Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дегидрогенизация при крекинге

    Недавно нами было исследовано поведение циклопентана и его двух ближайших гомологов и нрисутствии платины, нанесенной на окись алюминия [1] и силикагель [2. Целью настояш ей работы явилось исследование превраш,ений циклопентана, метилциклопентана и этилциклопентана в присутствии платины, нанесенной на алюмосиликат. Превращения этих углеводородов в присутствии платинированного алюмосиликата изучались рядом авторов, но в таких условиях (повышенное давление водорода, температура 400—500 С), когда гидрогенолиз протекал лишь в незначительной степени, а основными направлениями реакции были изомеризация, дегидрогенизация, крекинг [3—5]. Мы старались найти условия, при которых гидрогенолиз циклопентановых углеводородов в присутствии платины на алюмосиликате протекал бы избирательно. Для циклопентана и метилциклопентана такие условия были найдены. В интервале 200—235°С реакция гидрогенолиза этих углеводородов не осложнялась другими превращениями, и на основании температурной зависимости скорости гидрогенолиза были вычислены кажущиеся энергии активации этой реакции (рис. 1). Результаты этих вычислений приведены в табл. 1, где для сравнения приведены также значения ка> для этих углеводородов в присутст-вии платины, нанесенной на другие носители. [c.224]


    Системы с поддающимся определению конечным числом компонентов от трех и более называются многокомпонентными. Примерами подобного рода углеводородных систем являются природный нефтяной газ, газы термического и каталитического крекинга, смесь газов пиролиза, контактные газы установок дегидрогенизации н-бутана или этилбензола. Примеры эти можно было бы умножить, однако достаточно ограничиться замечанием, что число компонентов в таких системах сравнительно невелико и редко превосходит два десятка, чаще нie всего бывает значительно меньше. [c.344]

    Большинство исследователей считают, что сажа образуется на предпламенных стадиях процесса сгорания в тех зонах камеры, где недостаточна концентрация кислорода. Здесь создаются условия для крекинга и дегидрогенизации углеводородов с образованием очень мелких (десятые доли нанометра) частичек сажи. При последующем развитии процесса сгорания часть сажи может выгореть, а несгоревшие частицы укрупнятся до размеров от единиц до десятков микрон. Для уменьшения дымности отработавших газов необходимо снизить образование сажистых частиц, ускорив их выгорание и предотвратив агломерацию в выпускном тракте. [c.176]

    Процессы производства олефиновых и диолефиновых углеводородов путем каталитической дегидрогенизации впервые были широко использованы США во время второй мировой войны. Методы получения олефинов были разработаны за несколько лет до войны в результате интенсивной исследовательской работы в период от 1930 до 1940 гг. Однако в то время эти методы были малорентабельными. Кроме того, относительно небольшой спрос на газообразные олефины удовлетворялся производством их на установках каталитического крекинга. С начала войны спрос на олефины и диолефины как сырье для производства алкилированного бензина и синтетического каучука способствовал строительству многочисленных дегидрогенизационных установок. [c.189]

    Бензины крекинга. В бензинах, полученных путем крекинга нефтяного сырья, в отличие от бензинов прямой перегонки, содержатся углеводороды четырех классов парафиновые, нафтеновые, ароматические и олефиновые. Появление олефиновых углеводородов связано с тем, что в условиях крекинга нефтяного сырья происходит расщепление крупных молекул углеводородов с большим числом углеродных атомов на более мелкие. Некоторую часть образующихся молекул составляют олефиновые углеводороды. Помимо расщепления углеводородов в процессе крекинга происходит дегидрогенизация нафтеновых углеводородов, за счет чего бензины крекинга содержат больше ароматических и меньше нафтеновых углеводородов по сравнению с бензинами прямой перегонки (табл. 1). [c.12]


    Процесс сопровождается рядом побочных реакций (дегидрогенизацией, конденсацией н полимеризацией непредельных углеводородов, образовавшихся при распаде исходного сырья, и др.), поэтому в результате крекинга нефтяного сырья наряду с жидкими продуктами получаются газ п твердый кокс. [c.10]

