Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дегидроциклизация с образованием С или связи

    С целью выяснения роли алкенов и водорода в процессе Сб-дегидроциклизации и изомеризации алканов исследованы [125] превращения 3-метилпентана, а также З-метилпентена-1, цис- и транс- изомеров 3-метилпен-тена-2 на платиновой черни при температуре 300—390 °С Е1 токе Нг и Не при ( азличном содержании Нг в газе-носителе. Выявлено четкое влияние концентрации Нг в газе-носителе на превращения (Сз-циклизация, скелетная изомеризация, образование метилциклопентана и бензола) 3-метилпентана и изомерных алкенов. Полагают [125], что скелетная изомеризация должна проходить через промежуточный поверхностный комплекс, общий для 3-метилпентана и 3-метилпентенов. Этому комплексу соответствует полугидрированное поверхностное состояние углеводорода, адсорбированного на двух центрах. При малом содержании Нг возникает сильное взаимодействие между углеводородом и металлом с образованием кратных связей углерод—платина, что приводит к образованию З-метилпентена-1 из 3-метилпентана и. к частичному покрытию поверхности катализатора коксом. При больших количествах Нг преобладает слабое взаимодействие, увеличивается время жизни промежуточного комплекса и протекают характерные реакции дегидрирование алкана с образованием 3-метилпентена, Сз-де- [c.229]


    ВИИ Pt/ и Pd/ при 200—300 °С диэтиламин претерпевает ряд сложных превращений два из них являются главными [39]. Первое направление (а) сходно в известном смысле с Сз-дегидроциклизацией алканов и приводит на первом этапе реакции к пирролидиновому кольцу, которое далее превращается в бутиронитрил и пиррол. Второе направление (б) представляет собой деструктивный распад исходного амина по относительно непрочной связи С—N с образованием этиламина, который далее дегидрируется в ацетонитрил  [c.197]

    При обращении всех стадий гидрогенолиза процесс по существу является дегидроциклизацией. Для того чтобы образовались кольца Сз, С4, Св. .., алкановая цепь должна образовать на двух соседних активных центрах адсорбированную а -, а8-, аб-...-частицу. Изучение Н—О-обмена показало, что появление таких частиц довольно маловероятно при низких температурах, и это соответствует довольно низким выходам продуктов дегидроциклизации, полученным на металлических катализаторах. Образование связи С—С можно представить так  [c.144]

    При термическом превращении пиперилена происходят реакции распада, изомеризации, дегидрирования, гидрирования, дегидроциклизации, полимеризации, которые тесно связаны друг с другом и приводят к образованию сложной смеси продуктов. При выводе кинетического уравнения примем во внимание основные продукты превращения пиперилена дивинил, циклопентадиен и метан. Суммарное содержание их в общем балансе продуктов крекинга достигает [c.241]

    В этой главе будут описаны каталитические реакции углеводородов, в которых не участвуют никакие посторонние реагенты и которые протекают либо без изменения числа атомов С в молекуле (изомеризация), либо с уменьшением этого числа (крекинг, дезалкилирование) или с его увеличением (алкилирование, полимеризация). Разрыв и образование связей С—С в результате присоединения водорода (гидрогенолиз) или отщепления водорода (дегидроциклизация), тесно связанные с гидрогенизацией и дегидрогенизацией, были рассмотрены в гл. III. По тем же причинам изомеризация олефинов без изменения углеродного скелета (миграция двойной связи и цис, транс-изомеризация) тоже уже упоминалась выше. [c.153]

    В работе >20], посвященной каталитическим превращениям углеводородов в присутствии Р1-черни, авторы также пришли к заключению о двух механизмах изомеризации— циклическом с промежуточным образованием циклопентанов и механизме сдвига связей. Важная роль при активации катализатора в обсуждаемой работе отводится кислороду, который в незначительных количествах присутствует в зоне реакции. В работах [121, 122] исследованы превращения алканов в присутствии напыленных Р1—КЬ- и Р1—8п-пленок, а также на нанесенных и ненанесенных 1г- и 1г—Аи-катализаторах. Пути протекания реакций Сз-дегидроциклизации — скелетной изомеризации обсуждены с позиций циклического механизма и механизма сдвига связей. [c.225]


