Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Константы в смешанных растворителях

    Потенциальная энергия двух противоположно заряженных ионов на этом расстоянии равна 2 кТ, при этом кинетическая энергия недостаточна для преодоления взаимного притяжения ионы остаются связанными в пару, которая не участвует в электропроводности, хотя и не является настоящей молекулой. Можно подсчитать число ионов, которые находятся вокруг иона противоположного знака между критическим расстоянием д и расстоянием наибольшего сближения. Таким способом определяется число ионных пар, степень их диссоциации и константа диссоциации ионных пар по закону действия масс. Б воде при 25° С для одно-одновалентного электролита критическое расстояние невелико (( = 3,57 А), число ионных пар очень мало, имеется почти полная диссоциация. Для ионов с большими зарядами, а также в растворителях с небольшой диэлектрической проницаемостью величина д имеет большие значения, и ассоциация увеличивается. Ассоциация зависит также от радиуса ионов и растет с уменьшением этого радиуса (т. е. увеличением расстояния наибольшего сближения), Так, в растворах ЬаРе (СМ) 6 в смешанных растворителях, диэлектрическая проницаемость которых О <57, константа диссоциации ионных пар уменьшается с уменьшением О в количественном согласии с теорией. Это падение константы лежит в пределах от 10" до 10 . В растворе с /п=0,01 степень диссоциации ионных пар по мере уменьшения О изменяется от 0,3 до 0,03 число ионных пар очень велико. В водных растворах с 0 = 81 содержание ионных пар при малых концентрациях составляет доли процента. [c.416]


    Если значения констант скорости при нулевой ионной силе получены в индивидуальных или смешанных растворителях с различной диэлектрической проницаемостью, то зависимость логарифма константы скорости от величины, обратной диэлектрической проницаемости, также выражается уравнением прямой линии, из углового коэффициента которой можно найти радиус активированною комплекса (см)  [c.262]

    Для ионов с большими зарядами, а также в растворителях с небольшой диэлектрической проницаемостью величина го имеет большие значения и ассоциация увеличивается. Способность к ассоциации зависит также от радиуса ионов и растет с уменьшением этого радиуса. Так, в растворах ЬаРе(СЫ)е в смешанных растворителях, диэлектрическая проницаемость которых О < 57, константа диссоциации ионных пар понижается с уменьшением величины В в количественном согласии с теорией. Это падение константы лежит в пределах от 10 з до 10 . В растворе с /п = 0,01 степень диссоциации ионных пар по мере уменьшения О изменяется от 0,3 до 0,03 число ионных пар очень велико. В водных растворах с Д = 81 содержание ионных пар при малых концентрациях составляет доли процента. [c.118]

    В неидеальных системах (смеси воды со спиртом, гликолем или диоксаном) отклонения от линейных соотношений (1.18) — (1.19) могут достигать десятков процентов (А 1п 2 0,25 для аргона [15]), но обычно для газов в органических растворителях они не превышают нескольких процентов. Имеется ряд работ по расчету отклонений от соотношения (1.18), причем возможно вычисление констант Генри в смешанных растворителях по плотности и молекулярным параметрам компонентов без знания коэффициентов активности растворителей в смеси. Точность таких расчетов для неполярных и полярных растворителей (в среднем) около 5% [15]. [c.28]

    Реакция между этиленхлоргидрином и едким натром исследовалась при О—30 °С в различных смешанных растворителях смеси воды с этанолом, метанолом, диоксаном, изопропанолом и бутанолом. При этом были определены константы скорости реакции. [c.178]

    Изучение кинетики катодного процесса для кадмия и цинка в водно-органических смесях показывает возрастание необратимости реакции восстановления с увеличением содержания органического растворителя, а также появление на зависимостях кинетических параметров от состава смеси минимумов (ток обмена, константа скорости) или максимумов (коэффициент переноса) [957, 146, 1070, 788, 687, 1208]. Существенное влияние на кинетику и механизм процесса оказывает структура смешанного растворителя [53]. [c.86]


