Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нафтеновые кислоты очистка

    Лучшие результаты дает кислотно-щелочная очистка, которая заключается в обработке масляного полупродукта крепкой серной кислотой (96—98%), а затем щелочью. Асфальто-смолистые вещества, часть нафтеновых кислот и тяжелые ароматические углеводороды легко вступают в реакцию с серной кислотой и удаляются из масла. Затем полупродукты обрабатывают натриевой щелочью, которая нейтрализует органические кислоты и остатки серной кислоты. Для удаления остатка щелочи и солей масло промывают водой и просушивают нагретым воздухом. Кислотно-щелочным способом производится очистка многих дистиллятных масел. [c.137]


    Щелочная очистка масляных дистиллятов проводится при температурах 140—160 °С и при давлении 0,6—1,0 МПа во избежание испарения воды. Технологическая схема щелочной очистки масел приведена на рис. ХП1-6. Масляный дистиллят насосом 1 прокачивается через трубное пространство теплообменника 2, змеевики трубчатой печи 3 и с температурой 150—170 С подается в диафрагмовый смеситель 4. Туда же закачивается 1,2—2,5 %-ный раствор гидроксида натрия. Из смесителя реакционная смесь поступает в отстойник 5. Температура в отстойнике 130—140 °С, давление 0,6—1,0 МПа, длительность отстоя 3,5—4 ч. Щелочные отходы, выходящие с низа отстойника, охлаждаются в холодильнике 6 погружного типа до 60 °С и направляются в сборники для отделения нафтеновых кислот. Очищенный масляный дистиллят с верха отстойника 5 поступает в смеситель 7 на промывку водой. Температура подаваемой в смеситель химически очищенной воды 60—65 °С, Отделение промывной воды от дистиллята осуществляется в отстойнике 8. Выходящие с низа отстойника промывные воды охлаждаются в холодильнике 9 погружного типа и направляются в сборник для отделения нафтеновых кислот. Очищенный и промытый продукт с верха отстойника 8 проходит теплообменник 2, где, отдавая свое тепло сырью, охлаждается с 90 до 70 °С, и поступает в сушильную колонну 10 для удаления мельчайших капелек воды за счет продувки его горячим сжатым воздухом. Готовое масло с низа сушильной колонны откачивается в резервуары. [c.117]

    Зольность нефтепродуктов зависит от качества нефти и от условий ее переработки. Нефти, богатые кислородными соединениями (смолами и нафтеновыми кислотами), обладают наибольшей зольностью. Значительное влияние на зольность оказывает степень удаления солей при подготовке нефти к переработке и очистке нефтепродуктов. Неполное удаление отбеливающих глин при контактной очистке масел также приводит к повышенной зольности. [c.165]

    Сырые нефти обычно содержат большой процент асфальтенов (нефти асфальтового основания), от которых невозможно избавиться простой перегонкой, и нафтеновых кислот, которые удаляются при перегонке в присутствии каустической соды. Масляные фракции выделяются перегонкой, но зачастую они настолько широки, что возникает потребность во вторичной ректификации. Очистка с применением селективных растворителей заменила очистку с применением серной кислоты и каустической соды. [c.495]

    Реакции сульфирования и окисления-восстановления протекают в относительно меньшем масштабе, потому что большая часть отработанной кислоты может быть регенерирована. Однако нри очистке крекированных дистиллятов от серы на первый план выступает химическое воздействие кислоты при этом происходят реакции полимеризации, этерификации, конденсации ароматических углеводородов и олефинов, сульфирование и т. д. Азотистые основания при этом нейтрализуются, а нафтеновые кислоты растворяются в серной кислоте. Поэтому состав осадка очень сложный и в значительной степени зависит от природы очищаемого дистиллята, крепости кислоты и температуры очистки. [c.570]


