Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цирконий структура

    Один из наиболее известных неорганических ионитов — фосфат циркония, структура которого существенно зависит от ус- [c.230]

    Роль кислородсодержащих соединений изучена относительно мало. Однако показано что уменьшение удельной поверхности катализатора гидрокрекинга Р1 на алюмосиликате, модифицированного цирконием, не коррелирует ни с интенсивностью отложения кокса (выжигаемого при регенерации), ни со структурой применяемого сырья и содержанием в нем азота (в виде пиридина) или серы (в виде тиофена). Уменьшение удельной поверхности коррелирует только с содержанием в сырье кислородсодержащих соединений. На основании этого был сделан вывод, что причиной уменьшения [c.322]


    Характер действия катализаторов определяется их химической природой. Так, благодаря носителям, обладающим кислотной природой, — алюмосиликатам аморфной и кристаллической структуры, магний- и цирконий-силикатам, а также фосфатам, катализаторы помимо гидрирующих свойств обладают изомеризующей и расщепляющей способностью. Носители нейтральной природы — окись алюминия, окись кремния, окись магния и др., не придают, как правило, дополнительных свойств катализаторам гидрогенизационных процессов [36]. [c.66]

    Наибольшее применение нашел морин-3, 5, 7, 2, 4 -пентаоксифлавон который в кислой среде образует с цирконием соединение, обладающее ярко-зеленой флуоресценцией. Структура соединения окончательно не выяснена. [c.95]

    Опишите структуру титана, циркония и гафния. Приведите данные по Т пл и Ткип А пл и А// [c.117]

    Изучение кристаллической структуры циркона показало, что минерал циркон построен из изолированных кремнекислородных тетраэдров. Атомы циркония окружены четырьмя атомами кислорода на расстоянии 0,215 нм и еще четырьмя на расстоянии 0,229 нм, что обусловливает координацию между 6 и 8. Циркон очень стоек к химическим реагентам. [c.119]

    Остановимся на некоторых особенностях строения и роста фазовых оксидных слоев. По структуре и свойствам эти слои делят на сплошные (плотные) и пористые. Примером сплошных слоев могут служить пассивирующие слои на тантале, цирконии, алюминии, ниобии. Сплошные слои имеют стеклообразную или аморфную структуру, обладают достаточно большим электрическим сопротивлением и иногда проявляют выпрямляющее действие, проводя ток лишь тогда, когда металл является катодом. Типичным примером пористых слоев могут служить оксидные и гидроксидные слои на кадмии, цинке, магнии. Эти слои имеют кристаллическую структуру и низкое электрическое сопротивление (порядка нескольких омов). Возможно также образование слоев смешанного типа. Так, на алюминии в сернокислых растворах можно наблюдать сплошной слой со стороны металла и пористый со стороны раствора. Кроме того, при поляризации электрода или во времени могут происходить переход одного типа слоя в другой, кристаллизация аморфных слоев, изменение их состава и структуры. [c.368]

    Неорганические иониты. Природными катионитами являются силикаты (например, цеолиты), в решетке которых часть атомов кремния 3102-решетки заменена атомами алюминия. Каждый встроенный атом алюминия обусловливает возникновение отрицательного заряда, который компенсируется катионами. Представителями этой группы являются также глауконит, бентонит и глинистые минералы. В качестве анионитов применяют апатит. Силикаты, обладающие ионообменными свойствами, получают также синтетическим путем (плавленый пермутит, осажденный пермутит). Для специальных разделений, например для разделения щелочных и щелочноземельных металлов, а также для разделения радиоактивных веществ применяют, например, гидратированные окислы циркония и олова [39], аммонийные соли гетерополикислот [40, 41] и гексацианоферраты [42]. С недостатками неорганических ионитов приходится мириться, используя такие их достоинства, как низкая чувствительность к действию температуры, твердость и однородность структуры и нечувствительность к действию радиоактивного излучения. [c.371]


    Для получения катализаторов ионно-координационной полимеризации используют такие переходные металлы, как титан, ванадий, хром, марганец, железо, кобальт, никель, цирконий, ниобий, молибден, палладий, индий, олово, вольфрам. Для образования комплексов в основном с галогенидами этих металлов используют алкилпроизводные алюминия, цинка, магния, лития, бериллия. На этих катализаторах удалось осуществить промышленный синтез полипропилена, тогда как другие каталитические системы оказались неэффективными. Такие катализаторы широко используются для получения других полимеров (например, полиэтилена) строго стереорегулярной структуры, особенно цис-1,4-полибутадиена и цис-1,4-полиизопрена — синтетических каучуков высокого качества, полноценно заменяющих натуральный каучук, [c.48]

