Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магний физические свойства

    Крекинг-процесс предъявляет строгие требования к свойствам катализатора. Катализатор должен обеспечить не только требуемые выходы продуктов, но также и удовлетворительное качество их. Он должен противостоять действию высокой температуры при регенерации, а также обладать достаточной устойчивостью к истиранию как в процессе крекинга, так и при регенерации. Катализатор, кроме того, должен обладать определенным сочетанием химических и физических свойств. Эти требования ограничивают выбор материала, который может быть использован в качестве катализатора крекинга. Из большого числа исследованных катализаторов лишь немногие имеют требуемые свойства и, кроме того, недороги в производстве. С точки зрения сырья, используемого для приготовления катализаторов, последние делятся на два класса естественные и синтетические. В качестве естественных катализаторов могут быть использованы природные бентонитовые глины [11, 12] типа монтмориллонита и другие природные алюмосиликаты, такие как каолин и галлуазит. Синтетические катализаторы могут быть приготовлены из окиси кремния в комбинации с окисями алюминия, циркония или магния. Химия производства катализаторов обоих типов очень сложна и здесь обсуждаться не будет. Большинство катализаторов каталитического крекинга различаются по их активности и стабильности и при сравнимой активности обеспечивают лишь незначительные различия в распределении и качестве продуктов крекинга. В табл. И приводится сравнение действия катализаторов синтетического алюмосиликатного шарикового, двух типов природных глинистых и синтетического катализатора из окисей магния и кремния. [c.154]


Таблица 9. Физические свойства магния и бериллия Таблица 9. Физические свойства магния и бериллия
    Физические свойства. По внешнему виду никель — серебристо-белый, обладающий сильным блеском металл, плотность его 8,9. Его температура плавления ниже, чем у железа и кобальта. Никель поддается ковке и сварке, хорошо полируется. Он очень тягуч, легко вытягивается в проволоку. Его электропроводность и теплопроводность приблизительно в 7 раз ниже, чем у серебра. Никель ферромагнитен, но в меньшей степени, чем железо. Сплошной кусок никеля мало растворяет водород, но очень измельченный никель поглощает огромное его количество. Как палладий и платина, никель обычно образует гранецентрированную кубическую решетку. Однако Бредиг в 1927 г. обнаружил у никеля, катодно распыленного в атмосфере водорода, решетку типа магния (гексагональная, с плотной упаковкой), т. е. того же строения, которое обычно имеет кобальт. [c.384]

    Рассмотрите факторы, влияющие на размеры ионов, и покажите, как размеры ионов сказываются на химических и физических свойствах. Приведите иллюстрации к своему ответу на примерах бериллия, магния и группы ПА, а также элементов первого переходного периода. [c.399]

    Некоторые физические свойства металлов зависят от силы притяжения между атомами. Например, чем сильнее притяжение, тем выше температура плавления мет шла. Поскольку точка плавления у магния выше, чем у натрия, мы можем заключить, что межатомное притяжение сильнее у магния, чем у натрия. [c.131]

    Для первичного и вторичного риформинга (и для различного исходного сырья) требуются различные катализаторы. Установлено, что для риформинга углеводородов наиболее эффективным катализатором является металлический никель. Это активный компонент большинства имеющихся каталитических композиций. Такие композиции различаются в основном присутствием других компонентов — таких, как окись алюминия, окись магния, окись кальция и т. д. Эти компоненты оказывают влияние на каталитические и на физические свойства катализатора, например, на прочность, плотность или тугоплавкость. [c.93]

    Тиксотропия играет отрицательную роль в земледелии, так как тиксотропные почвы плохо проницаемы для воды и воздуха, поэтому в них часто развиваются восстановительные процессы и оглеение. Улучшения физических свойств таких почв можно достичь высушиванием, внесением коагуляторов с минеральными удобрениями кальция, магния. [c.334]