    Другие промоторы. Сами по себе окислы металлов также являются катализаторами. Окись хрома (одну или в смеси с глиноземом) применяют для дегидрогенизации. Этой же цели могут служить окись хрома с добавкой окиси церия, смесь окиси магния, окиси железа и окиси калия, окись молибдена (последняя является также катализатором гидроформинга). Соли металлов, в частности соли галогеноводородных кислот, были первыми синтетическими катализаторами в переработке нефти под действием хлористого алюминия проводились процессы крекинга галоидные соли алюминия служат катализаторами процессов полимеризации и изомеризации, а хлористый водород является их промотором. [c.23]

    Достоинство метода Зелинского заключается в том, что дегидрогенизация протекает при сравнительно низкой температуре, поэтому крекинг углеводородов исключается. [c.241]

    ЭТОМ реакции распада более вероятны, чем реакции дегид-рирования. Сравнительно низкая прочность связи с углеродом вторичного и третичного атомов водорода, по сравнению с первичным в цепи и в цикле, по-видимому, является главной причиной дегидрогенизации при термическом крекинге этиленовых и полинафтеновых углеводородов [69]. [c.39]

    Авторы [213] считают, что по отравляющему действию на катализаторы крекинга металлы располагаются примерно в таком же порядке, как и по отравляющему действию на катализаторы дегидрогенизации. Большинство авторов считают, что наиболее сильным ядом является никель. Однако эта точка зрения не является единственной. Некоторые исследователи [64, 214] полагают, что-такой же сильный эффект, как никель, вызывает и медь. По дан- [c.153]

    Реактор типа теплообменника. Реактор такого тина сооружается в форме большой камеры с реакционной трубой или трубчаткой, по которой подается газ. Внутри реакционных труб иногда находится катализатор. Этот реактор применяется при термическом и каталитическом крекинге углеводородов, при проведении реакций дегидрогенизации и т. д. [c.353]

    Технологический процесс крекинга проводят так, чтобы получить максимальную степень превращения исходного нефтепродукта с наибольшим выходом бензина и наименьшим кокса и смолы. Различают два вида крекинга термический и каталитический. Мы будем обсуждать второй, притом каталитический крекинг во взвешенном слое катализатора. Поскольку и в этом случае ряд реакций дегидрогенизации и разложения углеводородов, по-видимому, протекают гомогенно, без участия катализатора, мы кратко рассмотрим основные разновидности термического крекинга. [c.224]

    В условиях термического крекинга выделение молекулярного водорода невелико. На свежем катализаторе реакции дегидрогенизации также не доминируют. В промышленных катализаторах с течением времени накапливаются примеси никеля, железа, ванадия. В этих условиях образование водорода значительно. Дегидрогенизация становится важной реакцией в том случае, когда насыщенное или частично насыщенное кольцо связано с ароматическим кольцом. [c.228]

    Циклогексен нрн той же температуре подвергается ряду реакций изомеризации, дегидрогенизации, крекингу, конденсации. Газы содержат значительное количество водорода в жидких продуктах содернгится метилциклопентан, а в твердых — конденси-ро] анные ароматические. [c.443]

    В настоящее время курс органического катализа проф. Б. Н. Долгова является единственным содержательным пособием для студентов, специализирующихся по органическому катализу. Очень многие разделы этого курса изложенЪ полно и исчерпывающе. Это относится к к 1тали-тической гидрогенизации, дегидрогенизации, крекингу и некоторым другим разделам. В то же время необходимо отметить двойственность и противоречивость разделов, посвященных теории катализа, где говорится об успехах катализа в Советской стране и вместе с тем даются слишком поверхностные характеристики известным теориям. Слабо освещены в книге работы по каталитическому окислению органических веществ. Но- [c.216]

