Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нафталин синтез

    Термическая устойчивость ароматических углеводородов сильно изменяется с изменением их строения. Незамещенные и метил-замещенные бензол и нафталин имеют слабейшие связи прочностью соответственно 427 и 322 кДж/моль (102 и 77 ккал/моль) и значительно более термоустойчивы, чем парафиновые углеводороды. Ароматические углеводороды, имеющие слабую связь С-С, сопряженную с ароматическим кольцом, разлагаются быстрее парафиновых. Линеарно конденсированные ароматические углеводороды с тремя и более циклами (антрацен, тетрацен и т. д.) легко вступают в реакцию диенового синтеза подобно бутадиену и легко конденсируются при низких температурах. [c.84]


    Тенденции, отмеченные у нафталина, еще в большей мере проявляются у фенантрена и особенно у антрацена. Эффект стабилизации у фенантрена составляет 385,10 кДж/мюль, а у антрацена 351,69 кДж/моль. В случае присоединения двух атомов водорода к антрацену понижение энергии сопряжения составляет всего 50,2 кДж/моль. Антрацен и фенантрен более реакционноспособны, чем нафталин и, тем более, чем бензол. В значительно большей степени антрацен и фенантрен способны к реакциям присоединения, идущим, как правило, по лезо-углеродным атомам 9 и 10. Среднее кольцо у антрацена отличается особой ненасыщенностью. Так, при взаимодействии с диенофилами, например с малеиновым ангидридом, образуется сравнительно стабильный продукт диенового синтеза  [c.21]

    Бурное развитие органической технологии — производство пластических масс, химических волокон, синтетических каучуков, лаков, красителей, растворителей и т. п. — требует огромных количеств углеводородного сырья, которое получается в результате химической переработки различных топлив. До недавнего времени основным источником сырья для органического синтеза был уголь, из которого при коксовании получают бензол, толуол, ксилолы, фенол, нафталин, антрацен, водород, метай, этилен и другие продукты. В нефти, находящейся в недрах земли, всегда присутствуют растворенные газы, которые при добыче выделяются из нее. Эти так называемые попутные газы содержат метан, этан, пропан, бутан и другие углеводороды. На 1 т нефти в среднем приходится 30—50 м попутных газов, которые являются ценным сырьем для химической промыщленности. Источником углеводородного сырья служат также газы, получаемые при переработке нефти крекинге, пиролизе, риформинге. В этих газах содержатся предельные углеводороды метан, этан, пропан, бутаны и непредельные углеводороды этилен, пропилен и др. Наряду с газообразными углеводородами при переработке нефти могут быть получены ароматические углеводороды бензол, толуол, ксилолы и их смеси. [c.29]

    Широкое применение в основном органическом синтезе находит и нафталин, выделяемый главным образом из каменноугольной смолы. Извлечение нафталина из Н( фти неэкономично вследствие низкого его содержания в нефтяных фракциях. Однако разработаны процессы и начато промышленное производство нафталина гидродеалкилированием алкилнафталинов, содержаш,ихся в тяжелых фракциях катализатов риформинга и в каталитических крекинг-газойлях. Для производства нафталина могут быть использованы установки гидродеалкилирования толуола. Нефтехимический нафталин легче получить с высокой степенью чистоты, которая необходима при последующих синтезах в присутствии катализаторов, по сравнению с коксохимическим нафталином. [c.168]


    При высоких давлениях, в особенности когда плотность газа становится сравнима с плотностью жидкости, образование газовых растворов сопровождается изменением объема и тепловым эффектом. Механизм растворения веществ в сжатых газах принципиально не отличается от механизма растворения в жидкости. В сжатых газах растворение веществ достигает значительных величин. Так, при l 10 Па и 100"С азот растворяет до 10 молярных долей бензина (%), а этилен при 2,4-10 Па и 50° С — до 17 молярных долей нафталина (%). Сжатые газовые растворы используются в технике для синтеза некоторых минералов. Например, растворимость кварца при высоких температурах в сжатом водяном паре, насыщенном некоторыми солями, используется для выращивания крупных (массой до нескольких килограммов) кристаллов. [c.126]