    Для извлечения сульфокислот, из сульфированных масел и кислых гудронов применяются два основных метода. В одном случае кислоты селективно удаляются при помощи адсорбентов или растворителей (обычно низкомолекулярных спиртов), а в другом случае их высаливают органическими солями или основаниями. Более подробный обзор очистки и промышленного применения нефтяных сульфокислот см. в [201—203]. Методы анализа маслорастворимых нефтяных сульфокислот см. в [204—206]. Фенол-< ульфокислоты могут присутствовать даже в высокоочищенных нефтяных сульфокислотах [207]. Сульфокислоты и нафтеновые кислоты можно отделить друг от друга в водном растворе добавлением хлористого натрия нафтеновые кислоты остаются в растворе, в то время как натриевые соли сульфокислот осаждаются 1208]. [c.573]

    После сернокислотной очистки обрабатываемый продукт далеко еще не чист. Он содержит 1) свободную серную кислоту 2) большую часть нафтеновых кислот и фенолов з) сульфокислоты и эфиры. [c.191]

    От обыкновенных нафтеновых кислот, получаемых из щелочных отбросов при очистке нефтяных продуктов, асфальтогеновые кислоты отличаются более высоким молекулярным весом. [c.102]

    Органические (нефтяные) кислоты и их соли. Выпариванием воды из щелочных отходов от очистки керосиновых, соляровых и других маловязких дистиллятов нефтей и высаливанием раствором 1 аС1 получают натриевые соли нафтеновых кислот — мылонафт. Разложением серной кислотой натриевых солей нафтеновых кислот получают асидол. Как и мылонафт, асидол применяется главным образом в мыловарении в качестве заменителя жиров, а также в про- [c.144]

    В заключение по этому узлу следует отметить еще процесс Сухого выщелачивания нафтеновых кислот, осуществляемый только на бакинских заводах. Этот процесс заключается в том, что для нейтрализации нафтеновых кислот, дистиллятов моторных и машинных масел в нижнюю часть атмосферной колонны подается суспензия мазута с известковой пушонкой, которой выщелачивается мазут в низу колонны. При последующей перегонке этого мазута на вакуумных установках дистилляты машинных и моторных масел получаются по кислотному числу такими, что после их очистки по принятой технологии они удовлетворяют нормам ГОСТа по кислотности. [c.143]

    Хорошие результаты получены [78] при очистке диметилформ-амидом дистиллята анастасьевской нефти, выкипающего в пределах 260—410 °С и предназначенного для производства трансформаторного масла. Этот растворитель характеризуется более низкой КТР в нем данного сырья, чем фурфурол, что позволяет проводить очистку при более низкой температуре. Выход рафината в случае использования диметилформамида больше, а качество выше, чем при фурфурольной очистке. Следовательно, этот растворитель обладает большей избирательностью по отношению к поли-циклическим ароматическим углеводородам и смолам. Кроме того, диметилформамид имеет более низкую температуру кипения (153 °С), что играет важную роль при его регенерации. При использовании Ы-метилпирролидона качество рафината лучше, однако его высокая растворяющая способность приводит к необходимости добавлять антирастворитель для уменьщения потерь ценных углеводородов с экстрактом, а невысокая избирательность к нафтеновым кислотам требует при получении трансформаторного масла предварительной щелочной очистки сырья.) Положительные результаты были получены [79—81] и при использовании рассмотренных выше новых растворителей для глубокой очистки жидких и твердых парафинов. Результаты очистки трансформаторного дистиллята различными растворителями приведены ниже  [c.112]

    На щелочную очистку влияют те же факторы, что и на кислотную количество и концентрация реагента, температура, продолжительность и т, д. Расход щелочи, применяемой для очистки масла, составляет 0,3—1,0% от его массы и зависит от кислотного числа очищаемого масла и концентрации щелочи в растворе. Раствор гидроокиси натрия имеет обычно концентрацию 2—10% концентрация растворов карбоната натрия и тринатрийфосфата несколько выше — до 10—20%- Желательно применять слабые растворы, чтобы предотвратить образование эмульсии масла с водой, однако при слабых растворах усиливается гидролиз нафтеновых мыл и в масле остается значительное количеств о нафтеновых кислот. [c.116]

