Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Направление ионных реакций

    В аналитической химии часто проводится растворение труднорастворимых солей путем перевода в комплексное соединение. Равновесие между насыщенным раствором твердой соли и твердой фазой смещается при изменении концентрации одного из ионов. Равновесие восстанавливается только за счет растворения труднорастворимой соли. При избытке комплексообразователя можно растворить весь осадок. Направление течения реакции в сторону осаждения или растворения соли зависит от произведения растворимости и константы устойчивости комплексного соединения. [c.423]


    Направление ионных реакций [c.186]

    Таким же образом можно предвидеть легкость протекания и направление ионных реакций. Например, в ароматическом ряду электронодонорные группы (метоксилы) облегчают электрофильные атаки и ориентируют в орто-иара-положения. Электроноакцепторные группы (нитро) затрудняют подобные атаки и ориентируют в лета-положение. Эти группы, однако, способствуют ориентации в орто-пара-положения при нуклеофильных атаках, например при галоидировании нитропроизводных ароматического ряда. [c.107]

    Окислительно-восстановительные реакции весьма типичны для кислородных соединений азота и фосфора. Для определения направления протекания окислительно-восстановительных реакций можно использовать значения стандартных электродных потенциалов или свободной энтальпии АО. Наглядное представление о положении равновесия или о направлении хода реакций (без учета кинетических факторов) можно получить из диаграммы окислительных состояний элемента в водном растворе. Для ее построения необходимо найти степень окисления элемента в простом соединении или ионе (если атомы элемента связаны только с атомами кислорода или водорода), которая численно равна формальному заряду на атоме элемента, если принять для атома кислорода заряд —2, а для атома водоро- [c.540]

    Влияние давления водорода на селективность протекания Сз- и Сб-дегидроциклизации н-гептана и н-октана в присутствии нанесенных Pt-катализаторов обсуждается в интересном цикле работ И. И. Левицкого, X. М. Ми-начева и сотр. [132—135]. В частности показано, что увеличение давления Нг изменяет направления Сз- и Сб-дегидроциклизации н-октана при 375°С над Pt/ в сторону большего образования 1,2-дизамешенных циклов (1-метил-2-этилциклопентан и о-ксилол). Предполагают, что обе реакции проходят через обшую стадию— образование моноадсорбированных комплексов, строение которых определяет направление этих реакций, а последуюшие превращения ведут к возникновению пя-ти- или шестичленных циклов. При этом авторы исходят из развиваемой ими концепции, согласно которой направления Сз- и Сб-дегидроциклизации н-октана определяются соотношением эффективных зарядов С-атомов реагирующей молекулы углеводорода и атомов (ионов) металла, входящего в катализатор. В зависимости от указанного соотношения атом металла вытесняет из молекулы углеводорода либо протон (далее осуществляется протонный механизм), либо гидрид-ион ( гидрид-ионный механизм) с последующим образованием моно-адсорбированного комплекса. Последующий путь циклизации н-октана с образованием пятичленного цикла или ароматического углеводорода определяется второй стадией процесса циклизации — образованием диадсор-бированного комплекса. Представления, изложенные в работах [132, 134], иллюстрируются следующей схемой, [c.234]


    Теоретическое пояснение. Если в раствор, содержащий окисленную и восстановленную формы одного и того же вещества, например Fe + и Fe +, опустить платиновый электрод, то он приобретает определенный редокс-потенциал. Возникновение редокс-потенциала у индифферентного платинового электрода связано со способностью ионов Ее + и Fe + присоединять или отдавать электроны, находящиеся на платине — передатчике электронов. Происходит обмен электронами между инертным электродом и ионами. Если, например, окисленная форма Ре + получает от платинового электрода электроны, восстанавливаясь до ионов Fe +, то электрод заряжается положительно, а раствор — отрицательно за счет избыточной концентрации анионов, например С1 , если в растворе соль ЕеС1з. Присоединение электрона ионом Fe + становится постепенно более затруднительным и, наконец, устанавливается равновесие между положительно заряженным электродом и слоем анионов, определяющее величину редокс-потенциала. В конечном итоге происходит реакция ЕеЗ++е ч=ьЕе +. Направление данной реакции зависит от [c.104]