    Для бериллия и магния характерны кристаллы с гексагональной плотной упаковкой. Кристаллы стронция имеют кубическую гране-центрированную решетку. Кальций при высокой температуре образует кристаллы с гексагональной плотной упаковкой, а при низкой — с гранецентрированной кубической решеткой. Объемно центрированная упаковка отличает кристаллы бария. Существенные различия в строении пространственных кристаллических решеток обусловливает незакономерное (не монотонное) изменение таких физических свойств этих металлов, как плотность, температура плавления и кипения (табл. 23). [c.294]

    Многие физические свойства металлов изменяются в широких пределах. Например, осмий (самый тяжелый металл) имеет плотность в 42 раза большую чем литий (самый легкий металл). В зависимости от плотности металлы обычно подразделяют на легкие (плотность меньще 5 г/см ) и тяжелые (плотность свыше 5 г/см ). Типичные легкие металлы литий, натрий, магний, алюминий. К тяжелым металлам относятся цинк, железо, медь, свинец, ртуть, золото. [c.196]

    Титан и его сплавы по своим механическим и физическим свойствам занимают промежуточное место между легкими металлами и их сплавами (на основе алюминия и магния) и сталями. Такая высокая склонность к пассивации титана и его сплавов обеспечивает им высокую коррозионную стойкость как в приморской атмосфере, так и в морской воде. [c.75]

    Займемся теперь описанием основных физических свойств простых ионов (одноатомных ионов, имеющих такое же электронное строение, как ближайшие по периодической системе благородные газы, например Li, Na, F или С1 ). Простой ион представляет собой сферическую частицу, обладающую положительным или отрицательным зарядом. Сила взаимодействия иона с окружающими его частицами определяется интенсивностью создаваемого им электрического поля. Эта характеристика ионов называется ионным потенциалом (см. гл. 6), который условно определяется как отношение заряда иона к ионному радиусу. Например, ионный потенциал иона магния Mg равен 2/0,66 = 3,03 (табл. 8.1). Чем выше ионный потенциал, тем сильнее электрическое поле, создаваемое ионом, и, следовательно, тем больше его взаимодействие с соседями. Скажем, Li сильнее взаимодействует с окружающими его анионами, чем s, поскольку радиус s приблизительно в 2,5 раза больше радиуса Li" . [c.130]

    Восстанавливая 100 г ацетофенона амальгамой цинка (200 г) в соляной кислоте, Фогель [1939] получил 53 г этилбензола с т. кип. 134,5—135° (при 758 мм). Продукт очищали встряхиванием с несколькими порциями концентрированной серной кислоты по 6 мл каждая, пока слой кислоты не переставал окрашиваться, а затем с раствором карбоната натрия и водой, после зтого его дважды СУШИЛИ над безводным сульфатом магния и дважды перегоняли над натрием. Отбирали среднюю фракцию, получаемую при второй перегонке, и использовали ее для определения физических свойств. [c.294]

    ФС Таблица 5.4. Физические свойства и применение галогенидов магния Прм [c.37]

    Фтористый магний (М Ра). Хорошие оптические и физические свойства при повышенных температурах. Может быть герметически спаян с нержавеющей сталью. Употребляется не только в качестве интерференционных покрытий, но может быть использован для изготовления оптических деталей большого размера. [c.136]

    Физические свойства растворов хлористого магния [c.39]

    Содержание окиси никеля в катализаторе — фактор, определяющий его активность. Способность окиси никеля восстанавливаться также очень важна. В неудачно приготовленном катализаторе только часть окиси никеля может быть восстановлена обычным способом, а полученная при этом активность относительно низка. Например, шпинель окиси никеля и окиси алюминия или ее исходное вещество не восстанавливаются полностью до никеля при температурах ниже 400—500 °С. Другие окислы, такие как окись магния, могут реагировать с окисью никеля, образуя трудновосстанавливаю-щиеся твердые растворы. Эти факторы наряду с физическими свойствами материала влияют на выбор каталитических композиций. [c.147]