    Теоретические обобщения в области соотносительного влияния физических и химических факторов на силу электролитов (см. параграфы 1.2.2. и 1.4.5) позволяют осуществлять целенаправленный подбор растворителя, обеспечивающий максимально высокую для данного электролита величину константы электролитической диссоциации в неводных средах. При этом один из компонентов смешанного растворителя может быть сольватирующим агентом, доставляя системе энергию сольватации, необходимую для образования соответствующей ионной пары, второй из компонентов смешанного растворителя определяет диэлектрическую проницаемость, достаточно высокую для существенного распада ионной пары на [c.130]

    В растворах, состоящих из ацетоуксусного эфира (40 объемн. %), этилового спирта (27 объемн. %) и воды (33 объемн. %) на фоне 0,1 М КС1 также получаются две четкие волны UO . Е, / зависит от концентрации урана и изменяется от —0,43 в (0,2 ммоль л) до —0,34 в (1,26 ммоль л). Это указывает на комплексообразование между и ацетоуксусным эфиром. Константа диффузионного тока урана в этом растворителе равна 0,43 и не зависит от концентрации урана, поэтому этот смешанный растворитель имеет для аналитических целей преимущество перед вышеприведенным. [c.199]

    КОНСТАНТЫ ДИССОЦИАЦИИ КИСЛОТ в СМЕШАННЫХ РАСТВОРИТЕЛЯХ [c.109]

    Константы диссоциации кислот в смешанных растворителях Растворитель вода—метанол [c.89]

    О свойствах кислот и оснований в апротонных растворителя. имеется мало данных. Исследования показали, что относительные константы карбоновых кислот мало изменяются по сравнению с их значениями для водных растворов. Сильные кислоты в апротонных растворителях становятся слабыми. Прибавление 10— 20 мол. % протолитического растворителя к апротонному приводит к тому, что в смешанном растворителе устанавливаются соотношения, свойственные протолитическим растворителям при добавлении спирта — такие же, как в чистом спирте, при добавлении ацетона — такие же, как в чистом ацетоне. В пределах одной природной группы относительная сила кислот в апротонных растворителях почти не изменяется, но сильно изменяются соотношения в силе кислот различных природных групп. [c.31]

    Поскольку экстракционные равновесия являются гетерогенными, для получения данных о механизме извлечения необходимо знание состояния соединений рения как в водных, так в неводных и смешанных растворителях. В случае полярных растворителей (вода, спирты, кетоны и ряд аминов) в растворах находятся ионы и соответствующие ассоциаты (ионные пары, тройники и т. д.), причем состав ассоциатов и параметры, характеризующие их (в основном межионное расстояние и константы ассоциации) являются как функциями диэлектрических проницаемостей равновесных фаз, так и свойств и строения соответствующих растворителей [56]. Кроме того, поскольку при извлечении рения, как это было показано ранее, в состав ряда сольватов входит вода [20] и поскольку органические растворители в той или иной степени взаимодействуют с ней, необходимо изучение ряда равновесных систем, а также различных факторов, влияющих на соответствующие равновесия [21—26]. [c.247]

    Константы ассоциации ионов солей в смешанных растворителях и зависимость константы ассоциации от взаимодействия ассоциатов с растворителем. [c.699]

    На.ми были рассчитаны константы обмена ионов стекла в разных неводных растворах. Оказалось, что константы в неводных растворах больше, чем в воде. В смешанных растворителях они тем больше, чем больше неводного растворителя в смеси. Константа определяется так же, как в водных растворах, но вместо Ки применяется ионное произведение неводного растворителя. В чистом этиловом спирте константа стекла равна 10 , т. е. почти на 5 порядков больше, чем в воде. Этим объясняется то обстоятельство, что в неводных растворах ошибки в щелочной области наступают раньше, и поэтому в неводных растворах стеклянный электрод имеет более ограниченную область применения, чем в водных растворах. [c.513]

