Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Амилены образование

    Алкилирование представляет собой процесс получения высококачественных (высокооктановых) компонентов авиационных и автомобильных бензинов. В основе процесса лежит взаимодействие изопарафиновых углеводородов с олефиновыми с образованием более высококипящего парафинового углеводорода изостроения. До недавнего времени промышленное применение процесса ограничивалось каталитическим алкилированием изобутана бутилена-ми в присутствии серной или фтористоводородной кислоты. В последнее время в промышленной практике изобутан алкилируют не только бутиленами, но и этиленом, пропиленом и даже амиленами, а иногда той или иной смесью указанных олефинов. Роль алкилирования в нефтепереработке возрастает с увеличением потребности в высокооктановых автомобильных бензинах. Вместе с этим надо учитывать и ресурсы изомеризатов. [c.10]


    Хлористая сера давно применяется при вулканизации каучука, однако химизм процесса в настоящее время находится в стадии исследования. Реакция хлористой серы с олефинами, кроме этилена, не исследована. Со смесью амиленов происходит, как отмечалось, бурная реакция, но никаких продуктов выделено не было [30]. Нефтяные крекинг-масла реагируют с образованием смол. [c.358]

    ЦИЯ И др.). Разработана технология выделения циклопентадиена из продуктов пиролиза, основанная на термической димеризации циклопентадиена с последующим выделением димера и его расщеплением. Селективным гидрированием циклопентадиена можно получить циклопентен, который полимеризуется с раскрытием цикла и образованием нового вида синтетического каучука — транс-по-липентенамера. При современных масштабах промышленного производства этилена ресурсы циклопентадиена исчисляются десятками тысяч тонн в год. Ресурсы циклопентадиена могут быть расширены за счет использования пиперилена—побочного продукта процесса получения изопрена из изопентана. Оба изомера пи 1ери-лена в настоящее время успешно используются также в производстве эмульсионных каучуков и в качестве экстрагентов в коксохимической промышленности. Полученные на их основе нефтеполимерные смолы—продукты термической сополимеризации пиперилена, стирола, индена и других продуктов пиролиза — являются полноценными заменителями натуральной олифы [18, с. 48]. В настоящее время на каждой крупной пиролизной установке предусмотрена организация производства нефтеполимерных смол на основе жидких продуктов пиролиза. Оставшиеся компоненты пиролизной фракции 5 (в основном н- и изоамилены) целесообразно гидрировать с целью получения н- и изопентана или проводить разделение н- и изоамиленов с одновременной скелетной изомеризацией н-амиленов в изоамилены. Пиперилен гидрируется при этом также в н-амилены. [c.49]

    Изомеризация олефиновых углеводородов была отмечена еще Ф. М. Флавицким [9]. Он показал, что продажный амилен, получаемый из амилового спирта брожения действием цинка, состоит главным образом из триметилэтилена. Ф. М. Флавицкий объяснял это изомеризацией н-пентана, считая, что вообще олефиновые углеводороды стремятся к образованию изомеров с возможно большим числом СНд-групп. [c.560]


    Бинарные смеси хлора с горючими углеводородами, спиртами, карбоновыми кислотами и хлорпроизводными углеводородами взрывоопасны в подавляющем большинстве случаев. Известно, что многие олефины (этилен, пропилен, н-бутилен, н-амилен) реагируют с хлором с заметной скоростью уже при 100 °С и даже при комнатной температуре с образованием продуктов присоединения [c.348]

    Дегидрогенизация моноциклических нафтенов до соответствующих ароматических углеводородов протекает через стадию образования циклических непредельных углеводородов. Эта реакция свойственна жесткому режиму крекинга (главным образом пиролизу). Так, превращение циклогексаиа в бензол протекает с отрицательным изменением энергии Гиббса при температурах выше 660°С. При 622°С, по данным Ф. Е. Фрея, крекинг циклогексаиа дал 44,1% олефинов (до С4), 9,57о бутадиена, 3,7% циклопентена и амиленов, 4,9% циклогексена и циклогексадиена и только 0,9% бензола (и 1,2% высших углеводородов). [c.53]