    Сплав, содержащий 16 % Сг, 7 % Ре и 76 % N1 (торговое название инконель 600), несколько менее жаростоек, чем нихром V, но обладает такими же благоприятными физическими свойствами, прост в изготовлении и хорошо сваривается. На воздухе его можно использовать при температурах до 1100°С. В некоторых печах устанавливают электрические трубчатые нагреватели из этйго сплава. Проходящая внутри трубки проволока из сплава 20% Сг—N1 изолирована от внешней трубки порошкообразным спеченным оксидом магния. Благодаря высокому содержанию никеля и большой прочности (образование карбидов или нитридов никеля идет медленно) этот сплав часто применяют как конструкционный материал для печей цементации и азотирования. [c.208]

    Вода класса 1 ( Вполне пригодная ) не опасна с точки зрения осолонцевания почвы и может применяться для полива сельскохозяйственных культур без применения химических мелиорантов. Длительное орошение такой воды не вызывает ухудшения физических свойств почвы, так как содержание поглощенного натрия в почвенном поглощающем комплексе не превышает 3—5% от емкости катионного обмена. Содержание катионов магния в воде этого класса не должно превышать содержание в ней катионов кальция, т. е. обязательно должно выполняться условие [Са +] [Mg2+] l. Вода класса I обеспечивает урожай сельскохозяйственных культур не ниже, чем при орошении пресными водами. Только иа почвах, обладающих плохими физическими и водно-физическими свойствами (плотность пахотного и подпахотного горизонтов более 1,50 ккг/м , водопроницаемость в первый час впитывания менее 30 мм вод. ст.) и при отсутствии промывного режима орошение такой водой с общей минерализацией более 50 мкг-экв/м (более 3 кг/м ) не допускается ввиду реальной угрозы засолення верхних слоев почвен-иого профиля. [c.94]


    Получение и свойства. Строение кристаллических решеток. Получают эти металлы обычно электролизом расплавленных хлоридов, магний — также восстановлением оксида MgO углем в электрических печах и другими способами. Барий чаще всего получают алюминотермическим способом. Бериллий, магний и при высокой температуре кальций образуют кристаллы с гексагональной плотной упаковкой, а стронций и при низкой температуре кальций имеют кубическую гранецентрированную решетку. Для бария характерна объемноцентриро-ванная упаковка. Это различие решеток играет некоторую роль в нарушении закономерности различий плотности, температур плавления и других физических свойств. Атомы их, кроме бериллия, теряют два электрона, превращаясь в ионыЭ . Но их восстановительная способность слабее, чем у щелочных металлов. [c.275]

    Физические свойства. В соответствии с характером изменения струтуры и типа химической связи закономерно изменяются и свойства простых веществ — их плотность, температуры плавления и кипения, электрическая проводимость и др. Так, аргон, хлор и сера в твердом состоянии являются диэлектриками, кремний — полупроводником, а алюминий, магний и натрий — металлическими проводниками. [c.257]

    Однако на всех известных авторам промышленных установках дегидрирования алканов применяются катализаторы типа алюмохромового. Катализаторы этого типа используются в процессах Гудри и Филлипс . В процессе И. Г. Фарбениндустри катализатор также состоит из окиси алюминия с 8% окиси хрома и 1—2% окиси калия. По литературным данным добавление таких компонентов, как окись калия, окись магния, окись бериллия, повышает стабильность в отношении сохранения большой удельной поверхности. Однако они могут изменять степень окисления, а следовательно, и активность окиси хрома [18]. При процессе дегидрирования фирмы Гудри для увеличения общей теплоемкости слоя в реакторе и, таким образом, уменьшения колебаний температуры катализатор можно использовать в сочетании с такими зернистыми материалами, как плавленый корунд (окись алюминия). Выбор твердых теплоносителей требует тщательного предварительного анализа они должны быть каталитически инертными и обладать необходимыми физическими свойствами. [c.282]