    При изучении И аналитической группы катионов мы впервые встретимся с реакциями отделения друг от друга как отдельных ионов, так и целых групп их. Чтобы сознательно отнестись к этой важнейшей операции анализа, необходимо познакомиться с теорией ее. Поэтому, кроме реакций и хода анализа катионов П группы, здесь рассматриваются очень важные для аналитической химии вопросы образования и растворения осадков, а также направления ионных реакций обмена. [c.64]

    ИЗ раствора способна разряжаться и выделяться на металле (процесс восстановления). Как только скорости этих двух противоположно направленных электрохимических реакций становятся равными, устанавливается динамическое равновесие, при котором в единицу времени столько ионов покидает металл, сколько разряжается на нем. В зависимости от того, какой процесс преобладает, на металле возникает избыток положительных или отрицательных зарядов, а раствор вблизи поверхности металла получает противоположный заряд. Следствием этого является возникновение разности потенциалов на поверхности раздела металл — раствор. [c.345]

    Начиная со времен Лавуазье химики могли предсказывать, в каком направлении пойдут те или иные быстрые ионные реакции относительно небольших молекул, и могли модифицировать эти реакции с целью их практического использования. Изучать сложные молекулы было гораздо труднее. Медленные реакции органических соединений также гораздо труднее поддавались анализу. Часто реакции могли идти несколькими путями, и направить реакцию по нужному пути химику позволяли его мастерство экспериментатора и интуиция, а не глубокое понимание процесса. [c.161]

    Очевидно, результаты расчета направления окислительновосстановительных реакций и электрохимического равновесия их в элементах применимы к тем же реакциям, но протекающим при непосредственном смешении растворов, содержащих различные ионы. Рассмотрим несколько примеров. [c.584]

    Чтобы не отрывать основное содержание монографии от тенденций развития и разработки новых технологических процессов, в первой главе в конспективной форме даются аннотированные результаты таких исследований и формулируются основные направления технического прогресса в этой области. Во второй главе кратко излагаются основные фундаментальные положения механизма радикальных и ионных реакций, а также теории катализа, необходимые для интерпретации материала последующих глав. [c.6]

    Сложные превращения веществ в реакциях изомеризации и рас-щеп.тения во многих случаях удовлетворительно объясняются соотношением радикальных и ионных. реакций. Изменением состава и свойств катализаторов уже возможно усиливать их способность ускорять либо ионные, либо радикальные превращения. Однако стройной и законченной системы взаимосвязи состава и свойств гидрирующих катализаторов с их активностью и селективностью нет. Во многих случаях эмпирически найденные весьма активные катализаторы не изучены даже настолько, чтобы судить об их химическом и фазовом составах. Это направление исследований — изучение взаимосвязи свойств катализаторов с механизмом и кинетикой протекающих в их присутствии реакций — является ключевым для создания новых гидрогенизационных процессов, в том ч сле процессов гидроочистки нефтей и нефтяных остатков и более селективных процессов гидрокрекинга. [c.336]

    Хотя теоретически необратимый процесс можно представить протекающим в определенных условиях обратимо, т. е. в принципе можно считать все реакции обратимыми, однако химику нередко приходится встречаться с процессами, в которых преобладает реакция, идущая в одном направлении. Это бывает в тех случаях, когда продукты взаимодействия удаляются из сферы реакции (выпадение осадка, выделение газа, образование — в случае ионных реакций — практически недиссоциированных продуктов), или же, когда за счет огромного избытка исходных веществ противоположный процесс практически подавляется. Таким образом, естественное или искусственное исключение возможности обратной реакции позволяет довести процесс практически до конца. [c.31]


    Каталитическую константу /гон- определяют измерением скоростей реакций в щелочных растворах при различных концентрациях ОН" и 5. Если катализ может осуществляться обоими ионами и ОН" и если реакция одновременно идет по двум направлениям, скорость реакции может быть записана так  [c.416]

    Этот принцип позволяет объяснить и в ряде случаев предвидеть условия протекания и направление синхронных реакций, т. е. реакций, в которых разрыв старых и образование новых связей осуществляются одновременно, а не разделены во времени, как это имеет место в ионных, ион-радикальных и радикальных процессах. [c.211]

    Так как (—0,14) > (—0,41), то в прямом направлении протекает реакция восстановления ионов олова. Реакция, характеризующаяся меньшим потенциалом, будет протекать в обратном направлении, т. е. [c.329]

    Следовательно, энергетические данные, полученные по спектрам поглощения, соответствуют наблюдаемым направлениям химических реакций с участием комплексных ионов. [c.347]

