Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Осмий как катализатор при окислении

    Гидрозоли неблагородных металлов очень чувствительны к реактивам — кислотам и окислителям. Кроме того, их. трудно изготовлять. В связи с этим в коллоидальном катализе применяются, как правило, золи благородных металлов палладия и платины, реже—золота, серебра и меди. Золи палладия и платины являются хорошими катализаторами реакций гидрирования. Лучшим катализатором окисления кислородом служит коллоидный осмий. Специфика механизма микрогетерогенного катализа неясна и требует дальнейшего изучения. [c.243]


    Четырехокись осмия очень ядовита и сравнительно дорога. В связи с этим она не находит такого широкого применения в качестве окислителя, как перманганат калия. Однако в реакции гидроксилирования она может применяться не только как окислитель, но и как эффективный катализатор окисления, что позволяет работать лишь с незначительными ее количествами. Примером может служить окисление этиленовых соединений перекисью водорода в г/ ет-бутиловом спирте. Олефины не реагируют с перекисью водорода в грег-бутило-вом спирте в отсутствие катализатора. В присутствии четырехокиси осмия гидроксилирование двойной связи (синтез а-гликолей) проходит с достаточно высокими выходами  [c.170]

    Метод каталитического обезвреживания газообразных отходов заключается в проведении окислительно-восстановительных процессов при температуре 75—500°С на поверхности катализаторов. В качестве носителей металлов, используемых как катализаторы (платина, палладий, осмий, медь, никель, кобальт, цинк, хром, ванадий, марганец), применяются асбест, керамика, силикагель, пемза, оксид алюминия и др. На эффективность процесса оказывает влияние начальная концентрация обезвреживаемого соединения, степень запыленности газов, температура, время контакта и качество катализатора. Наиболее целесообразное использование метода— при обезвреживании газов с концентрацией соединений не более 10—50 г/м . На низкотемпературных катализаторах при избытке кислорода и температуре 200—300°С окисление ряда низко-кипящих органических соединений (метан, этан, пропилен, этилен, ацетилен, бутан и др.) протекает нацело до СО2, N2 и Н2О. В то же время обезвреживание высококипящих или высокомолекулярных органических соединений данным методом осуществить невозможно из-за неполного окисления и забивки этими соединениями поверхности катализатора. Так же невозможно применение катализаторов для обезвреживания элементорганических соединений из-за отравления катализатора НС1, НР, 502 и др. Метод используется для очистки газов от N0 -f N02 с применением в качестве восстановителей метана, водорода, аммиака, угарного газа. Срок службы катализаторов 1—3 года. Несмотря на большие преимущества перед другими способами очистки газов метод каталитического обезвреживания имеет ограниченное применение [5.52, 5 54 5.62] [c.500]

    В соответствии с рекомендуемой авторами методикой к анализируемому раствору, содержащему 50—100 мг урана, добавляют 2,5 мл концентрированной серной кислоты и разбавляют водой до объема 50 мл. Раствор охлаждают и пропускают через цинковый редуктор, который затем промывают 4 раза 5% -ным раствором серной кислоты порциями по 25 мл. Через восстановленный раствор продувают воздух в течение 5 мин., добавляют из бюретки определенный объем (20—25 мл) 0,05 N раствора железоаммонийных квасцов в 5%-ной серной кислоте и оставляют в течение 5 мин. для окисления всего урана (IV) до урана (VI). Затем добавляют 1 г карбоната натрия для вытеснения воздуха выделяющейся углекислотой, 10 г твердого иодида калия, 2 капли 0,25%-ного раствора четырех-окиси осмия в 5%-ной серной кислоте, закрывают колбу и размешивают до полного растворения иодида калия. Выделившийся иод титруют 0,05 N раствором тиосульфата натрия, применяя крахмал в качестве катализатора. Ошибка определения достигает 0,4% (отн.). [c.97]


    В микрогетерогенном катализе применяются, как правило, золи благородных металлов - палладия и платины, реже - золота, серебра и меди. Золи палладия и платины являются хорошими, катализаторами реакций гидрирования и окисления. Катализато- ром окисления молекулярным кислородом также служит колло-.ь идный осмий. ч< [c.378]

    Известно, что пирен, каК правило, прн окислении не дает ор-тохинона. Однако отдельные окислители действуют на связь 1,2 и при окислении пирена, например, тетраоксидом осмия с пероксидом водорода получается пирен-1,2-хинон. Пирен устойчив к молекулярному кислороду и прн отсутствии катализатора не окисляется при температурах ниже температуры кипения — 393 "С. [c.141]