    Титрование оснований в неводных растворителях. Растворители для определения слабых оснований должны обладать протонодонорными свойствами и иметь небольшую константу автопротолиза. Для титрования слабых оснований часто применяются уксусная кислота и ее смеси с уксусным ангидридом, чистый уксусный ангидрид, муравьиная кислота в смеси с уксусной, а также в смеси с нитрометаном, уксусным ангидридом и диоксаном, ацетон, метилэтнлкетон и другие кетоны, метиловый, этиловый, пропиловый и другие спирты, диметилсульфоксид и т. д., Широко применяются смешанные растворители, такие, как диоксан — хлороформ, диоксан — уксусная кислота — нитрометан и т. д. [c.218]

Таблица 47. Константы диссоциации некоторых цпетных индикаторов в воде, неводных и смешанных растворителях (в единицах рйГ) Таблица 47. <a href="/info/1513783">Константы диссоциации некоторых</a> цпетных индикаторов в воде, неводных и <a href="/info/8339">смешанных растворителях</a> (в единицах рйГ)

    Однако эта формулировка недостаточна для утверждения, что катализатор не влияет на равновесие. Можно привести примеры, что вещество, удовлетворяющее приведенной формулировке, смещает равновесие процесса. Например, константа равновесия Кс (константа равновесия выражена через концентрации реагентов) диссоциации тетраоксида диазота Ы204Ч= 2К02 в растворе хлороформа оказывается в 100 раз меньше, чем ее значение в газовой фазе при той же температуре. Имеются неоднократные подтверждения того, что реакции между веществами, проведенные в различных растворителях, приводят к разным равновесным концентрациям компонентов процесса. Так, было показано, что направление ионных реакций обмена в смешанных растворителях может меняться в зависимости от природы растворителя. Разумеется, если каждое вещество характеризовать активностью и правильно выбирать его стандартное состояние в различных условиях, то константа равновесия, выраженная через активности Ка, будет неизменна при одной и той же температуре. Но активность представляет собой вспомогательную расчетную термодинамическую функцию, которая Б суммарной форме характеризует степень связанности молекул компонента. Она зависит от вида и концентрации каждого из других компонентов системы, от давления и температуры. [c.168]

    Скорость реакции С2Н5ВГ с эвгенолятом натрия, проведенная в растворителе, состоящем из эвгенола и изопропилового спирта в соотношении 1 1, оказалась наибольшей при давлении порядка 2 ГПа. Вероятно, это связано с чрезвычайно сильным увеличением вязкости эвгенола при возрастании давления, из-за чего вязкость смешанного растворителя уже при р = 2 ГПа оказалась равной примерно 10 Па-с. Константа скорости этой реакции при р = 4 ГПа уменьшилась в пять раз по сравнению с константой скорости при 2 ГПа это обусловлено тем, что вязкость смешанного растворителя при 4 ГПа становится чрезвычайно большой примерно 10 2 Па-с. В этом случае наблюдается вызванный увеличением давления переход реакции из кинетической области в диффузионную. [c.190]

    Применение смешанных растворителей оказалось весьма важным в методах нейтрализации, или протолиза. В этом случае константы диссоциации кислот и оснований обычно значительно больше, чем в водной среде. Например, какую-нибудь аммонийную соль в водном растворе нельзя точно оттитровать раствором гидроокиси натрия или калия, так как диссоциация NH4OH мала. Однако при титровании в смешашюм растворителе, содержащем только 0% воды и 90% этилового спирта, в присутствии индикатора аммонийную соль можно точно оттитровать едкой щелочью. Константа диссоциации увеличивается в этих условиях. Поэтому интервал скачка титрования становится большим. [c.326]

    В обычных условиях точно нельзя оттитровать ацетат натрия Na 02 H. ,, так как получающаяся уксусная кислота заметно диссоциирована (/С==2-10 ) и вызывает изменение окраски метилового оранжевого задолго до точки эквивалентности. Если же титровать в смешанном растворителе, содержащем 30% воды и 70% ацетона, то константа диссоциации сильно уменьшается, и Na 02 H l можно точно оттитровать соляной кислотой, как и многие другие соли органических кислот. [c.327]