    Для того чтобы убедиться в возможности и направлении протекания ионных реакций, можно рассчитать изменение энергии Гиббса. [c.218]

    Однако эта формулировка недостаточна для утверждения, что катализатор не влияет на равновесие. Можно привести примеры, что вещество, удовлетворяющее приведенной формулировке, смещает равновесие процесса. Например, константа равновесия Кс (константа равновесия выражена через концентрации реагентов) диссоциации тетраоксида диазота Ы204Ч= 2К02 в растворе хлороформа оказывается в 100 раз меньше, чем ее значение в газовой фазе при той же температуре. Имеются неоднократные подтверждения того, что реакции между веществами, проведенные в различных растворителях, приводят к разным равновесным концентрациям компонентов процесса. Так, было показано, что направление ионных реакций обмена в смешанных растворителях может меняться в зависимости от природы растворителя. Разумеется, если каждое вещество характеризовать активностью и правильно выбирать его стандартное состояние в различных условиях, то константа равновесия, выраженная через активности Ка, будет неизменна при одной и той же температуре. Но активность представляет собой вспомогательную расчетную термодинамическую функцию, которая Б суммарной форме характеризует степень связанности молекул компонента. Она зависит от вида и концентрации каждого из других компонентов системы, от давления и температуры. [c.168]

    Некоторые указания на важность взаимодействия молекул в растворах дает тот факт, что из многих тысяч реакций, которые были изучены в растворе, менее чем 20 могут быть изучены для сравнения в газовой фазе. Изучение ионных реакций почти полностью ограничивается растворами по вполне понятным причинам при температурах ниже 1000° К скорость ионных процессов в газовой фазе практически равна нулю. Это объяснение приемлемо для большинства реакций, протекающих в растворах, поскольку, как показано далее, в большинстве реакций между полярными молекулами принимают участие ионы в качестве промежуточных частиц. Например, такая широко известная реакция, как гидролиз амилгалогенов или эфиров в газовой фазе, идет неизмеримо медленно (по крайней мере до тех температур, пока не начинают преобладать другие направления реакции). Единственный большой класс реакций, которые можно изучать как в газовой, так и в жидкой фазе,— свободно-радикальные реакции. Несомненно, этот тип реакций в дальнейшем будет все более тщательно изучаться и даст богатый материал для сравнения кинетического поведения веществ в газовой и жидкой фазах .  [c.423]

    Влияние растворимости на направление ионных реакций выступает особенно отчетливо, когда какой-либо ион может образовать с находящимися в растворе ионами (противоположного знака) не одно, а два или более труднорастворимых соединений. Опыт показывает, что в этом случае в первую очередь образуется то вещество, которое наименее растворимо. Например, если слить вместе растворы Na I и Na2 r04 и на смесь подействовать раствором AgNOa, то получим  [c.288]

    Этим и определяется различное направление ионной реакции между HSi lg или HGe lg и упомянутыми галогенидами  [c.151]

    В соответствии с электростатической теорией направление ионных реакций в газовой фазе определяется почти исключительно кулоновским притяжением разноименно заряженных реагентов [366]. Следует ожидать, что в растворе, несмотря на важную роль сольватационных факторов, легче должно реагировать с данным электрофилом то соединение, в молекуле которого имеется углеродный атом с наибольшим отрицательным л-зарядом (межмолекулярная селективность). Этот же атом должен стать объектом преимущественной атаки электрофила в пределах одной молекулы (позиционная селективность). Уже сам факт, что л-избыточные гетероциклы взаимодействуют с электрофилами несравненно легче л-дефицитных, а л-амфотер-ные азолы занимают положение между ними, говорит о существенной роли электростатических факторов. Относительная реакционная способность однотипных гетероциклов также во [c.192]

    Маскировкой химической реакции называют торможение или пс лное подавление реакции в присутствии веществ, способных из-М( нять скорость или направление этой реакции. Вещества, вводимые в раствор с целью торможения или подавления реакции, называют маскирующими агентами- или маскирователями. Чаще всего это вещества, способные давать комплексные соединения с ионами, принимающими участие в реакции осаждения. Например, если в раствор соли Ре + ввести Р -ионы, то при добавлении щелочей или аммиака из раствора не будет выделяться осадок водной окиси железа, так как Ре + связывается в прочные комплексные анионы, как правило, в рер . В этом случае Р"-ион является маскирователем реакции Ре + с ОН-. Иногда вместо маскировки реакции говорят о маскировке ионов , причем под маскировкой следует понимать маскировку всех реакций, возможных с этим ионом в данной реакционной среде. [c.94]