    Присадки небольших количеств лития к магнию увеличивают его прочность, улучшают литейные свойства и повышают коррозионную стойкость на воздухе [60]. Сплавы магния, содержащие 107q Li и более, имеют кубическую объемноцентрированную решетку и характеризуются высокими физическими свойствами. Присутствие лития облегчает прессование и прокатку при обработке деталей, изготовляемых из этих сплавов, и понижает их удельный вес [52, 61]. [c.18]

    Плохое перемешивание реагентов может привести к местной ретроградации Р2О5. Поэтому требуется тщательное смешение суперфосфата с добавками. Использование добавок, содержащих магний, в меньшей мере улучшает физические свойства суперфосфата из-за гигроскопичности образующегося мономагнийфосфата, однако введение магния полезно в связи с специфическим удобрительным действием этого элемента [c.64]

    Примеси других солей, остающиеся в растворах (после очист ки), улучшают физические свойства готового продукта, но обра зуют отложения осадков на греющих поверхностях выпарных аппа ратов. Основным компонентом, входящим в состав осадка, является сульфат магния. Его можно выделить при обработке раствора ди1 аммонийфосфатом [c.414]

    Оэстояние 13-г г с-конфигурации двойной связи сказывается на физических свойствах, что проявляется в более слабой адсорбции на натриевоалюминиевой соли кремневой кислоты, окиси алюминия и магния по сравнению с ретинолом. [c.145]

    Фогель [1939] очищал продажный изопропилбензол пятикратным промыванием его концентрированной серной кислотой (в отношении 10 1), затем водой, раствором карбоната натрия и снова водой с последующей осушкой над безводным сульфатом магния. Далее изопропилбензол был подвергнут сначала фракционированной перегонке на трехсекционной колонке Янга и Томаса с отбором приблизительно 90% продукта, а затем перегнан над натрием. Для определения физических свойств была отобрана средняя фракция. [c.295]

    Фогель [1939] получал бутилбензол восстановлением двух различных кетонов. а) 75 г бутилфенона восстанавливали амальгамой цинка (150 г) в концентрированной соляной кислоте после перегонки с водяным паром выход сырого продукта составлял 50 г. Полученный продукт перегоняли над натрием и промывали несколькими порциями концентрированной серной кислоты по 7 мл до тех пор, пока кислота не переставала окрашиваться. После дополнительного промывания водой и карбонатом натрия продукт СУШИЛИ над безводным сульфатом магния. Далее его дважды подвергали фракционированной перегонке над натрием и отбирали для измерения физических свойств среднюю фракцию, получаемую при последней перегонке, б) Второй способ отличался от первого тем, что при его проведении вместо бутилфенона в качестве исходного кетона использовали бензилзтилкетон (в количестве 70 г). Методика восстановления и способ очистки оставались теми же, что и в первом случае. [c.297]

    Фогель [1942] очищал метиловый эфир уксусной кислоты с целью изучения его физических свойств. Эфир промывали насыщенным раствором хлористого натрия, после чего сущили безводным сульфатом магния и перегоняли. [c.375]

    Фогель [1942] получал чистые препараты пропилового эфира муравьиной кислоты с целью определения его физических свойств. Дистиллат с т. кип. ниже 85° промывали последовательно насыщенным раствором хлористого натрия и таким же раствором бикарбоната натрия в присутствии твердого хлористого натрия, а затем СУЩИЛИ безводным сульфатом магния и перегоняли. [c.375]