    Другим способом синтеза бифункциональных металлорганических катализаторов является взаимодействие щелочных металлов с некоторыми ароматическими углеводородами (нафталин, антрацен, фенантрен, дифенил, терфенил и т.- п.), а также с некоторыми ароматическими производными этилена (стильбен, 1,1-дифенил-этилен, трифенилэтилен и т. д.). Реакция протекает обычно в полярных растворителях через стадию образования ион-радикала [3, с. 365]  [c.413]

    Для выделения ароматических углеводородов с конденсированным циклами (нафталин, антрацен, фенантрен) используют главным образом методы кристаллизации. Из антраценовых фракций каменноугольной смолы (270—350 °С) сплавлением с едким кали и последующим гидролизом выделяют еще одно ценное для органического синтеза вещество — карбазол  [c.70]

    Ион металла при этом восстанавливается в одну из низших валентных форм. В результате совместного действия кислорода и углеводорода ионы металлов часто находятся в разных валентных состояниях, что в среднем соответствует некоторой дробной величине. Так, ион ванадия при окислении нафталина воздухом имеет среднюю валентность 4,3 вместо 5 в УгОб. Очевидно, что состояние иона металла определяется окислительно-восстановительными свойствами среды и зависит от соотношения кислорода и углеводорода, от наличия водяных паров и т. д. При этом в начальный период работы катализатор постепенно формируется в состояние, стабильное для данных условий синтеза, а варьирование условий может изменить его активность и селективность. [c.412]

    Каталитическое окисление нафталина воздухом или воздухом, обогащенным кислородом, широко используют для производства фталевого ангидрида. Фталевый ангидрид является важным полупродуктом в производстве алкидных и полиэфирных смол, пластификаторов для поливинилхлорида и других полимеров, в синтезе красителей. Кроме того, с применением фталевого ангидрида можно получать лекарственные вещества, инсектициды, ускорители вулканизации каучуков, присадки к смазочным маслам, добавки к реактивным топливам и т. д. [c.176]

    Механизм многих каталитических реакций достаточно подробно изучен. К таким реакциям, в частности, относятся окисление сернистого ангидрида, аммиака, метанола, метану, нафталина, синтез аммиака, высших спиртов, конверсия окиси углерода, [c.33]

    Примерно до начала текущего столетия алифатические соединения не играли заметной роли в промышленности органического синтеза. В тот период перерабатывали главным образом такие компоненты каменноугольного дегтя, как бензол, толуол, фенол и нафталин, из которых получали различные промежуточные и товарные продукты. Блестящим примером успехов, достигнутых в результате глубоких научных исследований и разработки технологических процессов, может служить производство красителей и фармацевтических препаратов. [c.7]

    А. Свойства синтетических углеводородов в качестве основных данных. В настоящее время имеется сравнительно немного данных по тяжелым индивидуальным углеводородам. Хорошо известны свойства /i-алканов, некоторых разветвленных алканов и однозамещенных /i-алкильных производных циклопентана, циклогексана, бензола и нафталина. Хотя Американским нефтяным институтом по Проекту 42 (директор Р. В. Шисслер) изучено большое число углеводородов высокого молекулярного веса, но ясно, что до сих пер удалось изучить лишь небольшую часть тех углеводородов, присутствие которых B03M0JKH0. Это и неудивительно, так как синтез таких высокомолекулярных углеводородов, как циклические молекулы с различными заместителями или смешанные нафтено-ароматические соедине- [c.368]

    Лабораторными исследованиями и промышленными испытаниями реакторов доказана целесообразность применения взвешенного слоя для гидрирования окиси углерода с целью синтеза метанола [15, 161, высших спиртов [17], синтина [181 и в синтезе аммиака (т. е. для гидрирования азота на железном катализаторе) [19, 201. Кипящий слой оказался более технологичным и экономичным, чем фильтрующий слой катализатора во многих окислительных процессах, в частности при окислении этилена до окиси [21, 221, нафталина до фталевого ангидрида [23, 241, сернистого газа в серный ангидрид [1,2, 25—271, при окислительном аммонолизе пропилена в производстве акрилонитрила [28, 291. [c.91]