    Подгруппа титана. Элементы побочной подгруппы IV группы образуют подгруппу титана. Сюда входят титан, цирконий и гафний. В таблице ХХ-4 приведена структура их атомов. [c.462]

    Следует отметить, что гафний — первый элемент, открытый в результате изучения электронной структуры атома как аналог циркония. [c.78]

    Известны также технические сплавы циркония с различными-металлами. Легирование цирконием заметно улучшает механические свойства металлов. Присутствие циркония в расплаве обеспечивает получение мелкозернистой структуры отливки. Сплав циркония е железом обладает раскисляющим и дегазирующим действием. [c.87]

    Элементы подгруппы титана. Титан Т1 и его электронные аналоги — цирконий 2г, гафний Hf и искусственно полученный в 1964 г. курчатовий Ки являются элементами побочной подгруппы четвертой группы периодической системы элементов Д. И. Менделеева. Электронная структура их атомов выражается формулой. .. п— 1)с1 где п — номер внешнего слоя, совпадающий с номером периода. При возбуждении атома внешние л-электроны распариваются, поэтому титан и его аналоги могут проявлять валентность, равную двум. Но более характерно для них четырехвалентное состояние, отвечающее максимальному числу неспаренных электронов на валентных энергетических подуровнях  [c.315]

    Карбиды активных металлов характеризуются наличием полярной связи и разлагаются водой или кислотами. Помимо них, известны карбиды с типичной ковалентной связью, например, карбид кремния 31С и карбид бора В4С. У первого кристаллическая решетка алмазного типа, а у второго — сложная структура, состоящая из ромбоэдрической ячейки, содержащей 12 атомов бора, в виде каркаса, в пустотах которого расположены линейно 3 атома углерода. Оба карбида обладают твердостью, высокой температурой плавления и химической инертностью. Наконец, -элементы образуют карбиды, относящиеся к фазам внедрения в порах кристаллической решетки первых внедрены атомы углерода. Эти карбиды обладают жаропрочностью, тугоплавкостью, твердостью и относительной устойчивостью к кислотам. К таковым относятся карбиды титана, циркония, гафния, ванадия, ниобия, молибдена, вольфрама и др. [c.468]

    В следующем элементе, № 72, новый электрон включается уже во второй снаружи слой. Элемент этот должен, следовательно, иметь структуру 2, 8, 18, 32, 10, 2 и с химической стороны быть аналогом не предшествующих ему лантанидов, а циркония (2, 8, 18, 10, 2). Поэтому и искать его следовало не в тех рудах, где обычно встречаются лантаниды (и где элемент № 72 уже много лет тщетно искали), а в циркониевых минералах. Действительно, элемент № 72 (Н ) был найден в циркониевой руде (1923 г.). [c.221]

    При увеличении числа связей, образуемых данным ионом металла с соседями, возрастает прочность металла и повышается энтальпия испарения (сублимации). Полинг, рассматривавший структуры решеток металлов с позиций теории ВС, отметил, что прочность металлов возрастает при переходе от металлов, имеющих малое число валентных электронов, к металлам переходного характера с его точки зрения металлы, имеющие частично незаполненные d-зоны, располагают большим числом электронов для осуществления межионных связей, а потому и должны быть прочнее. Энтальпия сублимации, отнесенная к одному электрону, действительно изменяется в ряду металлов от I до V группы таким образом, что ее максимальное значение приходится на титан, цирконий и гафний, а энергия, отнесенная к одному электрону, колеблется в пределах 84—168 кДж/моль, что близко к обычным энергиям химической связи. Необходимо, конечно, учитывать, что распределение энергии по большему числу связей скажется на падении ее значения на одну связь. Значение энтальпии испарения металлов имеет, в общем, тот же порядок, что и у ионных кристаллов, однако проводить сравнения трудно из-за влияния природы анионов. Соответствующие значения для хлоридов калия, натрия, магния лежат в пределах 125—168 кДж/моль, а энтальпия испарения металлического натрия равна 100,3. [c.285]

    В настоящее время получены катиониты осаждением солей циркония (IV) из раствора хлорокиси циркония фосфатом натрия [45] или вольфраматом натрия и тита-нильные полимеры. Эти катиониты обладают удовлетворительными свойствами, в частности высокой обменной емкостью. Катиониты на цирконовой основе имеют структуру геля. Известен ряд работ, посвященных ионообменным свойствам соединений циркония [45—47], изучению возможностей разделения с помощью этих сорбентов щелочных и щелочноземельных металлов [48]. [c.150]