    Направление (обменной реакции между двумя электролитами в растворе оПр деляЁТ-СЯ .в.озмажносхью.....образования их ионами  [c.124]

    Напротив, перегруппировка по типу 15]у2-замещепия способствует стереохимически направленному протеканию реакции. При ]у2-реакциях мигрирующая группа атакует неискаженный, тетраэдрический заряженный атом углерода. Такой атаке более доступна сторона, противоположная элиминированному заместителю (в рассматриваемых случаях это гидрид-ион). Следствием определенной ориентации реакционных центров является фиксированное положение входящего (мигрирующего) заместителя, а отсюда — высокая степень стереоспецифичности замещения. В этом случае уже невозможно существование двух, разделенных Энергетическим барьером ионов, как это имеет место в реакциях типа а существует лишь один неклассический ион , про- [c.162]

    В основе этой тенденции лежит общий закон, определяющий направление химической реакции. Ее движущей силой является изменение энергии Гиббса, которое должно удовлетворять условию ДС°<0. Чем меньше алгебраическая величина AG°, тем больше химическое сродство реагирующих веществ и тем больше сдвиг равновесия в направлении образования продуктов реакции. Так, сопоставляя реакции образования малорастворимых галогенидов серебра из состаЕ ляю щих их ионов в растворе, например Ag (р) + I (р) -fi- Ag l (T) [c.128]

    Ранее были рассмотрены реакции радикально-цепного хлорирования ароматических соединений (замещение в боковую цепь н присоединение по С—С-связям ядра). Замещение в ядро происходит в присутствии катализаторов ионных реакций, когда оно ста-новися практически единственным направлением хлорирования ароматических соединений. [c.135]

    С помощью новых высокоэффективных методов — ЯМР, ЭПР, ИКС, меченых атомов и др.— от изучения вопросов о направленности протекания реакции электрофильного замещения исследователи смогли перейти на более углубленную разработк задач, связанных с установлением причин, обусловливающих эти превращения. Количественная оценка различных характеристик реакций электрофильного замещения в ароматическом ряду связана с реакционной способностью атакующих групп и электронной структурой ароматических компонентов. Известно, что энтальпия образования ДЯ°ст ионов карбонияв значительной степени характеризует их стабильность и реакционную способность (табл. 4.1). [c.86]

    Ионика и электродика исследуют как равновесные, так и неравновесные явления и процессы. Изучение свойств ионных систем в равновесных условиях позволяет развить представления о строении растворов и расплавов электролитов и твердых электролитов, тогда как измерения в неравновесных условиях дают сведения об электропроводности ионных систем, а также о кинетике ионных реакций. В электро-дике исследованием равновесий на границе электрод — раствор (расплав) занимается электрохимическая термодинамика. Измерения скоростей процессов на этой границе и выяснение закономерностей, которым они подчиняются, составляют объект кинетики электродных процессов или электрохимической кинетики. В настоящее время кинетика электродных процессов представляет собой одно из наиболее быстро развивающихся направлений теоретической электрохимии. [c.6]

    Кинетика ионного обмена. В результате химической реакции в растворе ионы перемещаются по направлению к ионообменной смоле или от нее. В этом случае общая скорость ионообмена будет зависеть от скоростей этапов диффузии через неподвижный слой зерен ионообменной смолы, а также скорости химической реакции на поверхности обмена. Так как ионные реакции протекают с очень большой скоростью, этапом, который определяет скорость процесса, является диффузия ионов через неподвижный спой. На межфазной поверхности системы жидкость — твердое тело практически мгновенно устанавливается равновесие. [c.339]

    Основным направлением в реакциях изомеризации насыщенных циклических углеводородов является консекутивная многостадийная схема, приводящая к получению термодинамически наиболее устойчивых углеводородов. При этом промежуточные продукты накапливаются в продуктах реакции в количествах, определяемых соотношением скоростей их возникновения и дальнейшего превращения в соответствии с хорошо известными закономерностями для консекутивных реакций. Все это дает возможность выделить и исследовать промежуточные углеводороды и таким образом доказать предполагаемую схему реакции. Однако иногда схема изомеризации усложняется тем, что реакция протекает без образования промежуточных углеводородов или последние образуются только частично. Такое направление реакции связано с тем, что промежуточно возникающие ионы карбония имеют тенденцию к дальнейшим перегруппировкам без стабилизации в виде углеводородов. Такое затруднение в стабилизации обычно бывает вызвано стерическими факторами, препятствующими присоединению гидрид-иона, как, например, в мостиковом атоме углерода среди норборнанов. В этих случаях реакции протекают или сразу до образования конечных термодинамически устойчивых углеводородов (согласованный механизм) или в процессе реакции происходит стабилизация ионов в углеводороды на какой-то одной из промежуточных стадий. [c.247]