    Повышение температуры процесса препятствует образованию эмульсий и способствует интенсификации гидролиза. В зависимости от вязкости масла температуру выбирают в интервале от 35 до 65 °С. Очистку регенерированных масел, в которых содержится значительно меньше нафтеновых кислот, чем в сырье для производства масел, ведут при 70—80 °С. [c.116]

    Зависимость гигроскопичности масел от концентрации нафтената натрия (натровой пробы) показана в табл. 10. 12 [22]. Тщательное удаление натровых мыл нафтеновых кислот и сульфокислот из изоляционных масел достигается хорошей промывкой или адсорбционной очисткой. [c.536]

    Дистилляты первичной перегонка некоторых нефтей содержат нафтеновые кислоты и другие кислые соединения, вредное влияние которых охарактеризовано в гл. 9. Удаление этих соединений производится щелочной очисткой [c.313]


    Возникновению эмульсий способствуют сами продукты нейтрализации— натриевые соли нафтеновых кислот и сульфокислот. Поэтому стойкие гидрофильные эмульсии образуются чаще всего ири обработке продуктов, содержащих много нафтеновых кислот, в частности при щелочной очистке масел. Чтобы предотвратить образование эмульсий, щ,елочную очистку масел приходится проводить низкоконцентрированными иц,елочными растворами при повышенных температурах. [c.319]

    Натровая проба является качественной реакцией на присутствие в маслах натриевых мыл нафтеновых кислот. Добиться полного отсутствия мыл невозможно, но тщательно проведённая щелочная очистка и последующие промывки могут свести содержание мыл к минимуму. Нежелательность присутствия этих соединений отмечена выше. Однако в отношении большинства масел данное испытание не может служить показателем для суждения о степени пригодности масла, и поэтому заменяется определением золы и кислотности. Натровая проба принята главным образом в анализе трансформаторных и турбинных масел, где всякая константа, помогающая судить о поведении масла в рабочих условиях, желательна и необходима. [c.677]

    Щелочная очистка, которая заключается в обработке бензинов, керосинов и дизельных топлив растворами щелочи — каустической или кальцинированной соды. При этом происходят реакции между щелочью и сероводородом, некоторыми сернистыми соединениями и нафтеновыми кислотами. При обработке щелочью эти примеси удаляются. [c.261]

    Щелочная очистка керосина и дизельного топлива проводится для удаления нафтеновых кислот. В результате реакций образуются соли нафтеновых кислот. Они нерастворимы в керосиновых и других углеводородах, но растворяются в воде и попадают в щелочной раствор. Для ускорения процесса очистки дизельное топливо предварительно подогревают до 90—95° С. [c.262]

    Щелочная очистка применяется обычно для удаления из масел нафтеновых кислот, меркаптанов, а также для нейтрализации серной кислоты и продуктов ее взаимодействия с углеводородами, остающимися после сернокислотной очистки. [c.265]

    В связи с кислыми свойствами гидратированной поверхности алюмосиликатов адсорбция нафтеновых кислот отбеливающими землями, как будет показано ниже, протекает не интенсивно. С другой стороны, фенолы хорошо извлекаются из масел при очистке последних алюмосиликатами. А. В. Киселев считает, что при адсорбции на силикагеле фенола донорно-акцепторное взаимодействие происходит как с ароматическим ядром, так и с кислородом фенольного гидроксила вследствие образования водородной связи между гидроксилами кремнекислоты (силикагеля) и молекулами фенола  [c.237]

    В табл. 3 приводятся результаты по определению группы стойкости двух марок стали в различных процессах получения метиловых эфиров нафтеновых кислот, очистки нафтеновых кислот через мыла, перевинилирования, разгонки реакционной смеси, температуры проведения процесса, времени контакта. [c.166]

    В СССР для получения моющих средств для домашнего хозяйства применяют нафтеновые кислоты. Очистка нафтеновых кислот основательно изучена, советскими исследователями Беспятовым и др. [81]. Следует отметить, что окислительная обработка значительно улучшает окраску и запах нафтеновых кислот. [c.30]