Рис. 8. Зависимость констант скорости реакции ионов тетраброифеиолсульфофталеииа с ионами гидроксила в смешанных растворителях от днэлектрическон проницаемости. Рис. 8. <a href="/info/9213">Зависимость констант скорости реакции</a> ионов тетраброифеиолсульфофталеииа с <a href="/info/7842">ионами гидроксила</a> в <a href="/info/8339">смешанных растворителях</a> от днэлектрическон проницаемости.
Рис. 10. Зависимость константы скорости реакции гидролиза трег-бутилхлорида от диэлектрической нроиицаемости смешанного растворителя вода- -этаиол различного состава (25 °С). Рис. 10. <a href="/info/9213">Зависимость константы скорости реакции</a> гидролиза трег-бутилхлорида от диэлектрической нроиицаемости <a href="/info/8339">смешанного растворителя</a> вода- -этаиол различного состава (25 °С).
Таблица 7.3. Константы скорости диссоциации (Х)ЬпТФП в смешанных растворителях уксусная кислота-этанол при 298-333 К Таблица 7.3. <a href="/info/263524">Константы скорости диссоциации</a> (Х)ЬпТФП в смешанных <a href="/info/67982">растворителях уксусная кислота</a>-этанол при 298-333 К
    В работе [80] рассматривается зависимость ионного обмена в цеолите А на щелочные ионы (литий, натрий и т. д.) в смешанных растворителях (система вода — метанол) от диэлектрической проницаемости раствора. Добавление метанола в раствор повышает кажущуюся константу равновесия для всех катионов, кроме лития. В случае лития константа равновесия снижается с увеличением концентрации метанола, что может быть связано с высокой энергией гидратации ионов лития. Значения исправленных коэффициентов селективности линейно зависят от содержания катиона в обменнике в соответствии с уравнением Килланда — Баррера. Стандартная свободная энергия обмена во всех случаях — величина положительная, как и при обмене натрия в цеолите NaA на другие щелочные катионы в водном растворе. Это позволило сделать вывод, что цеолит А более избирателен по отношению к натрию, "чем к другим щелочным катионам, вне зависимости от того, проводится ли обмен в воде или в смешанном растворителе [80]. [c.602]

    Вообще можно использовать два типа элементов без жидкостного соединения. Элементы первого типа, содержащие буферные растворы, особенно удобны для определения констант диссоциации в случае чистых растворителей, смешанных растворителей и растворов солей. С помощью элементов второго типа, содержащих небуферные растворы, можно получать дополнительные данные о влиянии среды. Метод электродвижущих сил во многих случаях заслуживает предпочтения по сравнению с методом определения ронстант диссоциации из данных по электропроводности. [c.449]

    На примере рассматриваемой реакции был изучен весьма важный для данного типа превращений вопрос о влиянии свойств реакционной среды на скорость и равновесие. С этой целью реакция проводилась в смешанных растворителях, содержащих различные количества органического компонента — 3-метил-1,3-бутандиола, п-диоксана, сульфолана, нитрометана и т. д. При увеличении доли п-диоксана от О до 807о значение /Ср уменьшается в 20—30 раз (рис. 72). На скорость прямой и обратной реакций изменение состава растворителя влияет по-разному. Для реакции гндролиза соответствующая зависимость, по существу, является антибатной по сравнению с зависимостью от состава растворителя функции кислотности Яо, что, очевидно, находится в согласии с упоминавшимся выше соотношением Гаммета. Константа скорости реакции образования диметилдиоксана от состава растворителя зависит более сложным образом добавление п-диоксана яо 50—55% практически не сказывается на скорости, а при дальнейшем возрастании доля органического компонента на 15—20% значение к увеличивается в десятки раз. Этот результат, по-видимому, свидетельствует об изменении механизма реакции образования диметилдиоксана при переходе от водного растворителя к органическому, о чем свидетельствует также резкое изменение энтропии активации данной реакции (табл. 55). [c.222]