    Энергия активации процессов перегруппировки в ионах невелика и соизмерима с таковой в нейтральных молекулах. Благодаря малой энергии активации достигается высокая степень подннжиости атомов и связей в молекулярном ионе [43]. В углеводородах разница в энергиях происходящих атомных перегруппировок невелика и эти процессы были названы Мак-Лафферити случайными . Этот термин отражает отсутствие преимущественного направления подобных реакций. [c.25]

    Редокс-электродом (окислительно-восстановительный электрод) называется химически инертное электропроводящее тело, погруженное в раствор, содержащий одновременно восстановленную (Red) и окисленную (Ох) формы одного и того же вещества. Такое тело может обмениваться с раствором обеими формами вещества, восстанавливая окисленную или окисляя восстановленную его форму. Например, платиновая проволока, погруженная в раствор, содержащий Sn h и Sn U, адсорбирует ионы Sn2+, окисляет их и десорбирует ионы Sn + или, наоборот, адсорбирует ионы Sn +, восстанавливает их и десорбирует ионы Sn +, в зависимости от направления электрохимической реакции. Состав такого электрода обозначают так PtlSn +, Sn +l. [c.187]

    Некаталитический путь (схема а) требует образования в качестве промежуточного продукта нестабильного (термодинамически неустойчивого) иона НО". Механизм общекислотного катализа (схема б) состоит в передаче протона из молекулы катализатора АН в прямом направлении реакции и в удалении протона сопряженным основанием катализатора в обратном направлении. Вторая реакция — гидролиз ацилимидазола — поддается катализу общими основаниями  [c.62]

    Следует особо подчеркнуть возможность применения катализаторов для изменения направления реакции ( управления реакцией ), например в физиологических процессах, а также в органических реакциях. Примером изменения направления реакции с помощью катализа может служить окисление тиосульфата пероксидом водорода в кислой среде. В присутствии иодид-иона реакция заканчивается образованием 340б , а в присутствии молибденовой кислоты — образованием 8042-, [c.195]

    Одним из условий, определяющих направление химических реакций в растворах электролитов, является возможность образования их ионами малодиссоциированных соединений или сложных ионов. Так, при взаимодействии ацетата натрия с какой либо сильной кислотой равновесие смещается в сторону образования малодиссо-циированной уксусной кислоты [c.32]

    Значения стандартных электродных потенциалов ряда окислительно-восстановительных полуреакций при 25 °С представлены в табл. VI. 1. При помощи таблицы стандартных потенциалов можно легко составлять уравнения самых различных химических реакций, решать вопрос о направлении этих реакций и полноте их протекания. Рассмотрим, например, используемую в аналитической химии реакцию открытия иона Мп + при помощи висмутата натрия. Катион Мп + при реакции с BiOa- окисляется до аниона перманганата МПО4", который легко обнаруживается по фиолетовой окраске раствора. Из таблицы стандартных потенциалов имеем [c.128]

    Обменные реакции в растворах относятся к ионным реакциям, протекающим в обоих направлениях с большими скоростями (практически мгновенно). Они представляют пример химического равновесия, к которому применим принцип смещения равновесий Ле Шателье. В соответствии с этим принципам реакцию можно провести достаточно полно, если какое-либо вещество будет удаляться в ходе ее протекания. Удаление вещества в них осуществляется либо за счет более прочного связывания ионов с образованием малорастБоримого или слабодиссоциированного соединения, либо за счет выделения газообразного продукта реакции. [c.34]


Смотреть страницы где упоминается термин Направление ионных реакций: [c.256]    [c.339]    [c.189]    [c.103]    [c.22]    [c.165]    [c.21]   
Смотреть главы в:

Курс общей и неорганической химии -> Направление ионных реакций




ПОИСК





Смотрите так же термины и статьи:

Реакции направление



© 2025 chem21.info Реклама на сайте