    Промышленное значение из всех кислородных соединений нефти имеют только нафтеновые кислоты и их соли — нафтенаты, обладающие хорошими моеощими свойствами. Поэтому отходы целочной очистки нефтяных дистиллятов — так называемый мы —. юнафт — используется при изготовлении моющих средств для екстильного производства. [c.74]

    Эмульгаторами обычно являются полярные вещества нефти, такие, как смолы, асфальтены, асфальтогеновые кислоты и их ангидриды, соли нафтеновых кислот, а также различные органические примеси. Установлено, что в образовании стойких эмульсий принимают участие также различные твердые углеводороды, как парафины и церезины нефтей. Тип образующейся эмульсии в значительной степени зависит от свойств эмульгатора эмульгаторы, обладающие гидрофобными свойствами, образуют эмульсию типа В/Н, то есть гидрофобную, а эмульгаторы гидрофильные — гидрофильную эмульсию типа Н/В. Следовательно, эмульгаторы способствуют образованию эмульсии того же типа, что и тип эмульгатора. В промысловой практике чаще все1о образуется гидрофобная эмульсия, так как эмульгаторами в этом случае являются растворимые в нефти смолисто-асфальтеновые вещества, соли органических кислот, а также тонкоизмельченные частицы глины, окислов металлов и др. Эти вещества, адсорбируясь на поверхности раздела нефть—вода, попадают в поверхностный слой со стороны нефти и создают прочную оболочку вокруг частиц воды. Наоборот, хорошо растворимые в воде и хуже в углеводородах гидрофильные эмульгаторы типа щелочных металлов нефтяных кислот (продукт реакции при щелочной очистке) адсорбируются в поверхностном слое со стороны водной фазы, обволакивают капельки нефти и таким образом способствуют образованию гидрофильной нефтяной эмульсии. При на ичии эмульгаторов обоих тигюв возможно обращение эмульсий, то есть переход из одного типа в другой. Этим явлением пользуются иногда при разрушении эмульсий. [c.147]

    По регламенту, разработанному ГрозНИИ, фракция 240—350 °С (250—350 °С) очищается в электроразделителе при 55—65 °С и абсолютном давлении 4,5—4,0 кгс/см . Напряжение в электроде электроразделителя 26—28 кВ, концентрация раствора щелочи 4—5% линейная скорость прохождения топлива в аппарате 0,0007— 0,001 м/с. Щелочные отходы содержат 0,2% свободной кислоты. Аналогичная схема принята также для очистки керосина — фракции 140—240 °С (140—250 °С). Поскольку в керосине строго лимитируется кислотность (не более 0,7 мг КОН на 100 мл топлива), процесс обратного растворения мыл нафтеновых кислот в продукте при его очистке нежелателен. Для уменьшения процесса обратного растворения вторую ступень очистки проводят при 40 °С. Бензиновые фракции (н. к. — 85 °С) промывают, затем выщелачивают в отстойниках и осушают в элекрторазделителе 1ЭРГ-50. Очистку проводят при 35 °С и 5 кгс/см . [c.158]

    Крупнотоннажным отходом нефтеперерабатывающей и химической промышленности являются сернисто-щелочные сточные воды. Они содержат сульфиды, гидросульфнды, меркаптаны, фенолы и некоторые другие соединения. Их обезвреживают методом карбонизации и окисления кислородом воздуха. При наличии в этих сточных водах заметного количества нафтеновых кислот последние целесообразно выделять с последующей переработкой в мылонафт. Если количество сернисто-щелочных сточных вод невелико, их можно подвергать биологической очистке в смеси с общими сточными водами. На заводах, работающих без сброса сточных вод, избыточные сернисто-щелочные воды после локальной очистки наиравляют на установку термического обезвреживания. [c.98]