    Ранее было показано, что длина линейной цепи алкана при его ароматизации влияет на долю указанных превращений так, роль реакции Сз-дегидроциклизации более заметна при конверсии н-гептана, чем н-гексана [89]. 2,4-Диметилпентан, 2,3-диметилпентан и 3-этилпентан способны только к Сз-дегидроциклизации и, следовательно, их ароматизирующая способность в основном должна определяться реакциями II и III. На образце катализатора с большей кислотностью выход алкилциклопентанов достигает максимума в области температур 430—460 °С и при дальнейшем ее повышении резко снижается, что, по мнению автора, связано с заметным участием пятичленных цикланов в образовании толуола путем их дегидроизомеризации. [c.134]

    РЕАКЦИИ ДЕГИДРОЦИКЛИЗАЦИИ С ОБРАЗОВАНИЕМ НОВОЙ С—С-СВЯЗИ [c.283]

    При карбонизации пеков происходят деструктивная циклоконденсация, дегидроциклизация с образованием новых углерод-углеродных (табл. 74) графитированных связей (т. е. связей в узлах конденсации [c.114]

    Учитывая, что с удлинением углеродной цепи дегидроциклизация углеводородов все более успешно конкурирует с их изомеризацией, предположили, что наряду с механизмом сдвига связи в скелетной изомеризации алканов С5 и выше реализуется механизм обратимой циклизации с промежуточным образованием адсорбированных на поверхности катализатора циклопентановых (или циклогексановых) производных. Это предположение подтверждено рядом работ, в которых отмечается далеко идущая аналогия в составе продуктов превращения метилциклопентана, с одной стороны, и изомеров ациклических гексанов — с другой, на платиновых пленках, а также нанесенных платиновых катализаторах [44, 45, 49—52]. [c.17]

    В случае двухатомных С4—Св-спиртов, в которых спиртовые группы находятся на концах цепи, происходит дегидроциклизация в лактоны с образованием С—О-связи [143, 414—416, [c.1217]

    ЮМ связи углерод-сера (крекинг), с образованием новой связи углерод— углерод (дегидроциклизация) и реакции окисления. [c.126]

    В работе [32] проведено сравнительное исследование каталитической активности металлического хрома,а также карбидов СгдС2 и Сг,Сд при ароматизации к-гексана ик-октана. Было обнаружено отсутствие каталитической активности у хрома и ароматизирующая способность у обоих карбидов хрома, причем Сг Сз оказался более активным. Отсутствие каталитической активности у хрома может быть связано с тем обстоятельством,что,несмотря на наличие у хрома формально средней по величине акцепторной способности, при окружении его соседними атомами в кристаллической решетке металла осуществляется образование стабильной конфигурации Принятие я-электронов,например водорода в реакциях дегидрогенизации,при этом сильно затруднено или вообще невозможно, что и показано на опыте [33] значительно легче может происходить отдача х-электронов и появляться каталитическая активность в соответствующих реакциях. При образовании карбидов хрома эта стабильная конфигурация нарушается и происходит донорно-акценторное взаимодействие между атомами хрома и углерода, которое сводится к передаче внешних (главным образом 4 ) электронов хрома на коллективизацию с р-электронами углерода. При этом в связи с относительно небольшой величиной для хрома и высоким ионизационным потенциалом атомов углерода вероятен не только переход х-электро-нов хрома в направлении остова атома углерода, но и частичное нарушение 3( -конфигурации с соответственным повышением акцепторной способности хрома. С повышением относительного содержания углерода в карбидных фазах хрома увеличивается вероятность образования связей между атомами углерода (что следует также из усложнения структурных мотивов атомов углерода при увеличении отношения С/Сг), которые стремятся в пределе к образованию устойчивой конфигурации типа характерной для алмаза (что эквивалентно резкому повышению ионизационного потенциала атомов углерода), и в конечном счете ко все большей возможности нарушения 3 -конфигурации атомов хрома. Это вызывает резкий рост каталитической активности при переходе от хрома к его карбидам, в которых атомы углерода образуют цепи. В случае окиси хрома, вследствие высокого ионизационного потенциала кислорода, коллективированные электроны хрома и кислорода резко смещены в направлении атомов кислорода, что содействует нарушению устойчивой конфигурации -электронов хрома, повышает акцепторную способность его остова и вызывает высокую каталитическую способность окиси хрома, например в реакциях типа дегидроциклизации парафиновых углеводородов. Исходя из этого окислы вообще должны обладать относительно высокими каталитическими свойствами, особенно низшие окислы переходных металлов, так как высшие окислы, как правило, являются полупроводниками с большой шириной запрещенной зоны, затрудняющеь электронные переходы. Последнее относится и к некоторым другим тугоплавким фазам в областях их гомогенности, когда при уменьшении содержания неметалла в пределах этих областей появляются энергетические разрывы, как это происходит, например, для нитридов титана и циркония [33—35]. [c.243]