    В качестве примера рассмотрим один из методов, используемых для получения некоторых производных нафталина,— синтез Хеуорса (разработанный Р. Хеуорсом, университет в Дурхэме, Англия). На рис. 35.2 приведена основная схема этого синтеза, который приводит к получению нафталина (естественно, никто не получает нафталин таким способом). [c.1000]

    Недостатком плавленых катализаторов является сравнительно малая величина удельной поверхности. Высокая прочность зерен плавленых катализаторов позволяет применять их в кипящем слое. Так для синтеза аммиака в кипящем слое применяется плавленый железный катализатор, промотированный окислами алюминия, калия, кальция и кремния и гранулированный из расплава в виде сфероидальных зерен. Требуемая пористость зерен достигается при вйс-становлении железа из его окислов. Для окисления нафталина ё кипящем слое применяется плавленый окиснованадиевый катализатор, промотированный сульфатом калия. [c.129]

    В то время как химия каменноугольной смолы базируется на ограниченных сырьевых ресурсах таких соеднненкн, как ароматические углеводороды — бензол, толуол, нафталин и антрацен, фенол, крезол и т. д., промышленность алифатических продуктов располагает практически неограниченными ресурсами углеводородного сырья. Сырьевые ресурсы коксобензольной промышленности ограничиваются каменноугольной смолой они значительно меньше, чем ресурсы промышленности алифатических соединений, включающие нефть и продукты синтеза Фишера — Тропша. Поэтому промышленная переработка алифатических углеводородов уже достигла в настоящее время громадных масштабов. Производство специальных бензинов, растворителей, мягчителей, пластификаторов, пластмасс, синтетических моющих средств, вспомогательных материалов для текстильной промышленности, эмульгаторов и других продуктов в количественном и ценностном выражениях уже значительно превысило продукцию коксобензольной промышленности и приближается к соответствующим показателям основной неорганической химической промышленности. [c.10]

    Окисление аммиака до элементарного азота, глубокое окисление метанола до СО2, наличие побочных реакций при окислении нафталина и в процессе окислительного аммонолиза пропилена предъявляют довольно жесткие требования к технологическому режиму процесса. Все перечисленные факторы и обусловливают температурный режим окислительных процессов. Очевидно, для экзотермических процессов, протекающих вблизи термодинамического равновесия (окисление SOg, H l и др.), надо добиваться понижения температуры с увеличением степени превращения. Для процессов во внешнедиффузионной области (нанример, окисление СНдОН) желателен режим, близкий к изотермическому, особенно для избирательного катализа, при котором отклонение температуры на 10—20 град от заданной (нанример, нри синтезе высших спиртов) приводит к резкому возрастанию скорости побочных реакций или к снижению скорости основной. Очень часто термостойкость продуктов реакции диктует условия температурного режима. [c.138]

    Большая часть промышленных процессов, проходящих в фильтрующем слое, тормозится внутренней диффузией. В частности, такими являются крупномасштабные каталитические процессы конверсии метана с водяным паром, конверсии окиси углерода, синтеза аммиака, окисления сернистого ангидрида, нафталина и т. д, [c.32]

    Производство малеинового а нгидрида окислением бутилена.. Как известно, малеиновый ангидрид в настоящее время получают окислением бензола кислородом воздуха в присутствии катализатора—пятиокиси ванадия, аналогично получению фталевого ангидрида окислением нафталина. Процесс этот весьма сложен и идет с низкими выходами порядка 50% от теоретического. В последнее время исследована возможность получения малеинового ангидрида окислением бутилене. В создаваемом комплексе нефтехимических производств намечается осуществить синтез малеинового ангидрида из бутилена. Дальнейшая переработка его будет вестись путем совместной конденсации с ( алевым ангидридом и дизтиленгликолем. [c.372]