    При температурах крекинга злемептарная сера реагирует с нефтяными углеводородами, образуя органические сернистые соединения. В реакции с алкановыми углеводородами (преимущественно с высшими членами ряда) она вступает с образованием главным образом сероводорода и меркаптанов. С непредельными соединениями сера реагирует легче, образуя соединения сложного строения. При нагревании серы с нафтеновыми углеводородами происходит процесс дегидрогенизации с выделением сероводорода, причем предполагается, что реакция идет в несколько стадий. Так, например, при нагревании циклогексана с серой может осуществляться следующая серия реакций [381  [c.26]


    Высокое октановое число бензинов каталитического крекинга объясняется большой концентрацйей них изопарафиновых и аро-матаческих углеводородов. Содержание в таких бензинах олефиновых углеводородов обычно не превышает 34%, поскольку в процесс каталитического крекинга реакции с перераспределением водорода играют существенную роль наряду с реакциями дегидрогенизации в этом процессе одновременно протекают и реакции присоединения водорода к ненасыщенным соединениям. [c.229]

    В случае достаточно высокой температуры крекинга могут также иметь место вторичные реакции. Дегидрирующие катализаторы, в частности, платинированные или палладированные уголь или асбест, никель и хромовые катализаторы способствуют ароматизации нафтеновых колец. Если кольцо по величине недостаточно для образования ароматического кольца, тогда дегидрогенизация идет с большим трудом и обычно сопровон дается крекингом кольца. [c.111]

    Термический крекинг нафтеновых углеводородов происходит по аналогичному сБободнорадикальному цепному механизму. Дополнительно-к процессам, имеющим место при крекинге парафиновых углеводородов, при крекинге нафтенов происходит дегидрогенизация (путем отщепления водорода от радикалов) до ароматических угловодородов. [c.238]

    Окислы, сульфиды и гидриды металлов образуют переходную форму между кислотно-основными катализаторами и металлами так например, они являются катализаторами реакций гидрогениза ции-дегидрогенизации, так же, как и многих реакций (крекинг изомеризация и т. д.), для которых катализаторами служат ки слоты. Химическая активность окислов связана с наличием двух [c.312]

    В промышленности широко используется проведение реакций в струе газа, проходящего через реактор, который может быть или пустым, играя роль только области, где поддерживается постоянная температура, или заполненным слоем зер-неного катализатора. Примерами реакций, осуществляемых в потоке в промышленных масштабах, могут служить реакции термического и каталитического крекинга нефтепродуктов, каталитического алкилирования, иолимеризации, гидро- и дегидрогенизации углеводородов, дегидратации и дегидрогенизации спиртов, гидратации олефинов, галоидирования, нитроваиия охислами азота, синтеза аммиака, получения серной кислоты контактным способом, синтеза моторного топлива н т. п. Поэтому и лабораторные опыты по изучению кинетики многих в.ажных широко применяемых в промышленности реакций проводятся также в потоке. Вследствие того, что реакции этого типа проводятся обычно при постоянном давлении и сопровождаются в большинстве случаев изменением объема участвующих в реакции веществ, уравнения кинетики этих процессов должны отличаться от уравнений, выведенных выше для условия ПОСТОЯННОГО) объема. Кроме того, и сам метод расчета кон-стаит скоростей реакций, протекающих в потоке, должен отличаться от методов расчета констант скоростей реакций,осуществляемых при постоянном объеме, так как очень трудно определить время пребывания реагирующих веществ в зоне реакции (так называемое время контакта). [c.48]

    Попытки реализации каталитического крекипга в лабораторных условиях начинаются с момента промышленного зарождения термического крекинга. Если термическш крекинг рассматривать как совокупность элементарных процессов деструкции, дегидрогенизации, изомеризации, деалкилирования,, алкилирования, циклизации, полимеризации, гидрирования молекул углеводородов и т.,д., то простая регулировка температурой и давлением (в пределах обь(чпых для данной области техники величин) может подавить лишь оди )-два из перечисленных процессов. Проведение крекинга и риформинга 1 присутствии хлорида алюминия дало возможность более надежно регулировать сочетание элементарных нроцессов вплоть до рельефного выделения одного из них и подавления всех остальных. [c.39]