    Соединения кислотного характера были обнаружены в нефти еш е в середине прошлого века. Одна из причин их обнаружения и исследования заключалась в том, что по сравнению с углеводородами керосиновых фракций (керосин вначале был основным целевым продуктом переработки нефти) нафтеновые кислоты имеют гораздо большую химическую активность. Осветительный керосин с большим количеством органических кислот был плохим по качеству, поэтому его подвергали щелочной очистке. Максимальное количество нафтеновых кислот содержалось в бакинских нефтях, и в этих нефтях впервые в 1874 г. Эйхлору удалось обнаружить и исследовать кислородные соединения кислотного характера. Он выделил из сураханской нефти 12 кислот и первоначально присвоил им формулу С П2 02- Однако дальнейшими исследованиями было установлено, что низкомолекулярным кислотам отвечает формула С Н2 202. Эти кислоты получили название нафтеновых кислот [50]. [c.48]

    Удалось выделить целый ряд индивидуальных карбоновых кислот [35, 109, 115, 116]. Лохте использовал для этой цели товарные нафтеновые кислоты, представляющие собой смесь кислот, полученных при очистке бензиновых и керосиновых фракций калифорнийской нефти Сигнал Хилл. Перегонку нефти в этом случае ведут таким образом, чтобы исключить образование фенолов. [c.38]

    Кислый гудрон, образующийся при сернокислотной очистке нефтепродуктов, имеет очень сложную природу, даже когда очистке подвергается бензин или керосин. В кислом гудроне содержатся эфиры и спирты, которые образуются при взаимодействии кислоты с олефинами сульфокислоты, которые образуются прп сульфировании ароматики, нафтенов и фенолов соли, которые образуются при реакции кислоты с азотистыми основаниями нафтеновые кислоты, сернистые соединения и асфальтены, для которых серная кислота является селективным растворителелк К этому перечню соединений следует еще добавить продукты окислительно-восстановительных реакций, т. е. смолы и растворимые в кислоте углеводороды, а также воду и свободную серную кислоту. Гурвич [66] считает, что в кислом гудроне присутствует много непрочных соединений кислоты с углеводородами эти соединения легко разлагаются при хранении кислого гудрона или при разбавлении его водой. Очевидно, что соотношение между перечисленными компонентами кислого гудрона будет различным в различных конкретных случаях и зависит как от природы очищаемого нефтепродукта, так и от технологического режима очистки и от крепости применяемой кислоты. [c.236]

    Экстракционные бензины [61—65]. Бензины в достаточно широких масщтабах используются для процессов экстракции. Сюда относится экстрагирование остаточного масла из жмыхов касторовых и соевых бобов, семени хлопчатника, зерен пшеницы. Растворителем, используемым в качестве экстрагента, в вышеописанных случаях служит гексано-гептановая фракция с пределами кипения 65—120° С. Там где извлекаемые из жмыхов масла являются съедобными или предназначены для целей очистки, необходимо иметь стабильный экстрагент, полностью лишенный остаточного запаха или привкуса. Для получения такого экстрагента вполне пригодны прямогонные продукты из нейтральных (не содержащих нафтеновых кислот) парафинистых нефтей. [c.564]

    Необходимо отметить, что порядок очистки вовсе не является обязательным в некоторых случаях щелочная обра ботка может даже предшестювать сернокислотной очистке. Можно применять например предварительное выщелачивание с целью удалить из дестиллата нафтеновые кислоты и фенолы. [c.191]

    В 1885 г. А. Ф. Инчйком в г. Баку была сооружена первая в мире непрерывно действующая кубовая батарея, названная впоследствии нобелевской . Она состояла более чем из десяти горизонтальных кубов, расположенных террасами, так что нефть самотеком перетекала из куба в куб. Перегонный куб был снабжен жаровыми трубами и маточником для ввода в сырье водяного пара (до 20% на дистиллят). В кубах происходил отгон нефтяных фракций, пары которых поступали в конденсаторы и холодильники, где конденсировались и охлаждались. Кондесат самотеком попадал в сортировочное отделение, где смешивался с другими конденсатами, образуя товарные фракции, которые направлялись на очистку серной кислотой и щелочью от нежелательных компонентов (непредельных углеводородов, нафтеновых кислот и смол). Б последнем кубе поддерживалась температура сырья около 320° С. Для улавливания легчайших фракций и сообщения кубов с атмосферой служил скруббер, орошаемый холодной водой. Четкость погоноразделения была низкой. [c.294]