    Джеффери и Фогель [962] получали нитрил пропионовой кислоты с помощью усовершенствованного метода Вальдена [1974] с целью изучения его физических свойств. Верхнюю фазу отгоняли от реакционной смеси, обрабатывали насыщенным раствором хлористого кальция и охлаждали во льду для удаления примесей цианида. Изоцианиды разрушали встряхиванием растворителя в течение 5 мин. с двумя порциями концентрированной соляной кислоты по 5 мл. После зтого жидкость встряхивали сначала с насыщенным раствором поташа, а затем с раствором хлористого кальция, сушили над безводным сульфатом магния и трижды подвергали фракционированной перегонке. Температура кипения составляла 97,5° (765 мм). [c.421]

    Джеффери и Фогель [962] получали нитрил валерьяновой кислоты для изучения его физических свойств с помощью варианта метода, предложенного Адамсом и Марвелом [8]. Сырой нитрил дважды промывали сначала половинным объемом концентрированной соляной кислоты, а затем насыщенным раствором бикарбоната натрия, СУШИЛИ безводным сульфатом магния и перегоняли. Температура кипения нитрила валерьяновой кислоты составляла 14Г (764 мм). [c.422]

    Безводный перхлорат магния может абсорбировать влагу в., количествах вплоть до 60% от его собственного вe a , т. е. во много раз больше, чем пятиокись фосфора. Он значительно лучше ее и по своим физическим свойствам не становится клейким и не растекается при применении, уменьшается в объеме при абсорбировании влаги . В противоположность кислым осушителям, [c.155]

    В заключение коротко остановимся на способности нитрилов к комплексообразованию. Комплексы нитрилов с различными реагентами часто являются промежуточными соединениями в реакциях нитрилов. В литературе описаны, главным образом, комплексы нитрилов с соединениями элементов II—IV и VIИ групп периодической системы элементов 2-114 Значительный дипольный моме 1т, инфракрасные спектры и другие физические свойства получаемых соединений подтверждают наличие в нйх, координационной связи между нитрильным лзотом и электроноакцепторным атомом второго компонента. Например, при спектроскопическом исследовании взаимодействия нитрильной группы с солями, способными к комплексообразованию, наблюдается появление новых полос пр-глощения, смещенных в высокочастотную область При растворении хлората магния в ацетонитриле наряду с v n (2253 см ) наблюдаются полосы 2290 и 2262 слг при растворении иодистого лития в акрилонитриле наряду с v n (2228 слг ) появляются полосы 2255 и 2237 см К Одновременно с частичным смещением по лосы поглощения N-группы в продуктах взаимодействия нитрилов с электроноакцепторными соединениями наблюдается также смещение (на 10—20 см ) в сторону больших частот полос поглощения групп С—С в насыщенных и групп С=С в ненасыщенных нитрилах [c.32]

    Изменение физических свойств резин, вызванное введением наполнителей, выражается прежде всего в увеличении их жесткости, что наблюдается при использовании весьма различных наполнителей, и только. некоторые из них повышают прочность резин. К числу таких наполнителей относятся прежде всего углеродные сажи, затем жесткие полимеры, окислы металлов (в частности 2пО, РегОз), а также некоторые соли (карбонаты и силикаты кальция и магния). Маллинс [1] предлагает термин усиление трактовать как увеличение жесткости без ухудшения прочности . [c.130]

    Производство аммиачной селитры. Аммиачная селитра без-баластное удобрение, содержащее 35% азота в аммиачной и нитратной форме, вследствие чего она с успехом используется на любых почвах и для любых культур. Однако это удобрение обладает неблагоприятными для его применения физическими свойствами. Кристаллы аммиачной селитры расплываются на воздухе или слеживаются в крупные агрегаты, в результате их гигроскопичности, значительной растворимости в воде и высокого температурного коэффициента растворимости. Кроме того, при изменении температуры, во время хранения аммиачной селитры могут происходить превращения одной кристаллической формы в другую, т. е. перекристаллизация, что также способствует слеживаемости. Для уменьщения слеживаемости применяется припудривание частиц аммиачной селитры тонкоиз-мельченными малогигроскопичными добавками — известковой, фосфоритной или костяной мукой, гипсом, каолином, а также гранулирование аммиачной селитры с добавками нитратов кальция и магния или фосфатов кальция. В настоящее время аммиачная селитра, применяемая как удобрение, выпускается только в гранулированном виде. [c.290]