    В этой конформации две группы атомов водорода по обе стороны плоскости кольца сближены по направлению к центру молекулы и конформационно взаимодействуют между собой. Благодаря этим взаимодействиям в молекуле создается дополнительное внутреннее напряжение. При этом сближение двух Н-атомов приводит к перекрыванию их ван-дер-ваальсовых радиусов. Удаление этих сближенных атомов и образование новой С—С-связи уменьшает энергию системы, делая ее менее напряженной. Указанные стерические факторы и энергетический эффект благоприятствуют протеканию трансаннулярной Сз-дегидроциклизации циклооктана с образованием системы пенталана. Протекание этой реакции в присутствии Pt/ осуществляется, как нам кажется, через промежуточное образование циклического переходного состояния. Образование последнего происходит, по-видимому, по схеме, сходной с механизмом гидрогенолиза циклопентанов и Сз-дегидроциклизацни алканов (для упрощения схемы на ней не показаны атомы катализатора, соединенные со сближенными атомами Н и С адсорбционными связями)  [c.155]


    Ранее уже отмечалось, что в наиболее чистом виде реакция Сз-дегидроциклизации углеводородов проходит в присутствии Pt/ на этом катализаторе она практически не осложняется вторичными и побочными процессами. В связи с этим представляется целесообразным рассмотреть основные за1Кономерности протекания реакции образования пятичленных циклоалканов в присутствии именно этого катализатора. [c.207]

    При исследовании поведения в присутствии Pt-черни н-гексана и 2-метилпентана в токе смесей гелия и водорода Паал и Тетени показали [114, 115], что скорость реакций Сз-дегидроциклизации — изомеризации при добавлении водорода к гелию сначала увеличивается, а затем, пройдя через максимум, уменьшается (рис. 43). Та же закономерность наблюдается при преврашении н-гексана в бензол. Рост активности катализатора при добавлении водорода в газ-носитель объясняется [114, 115] замедлением дезактивации катализатора за счет удаления с поверхности последнего необратимо адсорбированных образований , являющихся предшественниками углистых слоев на металле. При дальнейшем увеличении концентрации водорода в газовой фазе происходит частичное вытеснение углеводорода с поверхности металла, так как водород расщепляет поверхностные связи С—М, что в свою очередь приводит к уменьшению обшей степени превращения. Таким образом объясняется появление максимумов на кривых конверсия углеводорода — содержание Из в газе-носителе. [c.226]

    При Сб-дегидроциклизации алканов и Сз-циклизациц алкенов на Pt/AbOa показано [84, 126], что скорость реакции в отсутствие Нг быстро падает, доходя фактически до нуля, и наоборот, в токе Нг проходит успешная циклизация как алканов, так и алкенов. Роль водорода при образовании циклопентанов в присутствии алюмоплатиновых катализаторов с низким содержанием Pt пока недостаточно ясна. Возможно, что влияние водорода на протекание реакции осуществляется по нескольким направлениям, часть которых обсуждалась выше. Не исключая этих возможностей и в случае нанесенных Pt-катализаторов, следует также обсудить ассоциативный механизм действия водорода [84], представляющийся авторам книги одним из наиболее вероятных. В соответствии с обсуждаемой схемой водород в случае реакции Сб-дегидроциклизации алканов играет ту же роль, что и в ряде других реакций, протекающих в присутствии металлсодержащих катализаторов, в частности в реакции миграции двойной связи в алкенах [127] и в конфигурационной изомеризации диалкилциклоалканов [128]. В этих реакциях водород входит в состав переходного комплекса, образующегося на поверхности катализатора по ассоциативной схеме. Можно полагать, что реакция Сз-дегидроциклизации, также протекающая при обязательном присутствии и, по-видимому, с участием Нг, проходит через промежуточные стадии образования и распада переходного состояния  [c.230]