    Металлами четвертой группы периодической системы Д. И. Менделеева являются титан Т1, цирконий 2г и гафний НГ. Торий ТН, относящийся к группе актиноидов, очень близок по свойствам к подгруппе титана и также имеет структуру -металла. Общая электронная формула этой подгруппы d s , но 2г и НГ имеют вакантные электронные уровни и поэтому их восстановительные свойства сильнее выражены и для них высшие степени окисления более характерны (табл. 12.10). [c.325]

    Внешне технические сплавы титана похожи на сталь. Иодид-ные титан и цирконий имеют крупнозернистую кристаллическую структуру и очень сильно отражают свет (блестящие). [c.326]

    Физические и химические свойства. Титан, цирконий и гафний, как и все переходные элементы,— металлы. Они существуют в двух полиморфных модификациях при низкой температуре их решетка гексагональная плотноупакованная (к.ч. 12 а-модификация), при высокой — объемно-центрированная кубическая (к.ч. 8 -модификация). При таких больших координационных числах имеющихся валентных электронов недостаточно для образования обычных валентных связей, поэтому у них реализуется металлическая связь, основанная на обобществлении валентных электронов всеми атомами. Отличительная особенность металлической связи — отсутствие направленности, вследствие чего в кристалле возможно значительное смещение атомов без нарушения связи. Этим объясняется высокая пластичность всех трех металлов, в первую очередь их а-модификаций. Наиболее пластичен титан, гафний наиболее тверд и труднее поддается механической обработке.,/Образование о.ц.к. структур у -модификаций, по всей вероятности, связано с некоторой локализацией связи появление определенной направленности, характерной для ковалентной связи, объясняет большую твердость и меньшую пластичность -модификаций титана, циркония и гафния. [c.211]

    Взаимодействие металлов с азотом протекает более медленно и при более высокой температуре. Так, цирконий реагирует с ним выше 900°. Коррозия циркония при этих температурах протекает быстрее в воздушной атмосфере, чем в атмосфере чистого кислорода или азота. Можно предполагать, что образующаяся в этом случае окисно-нитридная пленка имеет дефектную структуру с кислородными вакансиями, вследствие чего облегчается диффузия кислорода. При нагревании на воздухе гафний ведет себя так же, как и цирконий, однако скорость проникновения кислорода в гафний ниже, чем в цирконий. При 1200° компактный титан загорается на воздухе и в атмосфере азота. Это характерно только для немногих элементов. Стружка и порошки титана, циркония и гафния более активны, чем компактные металлы, обладают пирофорными свойствами, легко загораются. При горении порошков циркония развивается исключительно высокая температура. Циркониевая пыль с размерами частиц менее 10 мкм способна на воздухе взрываться. [c.212]

    Окислы. Атом кислорода невелик, его радиус меньше радиусов атомов углерода и азота однако настоящие фазы внедрения кислорода — только твердые растворы и низшие окислы переходных металлов. В силицидах и боридах фактором, препятствующим образованию фаз внедрения, является большой атомный радиус, в окислах такой фактор — электронная структура атома кислорода. Электронная оболочка атома кислорода ls 2s 2p имеет два неспаренных электрона. Кислород подчиняется правилу октета, и завершенная электронная структура может быть получена путем приобретения двух электронов. Поэтому у кислорода донорная способность ослаблена склонностью к поглощению электронов. Цирконий и гафний легче отдают электроны, поэтому только титан образует с кислородом фазу переменного состава на основе окисла TiO с преимущественно металлической связью (радиус кислорода в ней 0,7 A) и координационным числом титана 6. [c.236]

    Увеличение электронного дефицита на атоме металла благоприятствует, как правило, повышению доли 1,4-структур. Из табл. 6 следует, что в присутствии аллилгалогенидных комплексов получаются полимеры с большим содержанием 1,4-звеньев, чем в присутствии чистых комплексов того же переходного металла. В полиизопренах, образующихся в присутствии продуктов реакции соединений кобальта, молибдена, никеля, хрома и циркония с галогенидами или алкилгалогенидами алюминия или титан.а, содержание 1,4-структур увеличивается с повышением электроноакцепторной способности сокатализатора и мольного отношения соката-лизатора к металлу. [c.104]

    Применительно к модификации структуры аморфных осадков предложен новый, двухстадийный метод их получения через промежуточный кристаллический продукт этот метод основан на химическом преобразовании промежуточного продукта с сохранением его структуры. Указано, что применение предложенного метода для модификации структуры частиц двуокиси циркония, двуокиси титана и моногидрата окиси алюминия (бёмита) позволило значительно уменьшить удельное сопротивление осадков, состоящих из этих частиц. [c.208]