    Как известно, гидрированием нафталина получают такие технически важные продукты, как тетралин и декалин. Тетралин используют в производстве р-нафтола, а также в качестве растворителя лаков, красок и др. Декалин применяют при синтезе ряда лекарственных препаратов и как высокоэффективный растворитель. [c.326]

    До 50-х годов фталевый ангидрид получали только газофазным каталитическим окислением нафталина. Затем наряду с нафталином стали использовать о-ксилол, относительная доля которого в сырьевой базе непрерывно росла. Так, в Японии, которая дна из первых применила о-ксилол для синтеза фталевого ангидрида, уже в 1970 г. доля этого вида сырья составляла 70%, а к 1985 г. она должна возрасти до 83% [89]. [c.81]

    Промышленное значение этот метод синтеза смазочных масел приобрел лишь после работ Кельбеля с сотрудниками, которым удалось получить смазочные масла весьма высокого качества [230]. На основании систематического углубленного изучения проблемы эти исследователи исходили из хлорированного когазина И и нафталина. [c.238]

    К эффективным естественным ингибиторам окисления относятся также конденсированные ароматические системы — нафталин, фенантрен, антрацен и др. Соединения этого типа сравнительно легко образуют свободные радикалы и ион-радикалы. Вероятно, этими свойствами конденсированных систем и обусловливается их указанное выше ингибирующее действие. Выделенные из антрацена парамагнитные соединения характеризуются более высоким ингибирующим действием, чем исходный антрацен [42]. Свободные радикалы образуются в процессе синтеза антрацена, при его термообработке (450 °С) или облучении. При окислении кислородом конденсированных ароматических соединений образуются также арилоксидные свободные радикалы. Таким образом, многие ароматические соединения, легко образующие стабильные свободные радикалы или ион-радикалы, могут выступать в качестве естественных ингибиторов окисления. [c.43]

    Для научно обоснованного синтеза присадок очень важно установить изменение их активности в зависимости от структуры. Например, при исследовании алкилфенолов как депрессоров было обнаружено, что действие их наблюдается лишь начиная с октил-фенолов и повышается с уменьшением разветвленности и с увеличением числа алкильных групп. При изучении алкилароматических углеводородов с различной длиной и различным числом боковых цепей и колец (моно- и диалкилпроизводные бензола, нафталина, антрацена и тетралина) оказалось, что увеличение длины и числа боковых цепей улучшает депрессорные свойства алкилароматических углеводородов. Наиболее эффективными депрессорами оказались дициклоароматические углеводороды с длинными боковыми цепями. [c.152]

    Особый интерес представляют смазки, получавшиеся синтетическим путем в Германии в условиях военного времени [55, 56]. Этилен и олефины с более длинной цепью полимеризовали (катализатор — хлористый алюминий), получая с хорошим выходом масла, которые обладают неплохими вязкостно-температурными свойствами. Парафинистый газойль, полученный синтезом по Фишеру — Тропшу, хлорировали продукт синтеза конденсировали с нафталином, что дало масло сравнительно невысокого-качества. В качестве смазочных масел использовались эфиры адипиновой кислоты, но себацинаты широкого распространения не получили. [c.501]

    Ароматическая часть углеводородов синтеза, хотя и образуется в очень небольшом количестве, чрезвычайно богата соответствующими изомерами [383, 384]. Так, во фракции Сд—Сд были идентифицированы бензол, толуол, этилбензол, ксилолы, к-нропилбен- юл, изопропилбензол, метилэтилбензолы и триметилбензолы [384]. Обнаружены были даже нафталины, антрацен и их производные. [c.595]