    Более подробно роль водорода при образовании пятичленных циклов з алканов и алкенов в присутствии Pt/ изучена в работе [108]. В частности, изучено влияние концентрации водорода в его смесях с гелием на скорость реакции Сз-дегидроциклизации 2,2,4-триметилпентана. Показано, что обработка катализатора гелием изменяет состояние его поверхности и Сз-дегидроцикли-зация в токе этого газа уже не происходит. Скорость реакции возрастала с увеличением содержания Hj в газовой смеси (рис. 45). При исследовании зависимости скорости Сз-дегидроциклизации 2,2,4-триметилпентана от скорости пропускания Из установлено, что при малых концентрациях Нг скорость реакции возрастает с увеличением скорости пропускания Нг. Дальнейшее увеличение концентрации Нг приводит к снижению скорости реакции (рис. 46). Это, по-видимому, связано с уменьшением времени контакта углеводорода с катализатором и, возможно, с ускорением обратной реакции — гидрогенолиза пятичленного кольца. [c.233]

    В связи с вопросом о возможности образования ароматических углеводородов из пятичленных замещенных нафтенов интересно исследование Фрайеса, который подвергал дегидрогенизации смесь из метилциклогексана, содержавшего меченый атом С14 диметилциклопентана и нормального гептана. Дегидрогенизация велась па алюмомолибденовом катализаторе, который не действовал на гептан в сторону дегидроциклизации. Выяснилось, что только половина полученного толуола образовалась из метилциклогексана, откуда следует, что другая половина могла образоваться только из диметилциклопентана за счет расширения кольца с образованием метилциклогексана. [c.87]

    Между А., нефтяными смолами и нефтяными маслами существует генетич. связь. При переходе от масел к смолам и А. увеличивается кол-во конденсиров. циклов, гетероато-моа величина мол. массы, уменьшается отношение Н/С. Термополиконденсация А. приводит сначала к образованию карбенов, затем карбоидов (см. Битумы нефтяные) и кокса. При термополиконденсации смол или висбрекинге гудронов происходит дегидрирование, дегидроциклизация и деалкилирование, вследствие чего образуются вторичные А., характеризующиеся высокой степенью ароматичности. В условиях мягкого гидрогеиолиза А. превращаются в смо-ло- и маслообразные в-ва. [c.211]

    Существенное влияние на процессы крекинга и гидрирования парафинов оказывают катализаторы. Особенно сильным расщепляющим действием обладают вольфрамовые и молибденовые катализаторы, а катализаторы, полученные на основе оксида хрома, хроммедьфосфорные и платинированный уголь направляют реакции распада в сторону образования ароматических углеводородов и циклопарафинов. Этот весьма важный процесс дегиДроциклизации (циклизация с одновременным дегидрированием) был впервые открыт советскими учеными Б. Л. Молдавским, Б. А. Казанским, А. Ф. Платэ и В. И. Кар-жевым в 1936 г. При дегидроциклизации образуется одна новая связь С—С и не изменяется число атомов в углеродной цепи. В простейшем случае ароматический цикл может быть образован на основе парафинового углеводорода, содержащего в цепи [c.165]