    Сплавы платины с родием, осмием или иридием менее активны, а с рутением или палладием несколько более активны, чем чистая платина [3701. Добавление уже 5% золота резко ухудшает каталитические свойства платинового катализатора [401. Можно отметить еще, что на сплаве вольфрама с 10% рения, нанесенном на кварцевую вату, окисление идет с выходом 75% уже при 120—150° С [498]. В отсутствие рения выход 50з в тех же условиях не достигает 30%. [c.267]

    В большом числе реакций, катализируемых ионами переходных металлов, катализ осуществляется за счет непрерывных переходов катализатора из одной степени окисления в другую и обратно. Такой механизм каталитического действия очень характерен для реакций окисления органических субстратов, катализируемых медью, железом, ванадием, осмием, рением, серебром, золотом и другими переходными элементами [28]. Обычно реакции этого типа протекают следующим образом субстрат окисляется катализатором, находящимся в исходной окисленной форме, который при этом восстанавливается. Регенерирование катализатора, т. е. возвращение его в исходную окисленную форму, происходит под действием окислителя, введенного в систему, или под действием кислорода воздуха.  [c.19]

    Установлено, что наиболее сильными катализаторами являются медь и свинец. В присутствии этих металлов окисление и смолообразование происходит особенно быстро. Именно этим объясняется тот факт, что автобензины особенно быстро осмо-ляются в баках автомобилей, где установлены медные сетки или имеется пайка баков медью (табл. 37). Каталитическое действие металлов, ускоряющее осмоление топлива, может быть ослаблено введением в топливо избыточного количества антиокислителей или дезактиваторов металлов. [c.56]

    Изящная модификация двухстадийного метода, при которой не требуется выделения гликоля, состоит в следующем в качестве катализатора используется перманганат калия, что приводит к окислению алкенов при действии перйодата натрия непосредственно в карбонильные соединения. Этот метод основан на следующем перйодат натрия, несмотря на то что он является достаточно сильным окислительным агентом, приводящим к окислению марганца из более низкого окислительного состояния до перманганата, не реагирует с двойными связями. Сначала под действием перманганата (в низкой концентрации) двойная связь гидроксилируется, а затем образовавшийся диол расщепляется перйодатом, что приводит также к регенерированию перманганата из восстановленного соединения марганца. В аналогичном методе используется четырехокись осмия и перйодат натрия нри этом четырехокись осмия гидроксилирует двойную связь и затем регенерируется перйодатом. Ниже приведен типичный пример такого превращения. [c.380]

    Согласно [Д.5.9], растворение атомного кислорода в решетке платины, нанесенной на уголь, приводит к снижению ее активности в реакции жидкофазного окисления. По мнению авторов [Д.6.9], механизм блокировки катализаторов платформинга при дегидрировании метилциклогексана зависит от времени. В первые 40 мин их активность можно восстановить обработкой водородом, при дальнейшей дезактивации такая обработка регенерирует катализатор лишь частично. В работе 1Д.6.20] модель обратимой блокировки применена для описания кинетики изменения активности платинового катализатора гидрогенолиза циклопентана, кобальтмолибденового на алюмосиликатном носителе катализатора диспропорционирования кумола и гидрировании оксида углерода на осмии, нанесенном да оксид алюминия. [c.258]

    Диолы обычно получают из алкенов путем окисления такими реагентами, как четырехокись осмия, перманганат калия или перекись водорода (разд. 7-8,Б). Однако этиленгликоль синтезируют в промышленном масштабе из окиси этилена, которая Б свою очередь получается из этилена путем окисления кислородом воздуха при высоких температурах над катализатором — окисью серебра. [c.440]

    Осмийтетроксид используется в органической химии и как окислитель, и как катализатор окисления другими веществами (например, уже ничтожные количества OSO4 резко повышают окислительную активность КСЮз в слабокислых средах). Он находит применение также при изготовлении микроскопических препаратов различных животных тканей (основанное на том, что входящие в состав тканей жиры восстанавливают OSO4 и окрашиваются в черный цвет двуокиси осмия). [c.204]


    В ранней литературе по катализу имеется много указаний на повышение активности катализаторов от различных добавок. Так, отмечено было повышение активности иридия следами осмия, повышение обесцвечивающей силы угля от добавок солей имеется также указание, что достаточно загрязнить золото одной пылинкой платины, чтобы оно раскалилось в токе водорода установлено повышение активности Си504 (при получении хлора из НС1) примесями Ма2804 или Кз504. Оказалось, что окисление нафталина концентрированной серной кислотой сильно ускоряется от прибавления Н , Зе или НзВОд. Очень изящным опытом является ускорение окисления анилина бертолетовой солью при добавлении меди. Добавление 0,5% СеОа к никелевому катализатору повышает скорость реакции в 10 раз, хотя в катализаторе на ИЗО атомов N1 приходится лишь 1 молекула СеОа. Разложение НоОз в присутствии солей закиси железа резко ускоряется от добавки 1 миллимоля медной соли на 1. ] реагента. В биохимических процессах роль активаторов играют ко-ферменты. [c.62]