    Уд. вес является верным признаком ароматизации, потому что вое ароматические углеводороды удельно тяже,п ее нефтяных, кипящих ири той же температуре. Кроме бензола и его ближайших соседей по ряду на уд. вес смолы влияют также и такие углеводороды, как нафталин и антрацен. До некоторого предела присутствие их является хорошим признаком, ибо последние образуются на счет первых. Но отсюда не следует, что смола тем лучше (т. е. богач ароматическими углеводородами), чем больше ее уд. вео. Та называемая пережженная смола из генераторов, напр., может содержать много нафталина и т. п. и мало бензола и толуола. Тут есть сложная зависимость, которая проясняется несколько рабо-тами последних пятнадцати лет. Скорость образования бензола при 700° вьппе, чем скорость образования иа него нафталина, но при некоторой более высокой температуре эти скорости равны, т. е. сколько образуется бензола, столько же и превращается в нафталин и др. высшие углеводороды. При еще более высоких температурах скорос-ть синтеза иолициклических углеводородов превосходит таковую одноядерных, и тогда первые ароматические углеводороды выжигаются в индивиды тяжелой смолы и пека. [c.398]

    Синтез протекает в три стадии хлорирование парафина кон-денсадия хлорированного на])афина с нафталином выделение продуктов реакции. [c.378]

    Распад нафталина начинает наблюдаться только при температурах выше 750 °С, т. е. он ведет себя при пиролизе так же, как и бепзол. Оп может получиться при пиролизе вследствие деалки-лировипия своих высших гомологов или путем синтеза из диеновых углеводородов и циклогексена. Подобно бензолу у нафталина [1рп пиролизе не наблюдается реакции расщенления связей [c.420]

    В книге- рассмотрены современное состояние и тенденцнн производства и потребления основных ароматических углеводородов. Описаны методы анализа и оценки их товарных свойств и обоснованы требования к качеству выпускаемых промышленностью продуктов. Дано описание технологических процессов производства бензола, ксилолов, полиметилбензо-лов, нафталина, антрацена, фенантрена и некоторых других многоядерных ароматических углеводородов, получаемых из каменноугольного и нефтяного сырья. Подробно изложена технология получения специальных сортов бензола и нафталина, используемых для процессов органического синтеза. Освещены научные основы и промышленные способы переработки важнейших ароматических углеводородов. Дана токсикологическая оценка названных соединений и рассмотрены меры по снижению их вредного воздействия на природу и человека. [c.2]

    Мы рассмотрели, какие основные элементы входят в состав органических соединений, используемых в качестве присадок к маслам. Теперь остановимся на классах и типах соединений, содержащих различные функциональные группы, которые являются основной частью присадок. В настояихее время практическое применение в качестве присадок к маслам в основном находят следующие типы соединений алкилфенолы, сульфонаты, сукцинимиды, алкилсалицилаты, полиметакрилаты, полиизобутилены, алкил-нафталины и диалкил(арил)дитиофосфаты и др. Из всех применяемых на практике присадок основная доля приходится на присадки алкилфенольного и сульфонатного типов. В ближайшее время намечается увеличить количество сульфонатных присадок. Предполагается также создание перспективной сырьевой базы для производства алкилсалицилатных, а также сукцинимидных, полиметакрилатных и других полимерных присадок. Особое внимание следует обратить на перспективные направления синтеза зольных и беззольных полимерных присадок. [c.10]

    Исследования в области получения депрессоров начаты еще в 20-е годы [15, с. 153]. В 1921 г. впервые Л. Г. Гурвичем была отмечена способность высокомолекулярных смолистых веществ понижать температуру застывания масел, а с 1931 г. начались, широкие исследования в направлении синтеза и применения депрессоров. Для этой цели предложено довольно значительное число различных веществ, которые при всем их разнообразии имеют некоторые сходные черты — наличие полярных групп или ароматических ядер и длинных алифатических цепей, высокую молекулярную массу (800—1000) и хорошую растворимость в минеральных маслах. В качестве депрессоров исследованы алкил-производные нафталина, алкилфенолы и полиалкилметакрилаты. Так, присадки парафлоу и депрессатор АзНИИ являются смесью моно- и диалкилнафталинов с преобладанием диалкилнафталина  [c.146]