    Цинк, кадмий и ртуть являются элементами побочной подгруппы И группы периодической системы. По химическим свойствам цинк и его соединения сходны G магнием и бериллием. С другой стороны, окислы металлов подгруппы цинка непрочны, они легко восстанавливаются, окислы и сульфиды являются полупроводниками, причем окись цинка, имея в междоузлиях кристалла избыточный цинк, проявляет электронную проводимость. Все эти свойства делают их сходными с элементами VIII группы и подгруппы меди. Двойственность химических и физических свойств соединений металлов подгруппы цинка сказывается и на их каталитических свойствах. Так, кроме того, что они являются катализаторами ионных процессов, они способны катализировать и реакции окислительно-восстановительного типа гидрирования, дегидрирования, восстановления, окисления и др. Из металлов в качестве катализаторов применяются цинк, часто скелетный и в сплавах, кадмий, ртуть (в основном, в виде амальгам). [c.101]

    Первоначально термин активация имел отношение к усилению абсорбционных и адсорбционных свойств, но со временем его стали относить и к каталитическим свойствам. Обработка сильными минеральными кислотами приводит к изменению ряда химических и физических свойств глин, причем некоторые свойства мало изучены и зависят от концентрации кислоты, температуры и времени контакта. Было исследовано, каким образом различные изменения в глинах влияют на каталитические свойства, а именно 1) на замену обменпоспособных катионов водородом или другими кислотными ионами 2) па растворение глины, т. е. но существу алюминия,, магния и железа, а также на растворение и пептизацию кремневой, кислоты (сопровождающуюся раскрытием структуры, увеличением объема пор и доступной поверхности) 3) па образование новых фаз путем взаимодействия диспергированных частиц и растворенных веществ или этих частиц и веществ с оставшимся скелетом вещества1 глины. [c.25]

    Существование одного и того же элемента в виде атомов с различными массами подозревали ранее, поскольку было найдено, что многие пары радиоактивных элементов не разделяются обычными химическими методами. Предполагалось, что эти пары не будут различаться спектроскопически. Содди [1905J назвал такие различные по радиоактивности формы данного элемента изотопами, поскольку они занимают одно и то же место в периодической системе элемен-тов. Предполагалось также, что могут существовать и изотопы стабильных элементов и что неидентифицированный ион, обнаруженный Томсоном, представляет собой тяжелый изотоп неона. После того как в 1919 г. Астон окончательно доказал существование двух изотопных форм неона, теория существования изотопов, вытекающая из теории атомного ядра Резерфорда [1752], оказала большое влияние на дальнейшее формирование теории строения ядра. Содди [1906] считал, что изотопы обладают совершенно идентичными физическими свойствами, различие сохраняется лишь в отношении сравнительно немногих свойств, непосредственно связанных с массой атома . Такие же величины, как константы равновесия и скорости химических реакций молекул, содержащих различные изотопы, различаются очень незначительно. Со,зди предвидел, что для многих легких элементов, как, например, магния, хлора, атомные веса которых заметно отличаются от целых чисел (24,3 и 35,5 с(ютветственно), будет характерно наличие нескольких распространенных стабильных изотопов. [c.14]


Смотреть страницы где упоминается термин Магний физические свойства: [c.586]    [c.205]    [c.325]    [c.375]    [c.264]    [c.118]    [c.375]    [c.47]   
Химия справочное руководство (1975) -- [ c.37 ]

Основы общей химии Том 2 (1967) -- [ c.267 , c.269 ]




ПОИСК





Смотрите так же термины и статьи:

Магний, свойства

Магнит, свойства



© 2025 chem21.info Реклама на сайте