    И еще один пример. Наряду с соединениями постоянного состава (характеризующимися целочисленными стехио-метрическими коэффициентами), для которых справедливы законы постоянства состава и кратных отношений, существуют соединения переменного состава (многие оксиды, сульфиды, карбиды, нитриды и т. д.). Так, карбид циркония имеет состав не 2гС (в соответствии с местом элементов-партнеров в периодической системе элементов), а 2гС1—х, где X в границах области непрерывного изменения состава меняется в широких пределах, К подобным выводам можно прийти не только на основании изучения структуры, но и в результате термохимических исследований, так как в соответствии с непрерывным изменением состава будет непрерывно меняться и теплота образования таких солей. [c.29]

    Гидрирование асфальтенов в чистом виде проводят главным образом для выяснения их структуры. С этой целью используются как сравпительио мягкие катализаторы типа иикеля Ренея, так и жесткие катализаторы деструктивнс й гидрогенизации, включающие титан, торий, цирконий и др. Образующиеся при деструктивной гидрогенизации осколки не дают, однако, достаточной информации о строении исходных молекул асфальтенов. [c.216]

    Факторы, влияющие на точечную коррозию. Природа металла. Отдельные металлы и сплавы в разной степени проявляют склонность к точечной коррозии. Более других подвержены точечной коррозии пассивные металлы и сплавы. В растворах хлоридов наибольшую стойкость обнаруживают тантал, титан, хром, цирконий и их сплавы весьма склонны к питтингообра--зованпю в этой среде высоколегированные хромистые и хромоникелевые сплавы. Склонность к точечной коррозии ие всегда одинакова, она зависит от химического состава стали. Чем выше в стали содержание хрома, никеля и молибдена и чем меньше углерода, тем больше ее сопротивляемость точечной коррозии. Коррозионностойкие стали тем меньше подвержены пит-тингу, чем однороднее их структура, в которой должны отсутствовать включения карбидов и других вторичных фаз, а также неметаллические фракции, в частности окислы и сульфиды, уменьшающие стабильность пассивного состояния и облегчающие разрушение пассивирующей пленки ионами хлора. Некоторые виды термообработки, приводящие к улучшению однородности стали, благоприятно сказываются на ее сопротивляемости точечной коррозии. [c.443]

    Механизм процессов, приводящих к резкому ускорению коррозии, еще не достаточно ясен. Его объясняют появлением трещин в оксидной пленке вследствие концентрирования напряжений в толще оксида. Однако, когда металл окисляют в кислороде, скорость коррозии не увеличивается, за исключением случаев очень длительной выдержки и очень толстой оксидной плёнки. Оказалось, что ведущую роль играет водород, выделяющийся в результате разложения воды при взаимодействии с металлом, и особенно та его часть, которая растворяется в металле, приводя к более высоким скоростям окиздения [55]. Данные рентгеновских исследований показывают, что в воде на поверхности циркония как до, так и после ускорения коррозии присутствует моноклинный диоксид 2гОа. Имеются также некоторые сведения, что первоначально возникающий оксид имеет тетрагональную структуру [56].,  [c.381]

    Наиболее изучены ионообменные свойства гидроксида циркония. Это соединение нерастворимо и устойчиво к действию кислот, оснований, окислительных и восстановительных агентов оно рассматривается как положительно заряженный полимер, состоящий из цепей, частично сшитых в сетку. Из кислых растворов амфотерный гидроксид циркония обменивает на ионы ОН анионы С1", Вг , НОз и особенно 80Г и СГО4. При повышении температуры сушки до 300° С обменная способность 2г(ОН)4 уменьшается незначительно. Из опытов по дегидратации и термогравиметрических измерений следует, что гидроксиды циркония не образуют гидратов определенного состава, и можно допустить, что при осаждении оксидов полимерный ион (2гООН) образует следующую структуру [13]  [c.46]

    З) Для титана известны две формы его гидрата двуокиси — а и р, отнощения между которыми таковы же, как и в случае олова ( 6 доп. 36). Получаемый путем гидролиза солей на холоду а-гидрат двуокиси титана имеет аморфный характер и легко растворяется в кислотах. При стоянии (быстрее при нагревании) он подвергается старению и постепенно переходит в р-форму, имеющую микрокристаллическую структуру и растворимую лишь в HF или в горячей концентрированной H2SO4. Явления старения характерны также для гидратов двуокисей циркония и гафния. Нагревание а-форм гидроокисей сопровождается наступающим в определенный момент внезапным са-мораскаливанием массы, обусловленным переходом ее из аморфного в кристаллическое состояние. [c.649]