    Применяют и совместную полимеризацию пропиленов и бутиленов или бутиленов и амиленов. Насыщенные углеводороды, содержащиеся в сырье полимеризации, естественно, не вступают в реакцию, но благоприятно влияют на тепловой баланс реактора, препятствуя чрезмерно глубокому протеканию реакции, сопровождающейся образованием более тяжелых полимеров (теплота полимеризации л 1550 кДж/кг). [c.79]

    Первичные реакции так же, как и для парафинов, протекают с образованием осколков из 3-4 атомов углерода. Процесс усложняется тем, что происходят перераспределение водорода, изомеризация и циклизация. Например, н-амилен при крекинге образует до 25% пентанов (перераспределение водорода). Такое насыщение водородом особенно заметно, если циклоолефин является его донором  [c.90]

    В качестве продуктов реакции с амиленом после гидролиза были выделены ацетон, метилэтилкетон, метиламин и этиламин "). Образование этих соединений можно объяснить гидролизом промежуточно образовавшихся кетиминов  [c.308]

    Г идратация высших олефиновых углеводородов пропилен, бутилен и амилен получают крекингом нефтяных продуктов под пониженным давлением при 500— 600° затем газ с содержанием олефинов (около 8— 10%) при атмосферном или несколько повышенном давлении обрабатывают 86—93% серной кислотой (уд. вес 1,80— 1,82) при 30°, полученный продукт разлагается аналогично этил-серной кислоте с образованием пропилового, изобутилового и амилового спиртов [c.118]

    Полимеризация амиленов с частичным образованием углеводородов циклической структуры, температура -80° Хлористый алюминий 3521 [c.462]

    Изомеризация цепи амиленов протекает быстрее, чем бутиленов, и при температуре 475—500° легко достигается [114] равновесная концентрация (58—60%) амиленов, содержащих третичные углеродные атомы — 2-метил-бутена-1 и З-метилбутена-2. Изомеризация амиленов проходит значительно быстрее, чем побочные реакции крекинга, гидрирования, образования соединений более высокого молекулярного веса, и при высоких скоростях подачи сырья может протекать почти чистая изомеризация. Очевидно, в условиях промышленного крекинга изомеризация протекает так же быстро. Например, сообщалось, что степень протекания реакций изомеризации углеродного скелета непредельных углеводородов в процессе крекинга мидконтинентского газойля соответствует равновесным концентрациям, рассчитанным на основании величин свободной энергии [16]. Некоторые отклонения в распределении соединений с различными положениями метильных групп в молекуле могут быть объяснены тем, что данные по величинам свободной энергии не совсем точны. [c.409]

    Есть указания , что имеется много примеров полимеризации олефинов при каталическом гидрировании. Так, при 300 С амилен и водород на восстановленном железном катализаторе дают декан, а изобутан—изооктан. Это является дальнейшим подтверждением образования одновалентных алкильных радикалов на поверхности металлов. [c.239]

    Хотя при промышленном хлорировании применяют большой избыток пентана (около 15—20 частей пентана на I часть хлора), все же образуются некоторые количества дихлоридов. Их образование объясняется дальнейшим хлорированием монохлорпроизводных во время реакции хлорирования, но главным образом присоединением хлора к амилену, содержащемуся в циркулирующем пентане. Причины, вызывающие присутствие амилена в циркулируюидем пентане, были рассмотрены выше. Так как амилены невозможно отделить от пентана перегонкой, их снова возвращают в процесс вместе с пентаном после выделения хлорированных производных. [c.179]

    Третичный бутилнафталин быстро расщепляется при 500° С над алюмо-циркониево-кремниевым катализатором на нафталин и смесь изобутена и изобутана. Считается, что изобутан получается при гидрировании изобутена водородом, который образуется во время конденсации с образованием кокса (9,2%). Амилпафталины при 500° С также крекируются до нафталина и амиленов. [c.106]