    Пары масляных дистиллятов и водяной пар направлялись через дефлегматоры и конденсаторы-холодильники в емкости для масляных фракций приемно-сортировочного отделения. Несконденсировавшиеся пары, водяной пар и газообразные продукты распада поступали в барометрический конденсатор. Водяные и масляные пары конденсировались, а газообразные углеводороды отсасывались пароструйными эжекторами. В приемно-сортировочном отделении масляные дистилляты компаундировались (смешивались) для получения товарных масляных дистиллятов заданной вязкости. Очистка масляных дистиллятов от продуктов распада, смол и нафтеновых кислот проводилась также серной кислотой и щелочью. [c.295]

    Бензин поступает с установки термического крекинга в приёмную ёмкость, а оттуда откачивается в аппарат предварительной очистки, в котором он контактирует с 1 -3 %-ным раствором едкого натра для удаления сероводорода и нафтеновых кислот. Если в бензине сероводород не содержится, а содержание нафтеновых кислот невелико, предварительной промь[вки не требуется. После предварительной промывки добавляется ингибитор - нерастворимый в щёлочи ионол в количестве 0,03-0,2 кг на 1 тонну бензина. [c.37]

    Вопрос о происхождении нафтеновых кислот, выделяемых из нефтяных дистиллятов, долгое время был предметом дискуссии. Высказывалось мнение о том, что нафтеновые кислоты являК Тся продуктами окисления соответствующих нафтеновых углеводородов в процессе их очистки. [c.288]

    Щелочную очистку мож1но проводить после кислотной для нейтрализации оставшихся в масле кислотных соединений (сульфосоединений, нафтеновых кислот, остатков серной кислоты), а также в качестве самостоятельного процесса при регенерации отработанных масел. В последнем случае щелочь взаимодействует главным образом с органическими кислотами, содержащимися в масле или образовавшимися в результате его старения,— с нафтеновыми, ди- и оксикарбоновыми и др. В результате взаимодействия щелочи со всеми перечисленными веществами образуются водорастворимые нат- [c.115]

    Кислоты средне- и высококипящих фракций нефти представлены главным образом нафтеновыми кислотами. Последние были обнаружены Эйхлером еще в 1874 г. в нефтяных (керосиновых) фракциях, подвергавшихся щелочной очистке. В дальнейшем было найдено, что содержание нафтеновых кислот возрастает от керо синовои до дизельной и газойлевой фрачций, а затем, в масляных йакциях, снова понижается (табл. 0.3). [c.189]

    Прочие реакции серной кислоты с компонентами нефтяных фракций. Имеющиеся в составе нефти гзотистые соединения взаимодействуют с серной кислотой, образуя сульфаты, переходящие в кислый гудрон. Нафтеновые кислоты частично растворяются в серной кислоте, а частично сульфируются, причем карбоксильная группа нафтеновых кислот при сульфировании не разрушается. Продукты взаимодействия нафтеновых 1 серной кислот ослабляют эффективность действия серной кислогы на другие соединения, поэтому целесообразно перед сернокислотной очисткой предварительно удалить из очищаемого продукта нафтеновые кислоты. Условия очистки. Технологический режим сернокислотной очистки зависит от ее назначения. Дли очистки, имеющей целью удаление смолистых веществ из мaзo ныx масел, повышение качества осветительных керосинов, удаление сернистых соединений, применяют 93% кислоту. При деароматизации используется 98% кислота или олеум. Легкая очистка бензина, предназначенная для улучшения цвета или удаления азотистых оснований, проводится серной кислотой с концентрацией 85% г ниже. Применение разбавленной кислоты там, где это возможно, предпочтительнее, так как кислый гудрон образуется в меньших количествах, ослабляются процессы полимеризации. [c.317]

    Реакция нейтрализации щелочью нафтеновых кислот и фенолов имеет обратимый характер. Нафтенаты и феноляты в присутствии воды гидролизуются, образуя исходные продукты. Степень гидролиза зависит от условий процесса. С на увеличивается с повышением температуры и понижается с ростом ко1щеитрации раствора щелочи. Щелочную очистку целесообразно проводить при невысоких температурах, используя концентрированные растворы. Однако в этих оптимальных условиях нейтрализации образуются стойкие эмульсии тииа кислое масло в водной щелочи , которые [c.318]