    Плотности паров отвечают простым молекулярным весам. Молекулы ЭГ4 имеют структуру тетраэдров с атомом Э в центре [ (2гР)= 1,94, ((2гС1) = 2,32, (Н1С ) = = 2,33 А]. Единственным окрашенным соединением из перечисленных выше является красно-коричневый Zт . Молекулы НГЦ (т. возг. 392 °С) в парах димеризованы. По фторидам циркония и гафния имеется монография .  [c.652]

    Металлохимия элементов подгруппы титана. Физико-химические характеристики титана и его аналогов дефектность -электронной оболочки, средние по величине значения потенциалов ионизации и атомных радиусов, высокие температуры плавления и типичные для металлов плотноупаковапные структуры — обусловливают многообразие металлохимических возможностей этих элементов. Титан, цирконий и гафний образуют непрерывные твердые растворы друг с другом в обеих модификациях. Тройная система Ti—Zr—Hf является единственным примером системы, в которой реализуются два вида непрерывных твердых трехкомпонентных растворов в двух модификациях (рис. 47). Со многими переходными металлами они [c.242]

    Существование в Периодической системе вставных d и /-рядов существенно влияет на ионизационные потенциалы и атомные (ионные) радиусы последующих элементов. Особенно велико влияние заполненного 4/1 -слоя, которое называется лантаноидным сжатием (контракцией). Это явление заключается в том, что наличие завершенного 4/14-уровня способствует уменьшению объема атома за счет взаимодействия оболочки с ядром вследствие последовательного возрастания его заряда. Поэтому, наприм(ф, с увеличением атомного номера в ряду лантаноидов происходит неуклонное уменьшение размеров атома. Это же явление объяенж т целый ряд особенностей, характерных для d- и sp-элементов VI периода, следующих за лантаноидами. Так, лантаноидная контракция обусловливает близость атомных радиусов и ионизационных потенциалов, а следовательно, и химических свойств -элементов V и VI периодов (Zr—Hf, Nb—Та, Мо—W и т. д.). Особенно ярко это выражено у элементов-близнецов циркония и гафния, поскольку гафний следует непосредственно за лантаноидами и лантаноидное сжатие компенсирует увеличение атомного радиуса, вызванное появлением дополнительного электронного слоя. Эффект лантаноидной контракции простирается чрезвычайно далеко, оказывая влияние и на свойства sp-элементов VI периода. В частности, для последних характерна особая устойчивость низших степеней окисления Т1+ , РЬ , Bi+з, хотя эти элементы принадлежат, соответственно, к III, IV и V группам. Это объясняется наличием так называемой инертной б52-эле- ктронной пары, не участвующей в образовании связей группировки электронов, устойчивость которой опять-таки обусловлена лантаноидной контракцией. У таллия, свинца и висмута участвуют в образовании связи лишь внешние бр-электроны (Tl[6s 6p ], Pb[6s 6p2], Bi[6s 6p ]). Аналогичное явление актиноидной контракции , по-видимому, также должно наблюдаться, хотя и в меньшей степени. Однако проследить это влияние пока невозможно вследствие малой стабильности трансурановых элементов и незавершенности VII периода. Таким образом, положение металла в Периодической системе и особенности структуры валентной электронной оболочки играют определяющую роль в интерпретации химических и металлохимических свойств элементов. [c.369]

    Согласно теории ВС, координационное число (к.ч.) равно числу орбиталей, пригодных для образования связей. У титана, циркония и гафния таких орбиталей девять. Однако максимально реализуемое к.ч. зависит не только от возможностей центрального атома, но и во многом от свойств лиганда, от его электронной структуры, поляризуемости, размеров и т. д. (рис. 62). Для титана наиболее характерны к.ч. 6 и 4, очень редко 7. Титан акцептирует отрицательные заряды лигандов, пока эффективный заряд на нем не будет значительно снижен. Так, в Т1С11 эффективный зарядна атоме Т1 приблизительно -Ь1. Легко поляризуемые лиганды, например крупный ион С1 , легко и отдают заряд, поэтому для передачи суммарного заряда их требуется меньше, чем слабополяризуемых лигандов, таких, как небольшой ион Р. Отсюда в первом случае более характерно к.ч. 4, во втором — [c.210]


Смотреть страницы где упоминается термин Цирконий структура: [c.156]    [c.467]    [c.426]    [c.610]    [c.282]    [c.98]    [c.101]    [c.81]    [c.153]    [c.653]    [c.4]    [c.159]    [c.236]   
Структура металических катализов (1978) -- [ c.71 , c.72 , c.82 ]




ПОИСК







© 2025 chem21.info Реклама на сайте