    Под давлением и нри температурах от 25 до 125° С получаются жидкие продукты, которые в зависимости от времени реакции и количества катализатора колеблются от бензина до масляных фракций. Бензин, выкипающий до 200° С, сильно насыщен и имеет октановое число смешения 77 [621], что указывает на присутствие разветвленных структур высококипящие порции содержат нафтеновые углеводороды. Очевидно, образование циклов наиболее легко происходит при полимеризации более низкомолекулярных олефинов. Никто не сообщал о подобных реакциях с амиленом и октеном [622, 623], так же как и с пропиленом, который в деструктивном алкилировании дает нормальный гептан [624] или гексадецилен [625, 626]. [c.140]


    Образование этого последнего углеводорода может быть объяснено только присоединением, под влиянием катализатора, к углеродной цепи амилена СН . Эти результаты вполне подтвердились работами Энглера и Рутала , которые полимеризо али амилен в присутствии хлористого алюминия как на холоду, так и при умеренном нагревании (температура кипения амилена). Водород, необходимый для образования парафин эвых углеводародов, вероятно выделяется из углеводородов, составляющих смазочное масло, и возможно, что нафтены образуются дсак прямо из олефинов, так и из промежуточных полиолефинов. [c.325]

    Эглофф с сотрудниками [51] показал, что при атмосферном давлении алю-мосиликатный катализатор вызывает распад бутиленов и амиленов при температурах 400 °С и выше. Таким образом, в условиях алкилирования, приведенных в работе [54], каталитический расиад может предшествовать алкилированию, когда исходными алкилирующими углеводородами являются пе только парафины (пентан), но и олефины. Более того, на основании данных [51] следует ожидать, что при каталитическом алкил1гровании ароматических углеводородов олефинами предварительный распад олефинов будет происходить в большей степени, чем при каталитическом алкилировании парафинами, так как оптимальная температура распада олефинов значительно ниже температуры распада соответствующих нарафиЕшв. Следовательно, в работе Саханена и О Келли [54] образование алкилароматических углеводородов с короткими боковыми цепями обусловлено не тсиа.ко крекингом боковых цепей, получившихся при алкилировании алкилароматических углеводородов с длинными боковыми цепями, но и алкилированием низкомолекулярными продуктами распада олефинов. [c.50]

    Для полного представления о свойствах алюмосиликатных катализаторов следует учесть данные А. А. Михновской и А. В. Фроста [55], установивших, что алюмосиликатные катализаторы ускоряют и реакцию гидрирования. Уже говорилось о том, что образование бутана и гептана в экспериментах С. В. Лебедева нри деполимеризации полимернь[х форм изобутилена и амиленов обусловлено, по-видимому, непосредственным гидрированием соответствующих олефинов, причем это допущение сделано по аналогии с комплексным действием на олефины алюмосиликатов в области умеренных температур (150—250 °С) и таких реаге11тов, как НоЗО и А1С1д, в интервале относительно низких температур (0—20 °С). В условиях работы [51] такн<е получалось до 9 % бутана при каталитическом крекинге бутиленов. [c.50]

    Иг. ненасыщенных углеводородов исследованы превращения нри каталитическом крекинге этилена, н-бутиленов, м-амиленов, н-октиленов, цетена, бутадиена, изопрена, стирола, индена, циклогексена и циклопентена. Эти исследования показали, что превращения[ этилена при 400 °С проявляются довольно слабо. Основные реакции образование кокса (9,6 вес. % на сырье), предельных углеводородов (б%) и полимеризация с образованием угле одородов (3%). Образование жидких углеводородов не уста овлено. [c.441]

    Кроме того, получаются соответствующие диены, но в небольшом количестве, так как условия реакции термодинамически неблагоприятны для их образования. Побочно, как и при дегидрировании олефинов, протекают крекинг, изомеризация и коксообразование. В отношении реакций расщепления парафины более реакционноспособны, чем олефины, поэтому низших углеводородов (СН4, С2Н4, СзНб и др.) образуется больше. Считается, что изомеризация в основном происходит с олефинами, причем изомерные олефины (изобутнлен или н-амилен) частично гидрируются. В продуктах реакции находятся поэтому и изомерные парафины (изобутаи и н-пентан). Как и в случае дегидрирования олефинов, образуется значительное количество кокса за счет реакций уплотне- [c.490]