    Катализаторы обычно действуют весьма специфично, т. е. определенную реакцию ускоряют только некоторые вещества, не способные, в свою очередь, ускорить другие реакции. Так, например, окисление иодид-ионов пероксидом водорода каталитически ускоряют молнбдат-ионы. Реакции с участием церия (IV) ускоряют тетроксид осмия OSO4, реацию между арсенит- и перманганат-ионами—такие вещества, как OsO , KI, 1 .  [c.105]

    Для окисления применяют клорноватокислые соли натрия или калия в нейтральных или слабокислых растворах. Оинсляемое вещество в виде раствора (например, в уксусной кислоте) или еиде взвеси в воде нагревают с водным раствором окислителя до температуры немного выше 40 . В некоторых случаях окисление ведут в присутствии катализаторов (соли меди, железа, хрома, ванадия, церия, осмия и рутения), [c.660]

    Наиб, характерные степени окисления для палладия +1, платины -f-2 и -Ь4, ирйдия -ь2 и -f-3, осмия -f-4, -f-6 й - -8, родия -f-3, рутения -f-3, +4 и -f-8. П.м. обладают исключительно высокой каталитич. активностью, чаще других как катализаторы используют Pt и Pd. Палладий и в меньшей степени Pt хорошо растворяют Hj, Pd растворяет лучше всех металлов (до 800 объемов). [c.570]

    Четырехокись осмия применялась также в качестве катализатора гидроксилирования. Гофман [67] впервые сообщил, что водные растворы хлората натрия и хлората калия при добавлении небольшого количества четырехокиси осмия становятся сильными окислителями, способными гидроксилиро-вать атомы углерода, связанные между собой двойной связью. Браун [16] установил, что выходы диолов возрастают при использовании хлората бария и хлората серебра, которые в дальнейшем нашли широкое применение. Реакция протекает в водной среде при температурах в пределах О—50° иногда для завершения реакции требуется несколько суток илида же неделц. Наиболее удовлетворительные результаты получены в случае соединений, обладающих хотя бы слабой растворимостью в воде. Несмотря на эти ограничения, метод оказался вполне удовлетворительным. Он особенно пригоден для окисления алифатических этиленовых соединений с короткой цепью, например для соединений, приведенных в табл. 7, в которой указаны выходы гликолей и применявшиеся хлораты. [c.126]

    Трейбс рекомендовал применять перекись водорода и над-ванадиевую кислоту для получения эпоксисоединений и гликолей и считал ацетон наиболее подходящим растворителем ([164] ср. [87]). С другой стороны, Магден и Янг [100] после систематического исследования различных катализаторов для окисления аллилового спирта в водной среде пришли к выводу, что в присутствии надванадиевой кислоты олефины окисляются медленнее, чем с четырехокисью осмия, что образуются большие количества побочных продуктов и что органические растворители в большинстве случаев окисляются. [c.145]

    Наиболее интересной особенностью окисления перекисью во рода, катализируемого окислами металлов, является то, что в присутствии четырехокиси осмия происходит г иг -присо-единение, тогда как другие окислы вызывают транс-арисо-еДЙнение. Это свидетельствует о различии в механизме реакции в зависимости от природы катализатора. Магден и Янг считают, что при реакции с четырехокисью осмия промежуточно образуются циклические эфиры осмиевой кислоты (см. стр. 121, 124), а реакция с надвольфрамовой кислотой протекает по следующей схеме ([100] ср. [80])  [c.146]

    Раскрытие цикла, сопровождаемое более глубоким окислением, описано Миласом [161]. Окисление фурфурола, которое производилось хлорноватокислым натрием в присутствии четырехокиси осмия или пятиокиси ванадия как катализаторов, представлено следующей схемой  [c.133]

    Описаны методы окисления ненасыщенных жирных кислот в паровой ф зе. Азелаиновая, пеларгоновая и энантова кислоты получают при пропускании паровой смеси олеиновой кислоты, водяного пара и воздуха при 380 °С над окисью ванадия и быстром охлаждении продукта. Кроме окиси ванадия в качестве катализатора этого процесса предложены ваНадаты олова, серебра, осмия, титана,"а также окись титана, осажденная на окиси алюминия. [c.156]

    В заключение следует упомянуть еще об одном методе — окислении политионатов, тиосульфата и сульфита при помощи феррицианида калия в присутствии окиси осмия OSO4 в качестве катализатора раздельное определение достигается изменением щелочности и температуры среды. Вряд ли этот метод достаточно удобен и надежен для широкого применения на практике. [c.297]