    В некоторых случаях щелочная очистка сопровождается образованием эмульсий другого типа — гидрофобных, в которых внешней средой служит масло. Гидрофобными эмульгаторами являются асфальтовые вещества, кальциевые, млгииевые и железные соли нафтеновых кислот. Соли появляются и растворах, если для приготовления щелочного раствора использовалась жесткая вода. Иногда образованию эмульсий при заи1елачиваиии препятствует совместное присутствие гидрофобных и гидрофильных эмульгаторов. [c.319]

    Доочистка масляных фракций, прошедших несколько ступеней очистки, предназначается для удаления примесей — кислого гудрона, солей нафтеновых кислот, серноа кислоты, избирательных растворителей, смол. Применяются два [етода адсорбционной очистки—контактная очистка и перколяция. При контактной очистке масло смешивается с адсорбентом, смесь нагревается и выдерживается при определенной температуре, затем масло отфильтровывается. Нагрев необходим, чтобы понизить вязкость масла и облегчить его проникновение во внутренние поры адсорбента. В качестве адсорбента применяются природные глины (отбеливающие земли) — гумбрин, бентониты, зикеевская и балашеевская опоки, а также синтетические алюмосиликаты. [c.321]

    Щелочные отходы от выщелачивания керосиновых и масляных дистил-. гятов большинства нефтей представляют собой коллоидный водный раствор натриевых солей нафтеновых кислот (а иногда и некоторого количества кислых сульфосоединений), в котором также коллоидально растворено минеральное масло. В щелочных отходах присутствуют также натриевые соли кислых сернистых соединений, а иногда серной и сернистой кислот. В щелочных отходах от очистки бензиновых фракций соли нафтеновых кислот не содержатся, так же как и углеводороды. Таклсе очень мало солей нафтеновых кислот в отходах от выщелачивания дистиллятов урало-волжских нефтей. Очень часто в щелочных отходах встречаются феноляты натрия. [c.795]

    Действие серной кислоты на смолистые вещества, по данным А. Н. Саханова и Н. А. Васильева [51], проявляется в трех направлениях. Часть смол растворяется в серной кислоте без видимых изменений. Другая часть подвергается полимеризации с образованием асфальтенов. Третья часть смол при воздействии на них серной кислоты образует сульфокислоты. Все это увязывается со сложным составом смолистых веществ, описанным выше. Азотистые основания, по исследованиям К. П. Лихушина [52], при действии на них серной кислоты переходят в кислый гудрон. Нафтеновые кислоты растворяются в серной кислоте и частично сульфируются [53]. Серная кислота является эффективным обессеривающим агентом. Сернистые соединения в дистиллятах масел относятся к ароматическим сульфидам и гетероциклическим соединениям, содержащим серу в кольце. Реакционная способность этих веществ с серной кислотой, по-видимому, крайне незначительна в условиях обычной очистки масел. [c.231]

    По вопросу о взаимном влиянии полярных компонентов масел на адсорбцию их различными адсорбентами в литературе имеется мало сведений. Из практики известно, что нафтеновые кислоты слабо адсорбируются и препятствуют адсорбции смолистых веществ. Это также было показано в работах Н. И. Черножукова совместно с А. М. Гутцайтом [81] при изучении адсорбционной очистки масел различного происхождения. На рис. 67 приведены кривые изменения кислотности и цвета бакинского и эмбен-ского машинных дистиллятов в зависимости от степени очистки их отбеливающей землей (флоридином). [c.246]


Смотреть страницы где упоминается термин Нафтеновые кислоты очистка: [c.158]    [c.184]    [c.288]    [c.4]    [c.227]    [c.74]   
Нефтехимическая технология (1963) -- [ c.281 ]




ПОИСК





Смотрите так же термины и статьи:

Нафтеновые кислоты



© 2025 chem21.info Реклама на сайте