    При хлорировании н-пентана хлор присоединяется в основном ко второму, углеродному атому — содержание 2-хлорпентана достигает 51 %, тогда как содержание 1- и 3-хлорпентана около 23 и 25% соответственно. При хлорировании изопентана хлор более или менее равномерно распределяется между линейно расположенными четырьмя атомами углерода. Около 5% дихлорпентана получается в виде побочного продукта при хлорировании пентана. Образование дихлорпентана происходит за счет хлорирования монохлорпентанов и присоединения хлора к амилену, образующемуся при хлорировании. Технический дихлорпентан состоит в основном из нормального 2,3-дихлорпентана [23]. Сложная смесь продуктов хлорирования, в основном состоящая из амилхлоридов, используется после выделения из нее дихлорпентана для получения амиловых спиртов. Амилхлориды применяются также для получения алкиламинов и амилена. Дихлорпентан применяется в качестве растворителя в производстве маслостойких каучуковых клеев и для различных смол и битумных продуктов. [c.391]

    Возможно, что работы Кондакова были связаны с известными исследованиями Г. Г. Густавсона, относящимися к образованию соединений галоидных солей алюминия с ароматическими соединениями 5 и к изомеризующему действию хлористого алюминия и хлористого цинка на ароматические соединения а также с исследованиями А. П. Эльтекова по изомеризации амиленов под влиянием хлористого цинка  [c.9]

    К этилену и различным замещенным этиленам родан присоединяется с образованием веществ, содержащих две родангруппы. Эта реакция является, повидимому, общей, так как установлено, что в нее вступают такие соединения, как амилен, циклогексен, аллиловый спирт, пинен, стирол, стильбен, анетол, изосафрол, олеиновая и другие ненасыщенные кислоты. Выходы при этом почти всегда получаются количественные. Родан присоединяется к а, -ненасыщенным кетонам, но не присоединяется к а, -ненасыщенным кислотам. Присоединение к другим а, -ненасыщенным карбонильным или аналогичным соединениям не изучалось. Соединения с сопряженными двойными связями реагируют с роданом так же, как с галоидами, присоединяя две родангруппы, вероятно в положения 1,4. В литературе описаны реакции с бутадиеном, изопреном и диметилбутадиеном. Соединения ацетиленового ряда, поведение которых в этой реакции было описано (ацетилен, фенилацетилен и толан), присоединяют одну молекулу родана, образуя производные дироданэтилена. Выходы при этом ниже, чем при присоединении к двойной связи. [c.232]

    Амилен С5Н10 и уксусная кислота реагируют с образованием эфира в соответствии с уравнением [c.176]

    Синильная кислота, обычно содергкащаяся в небольших количествах в отходяш,их газах при делигнификации растительного сырья, образуется из лигнина Роутала и Севон [145] отмечали образование H N одновременно с Oj, а так как количество этих газов увеличивается синхронно и максимумы их образования наблюдаются одновременно, то авторы предположили, что образование синильной кислоты происходит вместе с окислением боковых цепей молекул лигнина Эти же авторы изучали образование синильной кислоты на модельных соединениях На основании того, что эвгенол, коричная кислота, амилен при взаимодействии с разбавленной азотной кислотой давали лишь следы синильной кислоты, а при добавлении нитрита натрйя ее выходы значительно возрастали, они пришли к выводу, что источниками ее образования являются непредельные соединения  [c.57]

    Образование продуктов конденсации. Непредельные углеводороды легко конденс груются с бензолом и его гомологами в присутствии серной кислоты, причем образуются гомологи бензола предельного характера, например, с амиленом образуется амилбензол  [c.118]