    Первая груггпа элементарных процессов должна включать такие реакции, как простое расзценление, деполимеризация, деалкилирование вторая группа — изомеризацию, циклизацию, размыкание циклов, дегидрогенизацию и гидрогенизацию третья группа — полимеризацию, алкилирование. Продукты элементарных процессов одной группы могут участвовать в реакциях двух остальных групп, что значительно усложняет общую картину крекинга или риформинга данного вида сырья. [c.41]

    Каталитический крекинг при температуре 480 °С дает бензины, состав которых меньше заиисит от состава исходного сырья. Так, содержание ароматических углеводородов в бензинах колеблется на одном уровне (30—34 %) и значительно повь шоно по сравнению с бензинами, полученными при 400 °С, а количество нафтенов, наоборот, сильно понижено. Подобные соотношения можно объяснить лишь тем, что нри температуре 480 °С интенсивно протекает реакция дегидрирования шестичленных нафтенов в ароматические углеводороды и накопление последних в бензине происходит за счет деалкилирования газойлевых ароматических углеводородов и дегидрогенизации нафтенов, что ведет к сокраш,внню содержания их в бензинах. Одновременно резко увеличивается количестпо водорода в газах крекинга. [c.55]

    Риформинг углеводородного сырья приводит к накоплению в последнем бензиновых фракций и изменению октанового числа от 20—60 у исходного сырья до 67—77 у конечного продукта. Повышенные октановые числа (в чистом виде) бензинов термического крекинга и риформинга по сравнению с некоторыми бензинами прямой гонки и исходным сырьем (в случае, например, термического риформинга тяжелых бензинов и легких лигроинов) обусловлены резким отличием их химического состава от состава природных бензинов. Протекающие в процессе крекинга или риформинга термические реакции распада и дегидрогенизации углеводородов исходного сьсрья приводят в ко-1гечном счете к обогащению бензинов олефинами и ароматическими углеводородами за счет парафинов и нафтенов. Таким образом, бензины крекинга и ри-формйнга отличаются от бензинов прямой гонки прежде всего повышенной ненредельностью и большим содержанием ароматических углеводородов. [c.74]

    Из данных табл. 14 видно, что термический риформинг лигроина при 500 °С практически не имеет места. Активированная глина № 1 вызывает лишь слабый расиад, а активированная глина № 3 достаточ]го заметно ускоряет дегидрогенизацию (рост йодного числа жидких продуктов крекипга) и крекинг с образованием фракций, кипящих ниже 100 С. Однако оба процесса нри температуре 500 °С даже пад активированной глиной № 3 протекают относительно <игабо — газ, кокс и потери в сумме составляют лишь 3—5 % на исходное сирье, т. е. даже меньше, чем при простом термическом крекинге в тех же условиях (5—8 % па исходное сырье). [c.99]

    Дальнейшие систематические исследования каталитических свойств природных алюмосиликатов (флоридина и кавказской активной глины) проводит С. В. Лебедев [12, 13]. Он последовательно вскрывает глубокие возможности низкотемпературных каталитических преобразований углеводородов над природными катализаторами — флоридинами, кавказскими глинами и каолинами — в температурном интервале от —80 до 260 С [14—22]. С. В. Лебедев придавал особое значение активности катализатора. Он первый применил искусственную тепловую активацию природных г.тии и изучил механизм изомеризации олефипов под воздействием алюмосиликатов, показав способность алюмосиликатов вызывать по только неремоп ение двойной связи в цепи молекулы, но и скелетньсе изменення, приводящие к переходу несимметричной структуры олефипов в симметричную. Наконец, с исчерпывающей полнотой С. В. Лебедев доказал, что в области температур выше 250 °С парофазный процесс катализа над природными алюмосиликатами является по существу типичным сложным процессом каталитического крекинга, когда гладкая деполимеризация полимерных олефинов переходит в совокупность реакций дегидрогенизации, распада на элементы и глубокого дегидроуплотнения молекул с одновременным образованием парафинов. [c.158]