    Каждый растворитель характеризуется определенной величиной константы автопротолиза К ), которая определяет шкалу кислотности растворителя (р/Сз)- Чем больше шкала кислотности, тем больше наблюдаемые при титровании в среде такого растворителя скачки титрования и тем больше возможность дифференцированного титрования смесей электролитов. Однако коистанты автопротолиза определены для немногих растворителей, в число которых не вошли некоторые растворители, получившие наибольшее практическое применение в аналитической химии (например, кетоны, нитропроизводные углеводородов, смешанные растворители). [c.55]

    Для определения соединений, проявляющих в неводных растворах основные свойства, в качестве сред для титрования используют протолитические (протогенные или амфипротные), апротонные и различные смешанные растворители. Из протогенных растворителей для определения слабых оснований широкое применение получила безводная уксусная кислота [51—55, 60—63, 157—163]. Добавление углеводородов, их галогенпроизводных и диоксана к уксусной кислоте повышает резкость конечной точки титрования [164—169], так как уменьшается константа автопротолиза (ионное произведение) среды. Однако титрование в среде уксусной кислоты имеет ряд недостатков [18]. [c.79]

    Стеклянный электрод применялся для определения констант диссоциации слабых кислот и оснований в ацетонжриле [47] и константы автопротолиза ацетонитрила [48]. Кажущиеся величинь рК обширной серии органических кислот и оснований в смешанном растворителе вода — гликольмонометиловый эфир были также определены с помощью стеклянного электрода [49]. [c.199]

    С точки зрения электролитической теории как будто небольшая разница для процесса, присоединяется ли при кислотном катализе временно к реагирующим молекулам недиссоциированная молекула кислоты или присоединяется такой комплексный катион, как сольватированный растворителем водородный ион, или соответственно при щелочном катализе присоединяется недиссоцииро-ванное основание, анион кислоты, гидроксильный ион или другой акцептор протонов, вызывающий отдачу протона реагирующей молекулой. Каталитическое поведение различных доноров-протонов и акцепторов-протонов выражается константами их удельного каталитического действия, отражаюхцими индивидуальные скорости, с которыми происходят отдача и принятие протонов. Специфическое каталитическое действие комплексных ионов, образованных из Н+ ионов и молекул растворителя, часто весьма различно. Комплексные ионы воды <Нз0)+, спирта (СаН50Н2)+. В смешанном растворителе, например воде, содержащей спирт, устанавливается равновесие между отдельными видами комплексных ионов, и небольшой сдвиг в нем может сильно влиять на ход реакции. Комплексы, образованные Н+ ионами и молекулами спирта НОН+, могут быть каталитически более активны, чем те комплексы, которые образованы Н+ ионами и молекулами воды НОН . С этой точки зрения Гольдшмитд [191, 192] пытался объяснить замедляющее действие воды в кислотном катализе при реакции этерификации в спиртовых растворах. На основе химического равновесия, известного как кислотно-основное равновесие, можно получить определение кислоты и основания  [c.205]

    Константы передачи цепи на ароматические соединения при полимеризации стирола под влиянием четыреххлористого олова в смешанном растворителе СС14— eHgN02 при 0° [48] [c.320]

    Константы дисссциации некоторых цветных индикаторов в воде, неводных и смешанных растворителях [c.913]


Смотреть страницы где упоминается термин Константы в смешанных растворителях: [c.345]    [c.408]    [c.256]    [c.109]    [c.111]    [c.199]    [c.393]    [c.211]    [c.480]    [c.111]    [c.60]    [c.187]    [c.314]    [c.422]   
Современная химия координационных соединений (1963) -- [ c.18 ]




ПОИСК





Смотрите так же термины и статьи:

Растворители смешанные



© 2024 chem21.info Реклама на сайте