    Производство синтетического каучука в СССР [1] основано на использовании бутадиена, получаемого из этилового спирта. Развитие производства синтетического каучука зависит от производства дешевых бутадиена и изопрена л<аталитическая дегидрогенизация бутиленов или амиленов представляет удачное решение этой проблемы. Сырьем для производства каучука могут быть углеводородные масла, углеводородные газы и уголь. Гроссе, Моррелл и Мевити [40] дают подробное описание результатов каталитической дегидрогенизации моноолефинов в диолефины. Из бутена-1 и бутена-2 они получили бутадиен-1,3 из нормальных пентенов—пиперилен (пентадиен-1,2) и из пентена с разветвленной цепью — изопрен (2-метилбутадиен-1,3). Первоначальное положение двойной связи в цепи углеродных атомов олефинов, повидимому, не имеет значения, так как в присутствии катализатора с основанием из окиси алюминия происходит миграция связей [47, 70]. Таким образом, из З-метилбутена-1 или из смеси 2-метилбутена-1 и 2-метилбутена-2 получаются приблизительно одинаковые выходы изопрена. Однократной операцией дегидрогенизации из циклопентана получен диолефин циклопентадиен. Образование диолефинов из насыщенных углеводородов не ограничено циклической системой циклопентана. При дегидрогенизации н-бутана в бутилены получается небольшой процент бутадиена-1,3. Количество бутадиена зависит от условий процесса. [c.720]

    При ирименении в качестве катализатора Н3РО4, насыщенной фтористым бором, алкилирование идет более энергично, чем с амиленом кубовых остатков, почти не сопровождается полимеризацией и приводит к образованию смеси амил- и гексилнафталинов с общим выходом до 36 % от теорет. Продукты представляют собой бесцветные жидкости, не меняющие цвет при длительном стоянии в закрытых склянках. Активность катализатора и в данном случае зависит от стенени насыщенности ортофосфорной кислоты фтористым бором. Но в отличие от алкилирования нафталина бутеном-2 в этой реакции при повторном использовании катализатора BFg Н3РО4 выход алкилата понижается, и продукты больше загрязняются полимерами. [c.405]

    Первые попытки Кутца и Корзона [226] алкилировать тиофен пропиленом, а-бутиленом, изобутиленом, амиленом и циклогексеном в присутствии ВРз-0(СНз)2 и других типичных катализаторов алкилирования были неудачны и приводили к образованию смолистых продуктов. Более глубокое изучение этой реакции многими исследователями [227—232] показало, что тиофен и его гомологи могут алкилироваться без заметного [c.179]

    Константы исходной фракции, взятой для анализа ((С-, = = 0,7544, 1,4266), близки к константам указаьгных углеводородов. однако не исключается образование при содимери-зации бутиленов с амиленами и других олефинов. [c.95]

    Для второй стадии процесса — деполимеризации диизоамиленов — было иопытано свыше 70 различных образцов катализаторов, природных и синтетических. Как упоминалось выше, катализатор деполимеризации должен быть малоактивным с точки зрения диспропорционирования водорода одновременно он должен быть изомернзующим, чтобы избежать образования н-амиленов при расщеплении диизоамиле-нов с небольшой степенью разветвленности молекулы. Лучшие результаты показал природный алюмосиликат — Вольская опока среднего состава 5102—84% R20з— 14% MgO— 1,4%, СаО-0,6%. [c.42]


Смотреть страницы где упоминается термин Амилены образование: [c.219]    [c.28]    [c.130]    [c.151]    [c.326]    [c.166]    [c.94]    [c.190]    [c.136]    [c.20]    [c.733]    [c.202]    [c.270]    [c.144]    [c.152]    [c.61]    [c.62]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.659 , c.921 ]




ПОИСК





Смотрите так же термины и статьи:

Амилен хлористый, образование его при хлорировании триметилэтилена

Амилен энтальпия образования

Амилены образование при гидрогенизации

Ацетиленовые углеводороды образование из амилена действием

Гептан образование при пиролизе амилена

Диацетилен образование из амилена и водорода

Нонанафтены образование при пиролизе амилена

Октанафтен, образование при пиролизе амилена

Парафины образование их из амилена и углеводородов действием тихого разряда

Пентан, образование его при пиролизе амилена



© 2025 chem21.info Реклама на сайте