    Ароматические углеводороды являются ценным сырьем для нефтехимического синтеза. Наибольшее значение имеют бензол, толуол, ксилолы, нафталин. Бензол является исходным продуктом для получения алкилбензолов, фенола, галоидбензолов и т, д. Нефти содержат 1 ало этих углеводородов, поэтому их выделение из бензиновых фракций,полученных перегонкой нефти, экономически пе-выгодио. Для повышения содержаиия ароматических углеводородов в бензиновых фракциях служат процессы риформинга. При риформинге бензиновых ( )ракцип в присутствии различны.х катализаторов нафтеновые углеводороды и частично. метановые углеводороды превращаются в ароматические углеводороды, которые извлекают различными методами. Ароматические углеводороды являются желательными компонентами карбюраторных топлив, так как обладают хорошими октановыми числами (бензол — 108 голуол -- 103 этилбензол — 98).  [c.76]

    Депрессатор АзНИИ в промышленном масштабе производят с 1947 г. [15, с. 154]. Синтез депрессатора АзНИИ состоит из трех основных стадий 1) хлорирование парафина, 2) конденсация хло- рированного парафина с нафталином в присутствии хлорида алюминия, 3) перегонка продуктов конденсации с целью удаления растворителя и непрореагировавших парафина и моноалкилнафта-лина. Реакцию синтеза можно схематически записать так  [c.149]

    I л а с т и ф и к а т о р ы, смазочные масла и присадки, получаемые алкилированием ароматических углеводородов. Смазоч-лые масла синтезируют алкилированием (в присутствии AI I3) тафталипа или смесей ароматических углеводородов, экстраги- )уемых из нефтяных фракций. Алкилирующими агентами служат олефины (от этилена до высших олефинов, получаемых крекингом парафина) или хлорированные фракции керосина. В случае низших олефинов для синтеза смазочного масла в молекулу нафталина необходимо вводить 6—7 алкильных групп, а при исиоль-зовапии высших олефинов — от 2 до 4 алкильных грунн. [c.250]

    Остаточный газ после холодильников 7 в случае синтеза фтале-вою ангидрида из нафталина дожигают в печи, а при получении из о-ксилола газ предварительно проходит абсорбер, орошаемый водой, где поглощается малеиновый ангидрид. При этом малеиновый ангидрид гидролизуется в малеиновую кислоту, которую превращают в ангидрид описываемыми ниже методами. Другое отличие в схеме при получении фталевого ангидрида из о-ксилола — нет испарителя нафталина и воздух не разделяют на два потока. Вместо этого паро-воздушную смесь получают в смесителе. [c.432]

    Катализаторы окисления ароматических углеводородов. Среди гетерогенных процессов окисления ароматических углеводородов в кислородсодержащие продукты наибольшее распространение получили парофазные процессы синтеза малеинового ангидрида из бензола и фталевого ангидрида из нафталина и о-кси-лэла. В качестве основного компонента катализаторов служат соединения ванадия [461. [c.416]

    Чистота тетралина, получаемого в процессе гидрирования нафталина, 98—99%. Основной примесью является нафталин. Тетралин практически свободен от сернистых соединений и содержит лишь следы дигидронафталина, что позволяет использовать его в синтезе р-нафтола. Получаемый одновременно с тетралином декалин представляет собой смесь изомеров с преимущественным содержанием транс-декалина. Характеристики продуктов гидрирования нафталина приведены ниже  [c.328]

