжений, вызывают интенсивный процесс механодеструкции с резким снижением молекулярной массы. Так, молекулярная масса полиизобутилена при циклическом сжатии всего на 33% через 7,2 млн. циклов понижается с 7-10 до 1,6-10 , т. е. более чем в 4 раза [141]. [c.51]

    Согласно теориям, изложенным в разделе 1 настоящей главы, эта функция равна М , однако при рассмотрении полимеров с достаточно высокими молекулярными массами оказывается, что эта функция равна единице, и приведение по оси lg со осуществляется сдвигом на величину lg г]о- Это обусловлено тем обстоятельством, что /2 (М), как и (с), имеет смысл модуля высокоэластичности, а для высокомолекулярных полимеров 6 не зависит от молекулярной массы. Это существенно упрощает обобщение экспериментальвых данных по вязкостным и вязкоупругим свойствам полимеров с различными молекулярными массами, в частности для них отсутствует [c.267]

Рис. 3.20. Зависимость протяженности плато высокоэластичности Alg <в от числа динамических сегментов в полимерной цепи для полибутадиенов (о), полистиролов (Д) и поливинил-ацетатов ( ) с различными молекулярными массами (Vinogradov G. V. e. а., J. Polymer Soi., 1971, А-2, v. 9, JVS 7, p. H53—1171). Рис. 3.20. <a href="/info/1586602">Зависимость протяженности плато высокоэластичности</a> Alg <в от <a href="/info/775952">числа динамических</a> сегментов в <a href="/info/56634">полимерной цепи</a> для полибутадиенов (о), полистиролов (Д) и <a href="/info/549223">поливинил-ацетатов</a> ( ) с <a href="/info/150201">различными молекулярными</a> массами (Vinogradov G. V. e. а., J. Polymer Soi., 1971, А-2, v. 9, JVS 7, p. H53—1171).
    Величина 6 не зависит от молекулярной массы полимера, поскольку это — модуль полимера в высокоэластическом состоянии, который определяется свойствами динамического сегмента, но не цепи в целом. Поэтому вид зависимостей Г1 и 0 от молекулярной массы должен быть одинаковым, а именно, обе эти величины пропорциональны М , где а близко к 3,4. Зависимость 0т от молекулярной массы определяет также влияние М на протяженность плато высокоэластичности по частотной оси А lg со. Начало плато на рис. 3.24, отвечающее точке пересечения функций ф (t) и ф" (t), не зависит отМ, а длинновременпая граница плато смещается пропорционально М . Поэтому А со как это следует из многих известных экспериментальных данных. [c.287]


Смотреть страницы где упоминается термин Высокоэластичность и молекулярная масса: [c.49]    [c.104]    [c.433]    [c.241]    [c.252]    [c.258]    [c.287]    [c.153]    [c.233]    [c.92]    [c.231]    [c.278]    [c.276]    [c.278]    [c.279]   
Реология полимеров (1977) -- [ c.389 ]




ПОИСК





Смотрите так же термины и статьи:

Молекулярная масса

Молекулярный вес (молекулярная масса))



© 2025 chem21.info Реклама на сайте