    Избирательность. Широкое применение каталитических процессов требует подбора катализаторов, избирательно ускоряющих процесс превращения сырья в желательном направлении. Например, крекинг углеводородов сопровождается реакциями дегидрогенизации, изомеризации, полимеризации, циклизации и др. Подбором катализатора и технологических параметров осуществляют процесс в нужном направлении с преимущественным выходом желаемых продуктов. Принцип избирательности используют при выборе алюмосиликатных катализаторов различного строения и структуры, учитывая при этом относительное значение выходов и качеств целевых продуктов. Например, для превращения низкокипящего термически стабильного сырья прил1еняют высокоактивные синтетические катализаторы раз- чожение же тяжелых смолистых дистиллятов осуществляют на менее активных катализаторах. Некоторые природные катализаторы [c.15]

    Установлено, что катализатор мало влияет на скорость реакции крекинга низших углеводородов метанового ряда. Так, пропан Л1[шь очень слабо изменяется при ООО С бутан и изобутан при 550 С подвергаются крекингу на 4% к-пентан нри 500 С почти не изменяется. В одинаковой степени эти углеводороды слабо подвергаются реакциям дегидрогенизации и изоморизацни. [c.438]

    Наконец, при каталитическом крекинге нафтенов наблюдается, в осоС енпости за счет гомологов циклогексана, заметная дегидрогенизация с образованием ароматических. [c.444]

    Концентрация такого монометилнрованного углеводорода, как толуол, повышается в начале крекинга вследствие дегидрогенизации метилциклогексана и деметилирования ксилола затем она уменьшается. Это характерный случай последовательных реакций. [c.169]

    Каталитические реакции, осуществляемые в нефтеперерабатывающей промышленности, относятся как к окислительно-воостано-вительным (гидрогенизация и дегидрогенизация), так и к кислотным (каталитический крекинг, алкилирование изобутана бутенами, полимеризация олефинов). Широко применяется бифункциональный катализ (изомеризация парафиновых углеводородов, рифор-минг, гидрокрекинг). Катализ основаниями в нефтеперерабатывающей промышленности не применяется. [c.135]

    При каталитическом риформинге происходит ароматизация бензинов за счет дегидрогенизации шестичленных нафтенов и дегид-роциклизации парафинов. Для насыщения непредельных побочных продуктов крекинга риформинг проводят в присутствии водорода. [c.69]

    Особенностью современной промышленности моторных топлив является сниженное по сравнению с прошлым значение продуктов прямой гонки природной нефти и все возрастающая роль в производстве высококачественных товарных продуктов органического синтеза. Синтез углеводородов желаемых классов и типов структуры, лучше удовлетворяющих разнообразным требованиям двигателей, нежели пестрые смеси углеводородов природных нефтей, обеспечивается развитием глубоких форм переработки природной нефти каталитического крекинга, изомеризации, полимеризации газов крекинга, алкп-лирования, дегидрогенизации, дегидроциклизации и т. д., а также переработкой аналогичными способами ископаемых твердых каустобиолитов. [c.3]


Смотреть страницы где упоминается термин Дегидрогенизация при крекинге: [c.104]    [c.311]    [c.48]    [c.147]    [c.157]    [c.283]    [c.286]    [c.20]    [c.130]    [c.10]    [c.419]    [c.438]    [c.8]    [c.225]    [c.136]    [c.204]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.112 ]




ПОИСК





Смотрите так же термины и статьи:

Дегидрогенизационный крекинг (дегидрогенизация)

Дегидрогенизация

Дегидрогенизация бензина в крекинге

Дициклогексил, дегидрогенизация Додекан, крекинг его



© 2025 chem21.info Реклама на сайте