    Окись этилена была впервые получена Вюрцем [200] в 1858— 1859 гг. действием едкого кали на этиленхлорпидрин. С тех пор и до настоящего времени этот старый способ получения окиси этилена в принципе сохранил свое значение, несмотря на расходы всегда дефицитного хлора и ряд других недостатков метода. Прямое окисление этилена молекулярным кислородом, несомненно, всегда считалось более выгодным и перспективным. Поэтому химики, начиная уже с Вюрца [201], пытались найти условия осуществления этой прямой реакции. В особенности много попыток в этом направлении было сделано в овязи с общим подъемом каталитических исследований. В качестве катализаторов были испробовапы (в 1906 г. Вальтером) платина, палладий, иридий, никель, медь, серебро и некоторые окислы металлов [202], затем (в 1920 г. Вильштеттером) осмий и серебро [203], а также многие другие катализаторы. [c.347]

    И состава электролита. Меньшие величины фг, устанавливающиеся в растворе H2SO4 на Os/Pt (0,46в) и электродах, богатых осмием (88 вес. %) — (0,55в), по сравнению с Pt/Pt (0,64в) и богатыми ею катализаторами (0,б7в) связаны, по-видимому, с ранним окислением их поверхности [1], что, согласно [8], должно уменьшить адсорбцию органического вещества и сдвиг потенциала электрода. [c.251]

    ОСМИЙ м. 1. Os (Osmium), химический элемент с порядковым номером 76, включающий 33 известных изотопа с массовыми числами 163-167, 169-196 (атомная масса природной смеси 190,2) и имеющий типичные степени окисления в соединениях О, + П, + П1, -Ь IV, + VI, -I- VIII. 2. Os, простое вещество, тяжёлый серебристо-белый металл применяется как компонент сверхтвёрдых и износостойких сплавов с иридием, как компонент катализаторов в реакциях гидрогенизации и др. [c.298]

    В 1818—1819 гг. сноВ а была апубликоваща большая серия работ Тевара [15, 16], в которой он сообщал о расщеплении открытой им (Перекиси водорода на различных металлах л окислах. Им были Испробованы серебро, медь, золото, платина, железо, цинк, олово, свинец, висмут, осмий, палладий иридий, родий, перекись марганца и другие окислы металлов, а также органические вещества преимущественно белмо вого характера, 1в том, числе клеточные ткаии организмов, я вля(вщ.иеся фактически катализаторами. Тенар тщательно выяснил и разделил случаи распада пер екиси водорода, происходящ ие с окислением соприкасающихся с ее растворами веществ, и случаи, когда агент разложения остается без изменения. [c.24]

    Позднее Медведев и Алексеева окисляли циклогексен в присутствии менее активного катализатора — двуокиси осми я, осажденной на асбесте. Активность этого катализатора сильно уменьшалась при замене асбеста окислами металлов, например окисью алюминия, окисью железа, окисью марганца или окисью меди. Эти исследователи наблюдали также, что состав образующихся яродуктов окисления зависит от природы растворителя и что в противоположность указаниям Willstatter a и Sonnenfeld a окисление с этим мягким катализатором энергично протекает в бензоле. При окислении циклогексена были получены следующие продукты 2-циклогексен-1-ол, адипиновая кислота, неидентифицированный альдегид и немного перекисей. [c.963]

    Платиновые металлы чрезвычайно устойчивы против коррозии. Они ке растворяются в кислотах и только палладий и платина растворимы В царской водке и в концентрированных горячих HNOз а Н2504. Все металлы семейства платиновых имеют высокое положительное значение окислительно-восстановительного потенциала. Несмотря на это, многие из металлов характеризуются заметно выраженным сродством к кислороду. При нагревании рутений, осмий, родий и иридий соединяются с кислородом. Осмий в раздробленном состоянии медленно реагирует с кислородом при обычной температуре, образуя при этом бесцветный 0з04 палладий вступает в реакцию с трудом, а платина с кислородом не взаимодействует. Все платиновые металлы при нагревании соединяются с фтором и хлором, кроме родия, который устойчив к действию даже фтора. Металлы семейства легко выделяются в мелко раздробленном состоянии из растворов их солей при действии восстановителей. При этом они приобретают высокую активность в качестве катализаторов реакций окисления и гидрирования, особенно порошки палладия и платины, растворяющие значительные количества водорода в атомной форме. В соединениях элементы семейства платины встречаются в различных состояниях окисления. При этом максимальная и характерная валентность (выделена полужирным [c.375]


Смотреть страницы где упоминается термин Осмий как катализатор при окислении: [c.640]    [c.108]    [c.413]    [c.369]    [c.371]    [c.278]    [c.254]    [c.95]    [c.63]    [c.446]    [c.379]    [c.263]    [c.548]    [c.1016]    [c.343]    [c.465]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Осмий

Осмий осмий



© 2025 chem21.info Реклама на сайте