    Из приведенных данных следует, что для проведения дегидроциклизации и, в частности, акта дегидрировапия как промежуточной стадии дегидроциклизации, хром обязательно должен быть в валентно-связанном состоянии. Ароматизующая способность окиси хрома и определенная активность карбидов (в особенности Сг,Сд) в сравнении с каталитической пассивностью металлического хрома свидетельствует об этом достаточно определенно. Невидимому, активность хромовых соединений связана с имеющимся в молекулах этих соединенш смещением электронной плотности. При образовании карбидов хрома происходит взаимодействие между атомами хрома и углерода, которое сводится к передаче части валентных (в том числе и [c.234]

    Повышение содержания высокооктановых компонентов (октановое число к-гептана равно нулю, а октановое число смешения толуола 124) путем реакции дегидроциклизации сопровождается большим изменением объема, что связано с увеличением плотности продуктов реакции. Протекание реакции дегидроциклизации в одноступенчатых процессах риформинга ограничено, так как но мере роста концентрации ароматических углеводородов скорость реакции дегидроциклизации резко уменьшается [182, 130]. Гидрокрекинг, сопровождаюгцийся образованием легких углеводородов (что ведет к снижению выхода жидких продуктов) происходит и в этом случае, особенно при температурах, необходимых для значительного протекания реакций дегидроциклизации при более высоких давлениях. Ограниченная возможность повышения октановых чисел в результате реакции дегидроциклизации при более высоких давлениях послужила основой для создания комбинированных процессов, таких, как рексформинг и изоплюс. По этой причине при переработке более парафинистого сырья в тех же условиях требуется применение более высоких температур, что приводит к снижению выходов бензина. Рассмотрению свойств получаемь1х продуктов носвяш,ена работа Зелинского [164]. [c.601]

    Научные исследования связаны с разработкой основ нефтехимии и каталитического превращения углеводородов. Им и его учениками открыты новые каталитические реакции образования циклических углеводородов, различные каталитические превращения цикланов. Установил закономерности гидрогенизации и дегидрогенизации углеводородов, синтезировал образцы новых углеводородов высокой чистоты. Совместно с Н. Д. Зелинским и Л. Ф. Платэ открыл (1934) каталитическую реакцию селективного гидрогенолиза циклопентано-вых углеводородов в атмосфере водорода на платиновом катализаторе с разрывом только одной из пяти углерод-углеродных связей. В дальнейшем открыл гидро-генолиз других цикланов с 3—15 атомами углерода в кольце. Совместно с А. Ф. Платэ открыл (1936) реакцию Се-дегидроциклизации, или ароматизации, парафиновых угле- водородов. Совместно с сотрудниками открыл (1954) реакцию Сб-дегидроциклизации. Установил механизм каталитических превращений гем-двузамещенных цикло-гексанов и сииранов на платиновом катализаторе, а также каталитических превращений цикланов с 7-членными циклами. Установил (с [c.215]

    В другой работе этого цикла [126] импульсным методом с применением молекул, меченных была уточнена схема дегидроциклизации гексенов и гексадиенов на платиновом катализаторе. Удалось показать, что ароматизация смеси гексатриенов (30% цис- и 70% торакс-изомеров) протекает быстрее ароматизации гексенов и гексадиенов, однако общий характер процесса весьма близок — найдены примерно одинаковые значения энергий активации процессов и обнаружена способность триенов к диспропорционированию с образованием гексадиенов, гексенов и даже гексанов. Особенностью изученной системы является сравнительно большой выход циклогексадиенов. Интересно, что г ис-гексатриен-1,3,5 легко превращается в циклогексадиен при повышенных температурах (до 300°) уже при отсутствии катализатора, в то время как транс-гексатриен-1,3,5 циклизуется лишь выше 360° С. Без катализатора бензол в обоих случаях не образуется. Роль катализатора сводится не только к дегидрированию циклогексадиена, но и к ускорению превращения гексатриенов в циклогексадиен. Опыты со смесями радиоактивного гексе-на-1(1-С ) и неактивного гексатриена-1,3,5 отчетливо обнаружили некоторый переход радиоактивности в гексатриен. Невысокая радиоактивность гексатриена связана, но-видимому, с большими различиями в реакционной способности гексена и гексатриена. Таким образом, для дегидроциклизации гексадиена на платиновом катализаторе можно наметить следующую последовательность превращений  [c.332]