    Лепна-Берке водород и для гидрогенизации и для синтеза аммиака получается из водяного газа в генераторах, работающих на буро-угольных брикетах. Для получения чистого водорода водяной газ очищается от сернистых соединений, для чего нередко используются алкацидные растворы. Окись углерода конвертируется в углекислоту, легко отмывающуюся в скрубберах. Гидрирование проводится в две фазы в автоклавах высокого давления, внешним видом напоминающих гигантские орудийные стволы. В первой — жидкой фазе, мелко раздробленный и суспендированный в антраценовом масле или в смоле уголь подвергается гидрированию над подвижным или плаваю-щим> катализатором — окислами железа (болотная руда, отходы производства алюминия и т. д.). При этом угольные компоненты молекулы угля, имеющие, как можно считать в первом приближении, вид пчелиных сот, распадаются. Более мелкие четырех- и трехкольчатые осколки (типа фенантрена и других ароматических углеводородов с конденсированными кольцами), насыщаясь водородом (кольцо за кольцом), будут превращаться вследствие распада образовавшихся жирных колец сначала в двухкольчатые углеводороды (гомологи нафталина) и, наконец, в гомологи бензола или даже, в зависимости от условий гидрирования, в гомологи циклогексана и циклопентана. Само собой разумеется, что при понижении температуры гидрогенизации (проводимой в пределах 550 —380°) и повышении гидрирующей эффективности катализатора, деструктивная гидрогенизация может быть остановлена и на стадии гомологов [c.154]

    Из бензинов каталитического рифо[)Минга можно выделить индивидуальные арены бензол, толуол этилбензол, все изомеры ксилолов, нафталин, псевдокумол и некоторые другие продукты, используемые в органическом синтезе. Из аренов наибольшее значение в качестве нефтехимических продуктов приобрели, как известно, бензол, о- и п-ксилолы, тогда как толуол и л-ксилол производятся в масштабах, значительно превышающих существующую потребность. Поэтому в настоящее вр( мя наряду с попытками получения ценных продуктов на основе толуола и лг-кеилола успешно развиваются процессы их деалкилирования, диспропордиониро-вания и изомеризации (см. гл. 14). [c.259]

    При каталитическом (УгОэ) окислении нафталина в паровой фазе получается фталевый ангидрид, коюрый используется в производстве алкидных и полиэфирных смол, пластификаторов для поливииилхлорида, для синтеза красителей (см, гл. 8). [c.287]

    Одпой пз новейших разновидностей гидрогенизационных процессов является гидродеалкилирование, применяемое для получения голоядерных ароматических углеводородов из соответствующих алкнлзамещенных, например бензола из толуола, нафталина из метнлнафталина. Процесс внедрен в иромышлениость в 1960 г. и в настоящее время приобр( тает большое значение в связи с развитием нефтехимического синтеза. [c.288]

    Метилнафталиновые фракции в значительных количествах используют как растворители для ядохимикатов [124]. Они представляют интерес как сырье для поверхностно-активных веществ, обладающих лучшими показателями, чем производные нафталина, и для фармацевтических препаратов (1,4-хинон-2-метилнафта-лин — полупродукт для производства витамина К) [125]. Метил-нафталины используют в производстве красителей. Окислением метилнафталинов можно получать фталевый ангидрид, но для его синтеза предпочитают использовать смеси нафталина и метилнафталинов [ 27]. Наконец, гомологи нафталина могут быть использованы и для синтеза соответствующих карбоновых кислот ряда нафталина. Однако большая часть выделяемой из нефти смеси метилнафталинов и диметилнафталинов подвергается гидрогенизационному деалкилированию с получением нафталина [122]. [c.94]


Смотреть страницы где упоминается термин Нафталин синтез: [c.528]    [c.113]    [c.496]    [c.99]    [c.396]    [c.243]    [c.22]    [c.361]   
Органическая химия. Т.2 (1970) -- [ c.159 , c.160 , c.188 ]

Химия и технология основного органического и нефтехимического синтеза (1988) -- [ c.36 , c.37 , c.58 , c.68 , c.69 , c.73 ]

Основы органической химии 2 Издание 2 (1978) -- [ c.225 ]

Органическая химия Углубленный курс Том 2 (1966) -- [ c.153 , c.154 , c.181 ]

Основы органической химии Ч 2 (1968) -- [ c.164 ]




ПОИСК







© 2024 chem21.info Реклама на сайте