    Здесь не обсуждается реакция дегидроциклизационной ароматизации парафинов, протекающая в процессе риформинга. Эта реакция при рассмотренных весьма жестких условиях риформинга является второстепенной. Она приобретает большое значение, если процесс проводится для получения ароматических соединений с высоким выходом. Однако опубликованные литературные данные не дают еще возможности ясно представить путь реакции и специфическую роль катализатора. Мак-Генри и сотр. [35] опубликовали данные, показывающие, что имеется корреляция между активностью платинового катализатора в реакции дегидроциклизации (ароматизации) и количеством платины, способной экстрагироваться плавиковой кислотой или ацетилацетоном, и предположили, что платина обладает повышенной активностью при образовании особого комплекса с поверхностью окиси алюминия. Они допускают взаимодействие платины с кислотным центром на критическом расстоянии . Однако, оставляя в стороне чисто умозрительный характер предположения, надо сказать, что на основании этих наблюдений нельзя, по-видимому, сделать каких-либо дополнительных выводов, помимо того, что платина в экстрагируемой форме в их образцах более активна последнее, возможно, связано с ее повышенной дисперсностью. [c.55]

    При проведении циклононана над платинированным углем при 300°С в продуктах катализа обнаружен индан (68%), н-нонан ( 7%), о-метилэтилбензол ( 22%) и н-пропилбензол (2%) [15]. Образование индана, основного продукта катализа, следует объяснять трансаннуляр-ной дегидроциклизацией исходного циклононана в гидриндан, который далее дегидрируется в индан, а последний при гидрогенолизе пятичленного цикла частично превращается в о-метилэтилбензол и н-пропилбензол. н-Нонан мог образоваться лишь в результате непосредственного разрыва углерод-углеродной связи в исходном циклононане. [c.154]

    В более развернутом виде свое научное творчество Борис Александро-, ВИЧ анализирует в обзорной лекции, написанной для Международного симпозиума, посвященного механизмам превращения углеводородов (Шио-фок, Венгрия, 1973 г.). Этой лекцией О механизме превращения углеводородов в присутствии некоторых гетерогенных катализаторов открывается первая часть этой книги. В лекции подводятся итоги определенного этапа творчества школы, возглавляемой Б. А. Казанским, она содержит обзор работ автора за последние 10—15 лет в области каталитических превращений углеводородов с малыми циклами в ней обсуждены механизмы ранее открытых Б. А. Казанским и сотрудниками реакций С - и Се-дегид-роциклизации алканов и алкилбензолов и, наконец, дана интерпретация роли адсорбированного водорода при гидрировании и изомеризации двойных связей в олефинах в присутствии металлов VIH группы. Обзорная лекция насыщена интересным фактическим материалом, в ней проанализирована взаимосвязь между строением углеводородов и их реакционной способностью в условиях катализа, показаны пути перехода углеводородов различных классов друг в друга. В других статьях этого раздела (обзор, написанный к 50-летней годовщине Октябрьской революции, и доклад на УИ1 Мировом нефтяном конгрессе, 1971 г.) обобщаются и анализируются дан[[ые по наиболее важным направлениям современного органического катализа. При этом обсуждаются основные закономерности и механизмы каталитических реакций дегидроциклизации парафинов с образованием ароматических (Сб-дегидроциклизация) и циклопентановых (Сб-дегидро-циклизация) углеводородов, гидрогенолиза цикланов с кольцом от трех-до пятнадцатичленного гидрирования, изомеризации и диспропорционирования олефинов, конфигурационной изомеризации стереоизомерных диалкилцикланов. [c.6]


Смотреть страницы где упоминается термин Дегидроциклизация с образованием С или связи: [c.1446]    [c.89]    [c.158]    [c.201]    [c.209]    [c.217]    [c.246]    [c.252]    [c.254]    [c.17]    [c.55]    [c.166]    [c.15]    [c.56]    [c.143]    [c.46]    [c.158]    [c.162]   
Каталитические свойства веществ том 1 (1968) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Дегидроциклизация

Дегидроциклизация с образованием



© 2025 chem21.info Реклама на сайте