Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Циклопентан реакция

    Механизм отравления Pt-катализатора в ходе превращений 3-метилпентана исследован с помощью изотопных методов [117]. Показано, что в ходе протекания реакций Сз-дегидроциклизации и изомеризации происходит необратимое удерживание части молекул углеводорода на катализаторе, следствием чего является селективное отравление активной поверхности катализатора. Предполагают, что реакции Сз-дегидроциклизации и изомеризации алканов протекают на участках поверхности Pt-черни, представляющих собой определенную геометрическую комбинацию атомов металла. При этом из участия в реакциях дегидроциклизации — изомеризации выводится весь активный центр, если этому предшествует хотя бы частичное блокирование атомов в ансамбле. В то же время реакция дегидрирования может успешно протекать на оставшейся незанятой части ансамбля. В соответствии с этим на рис. 42 изображены возможная схема хемосорбции 3-метилпентана при его Сз-дегидроциклизации и схема хемосорбции метилциклопентана при гидрогенолизе на грани Pt (111) [118]. Таким образом становится очевидным определенное сходство в строении промежуточных комплексов реакций Сз-дегидроциклизации алканов, гидрогенолиза циклопентанов и изомеризации алканов [63, 82, 101, 118]. [c.224]


    Реакция гидрогенолиза циклопентанов была открыта [c.122]

    В газовой фазе доля более напряженных конформаций, в том числе и некоторых г-конформаций для Сб-дегидроциклизации, тем меньше, чем выше их напряженность. Как уже указывалось (см. разд. 1.2), конформации одного вещества более или менее быстро переходят друг в друга, однако при постоянной температуре их соотношение не меняется. На поверхности катализатора из-за адсорбции молекулы могут оказаться временно зафиксированными в /"-конформации, т. е. при таком расположении главной углеводородной цепи, которое энергетически невыгодно, но зато пространственно наиболее благоприятно для образования переходного состояния. В то же время, чем более напряжена г-конформация, тем менее прочно ее фиксирование, короче продолжительность жизни на поверхности катализатора, а следовательно, меньше вероятность прореагировать. Соответственно, меньше будет предэкспоненциальный член уравнения Аррениуса. Если же при этом реакция идет ио нулевому порядку и энергии активации для Сб-дегидроциклизации разных углеводородов одинаковы, то между значениями энергии перехода от обычных к г-кон-формациям и выходами продуктов реакции должна быть антибатная зависимость. При сопоставлении таких энергий перехода, вычисленных А. Л. Либерманом из конформационных данных, с выходами циклопентанов при Сб-дегидроциклизации, найденными авторами книги экспериментально, действительно обнаружилась ожидаемая антибатная зависимость  [c.213]

    Б. А. Казанский и Т. Ф. Буланова [22] исследовали поведение смеси циклогексана и циклопентана в условиях дегидрогенизационного катализа над платинированным углем прн 300 -310°. Оказалось, что в начале реакции имеет место гидрогенолиз циклопентана (за счет водорода, отщепляющегося от циклогексана), но катализатор быстро теряет активность по отношению к гидрогенолизу циклопентана, сохраняя прежнюю активность по отношению к дегидрогенизации циклогексана. Таким образом платиновый катализатор, находящийся в соприкосновении с углеводородной смесью, содержащей циклопентан, настолько теряет активность по отношению к гидрогенолизу циклопентановых углеводородов, что даже циклопентан, размыкающийся легче всех остальных пятичленных цикланов, остается в дальнейшем нетронутым. Так как платиновый катализатор, применяемый нами для исследования химического состава норийской нефти, находился в работе длительное время, то нужно полагать, что в условиях наших опытов гидрогенолиз циклопентановых и дегидроциклизация парафиновых углеводородов были сведены к минимуму. [c.165]


    Весьма подробно изучен гидрогенолиз и О—Н-обмен монометил- и стереоизомерных 1,2-диметилциклобутанов [89, 121, 122] в присутствии металлов на носителях и напыленных пленок Р1, Р(1, N1 и КЬ. Установлено, что порядок реакции по водороду отрицательный, как и при гидрогенолизе этана и пропана. Селективность гидрогенолиза по различным связям четырехчленного цикла зависит от природы и состава катализатора и условий проведения реакции. Авторы этих работ считают, что гидрогенолиз циклобутанов (подобно циклопентанам) происходит в соответствии с тремя независимыми механизмами. Доля участия этих механизмов в каждом конкретном случае зависит от катализатора и температуры. Первый из рассматриваемых механизмов — селективный гидрогенолиз дивторичных связей цикла — связывают с образованием а,а,р,р-тетраадсорбированных промежуточных соединений, плоскость четырехчленного цикла в которых перпендикулярна поверхности катализатора. Отмечалось, что селективность гидрогенолиза уменьшается в следующем ряду металлов КЬ > Р1 > Рд (количества 2,3-диметилбутана, полученного из транс-1,2-ди-метилциклобутана, составляют соответственно 90, 68 и 53%). Второй механизм — неселективный гидрогенолиз — связывают с равновероятным разрывом связей [c.113]

    Исследование кинетики гидрогенолиза циклопентанов на Pt/ было начато Б. А. Казанским и Т. Ф. Булановой [151] на самом циклопентане. Показано, что реакция имеет нулевой порядок по исследуемому углеводороду, кажущаяся энергия активации составляет 146 кДж/моль. [c.124]

    По данным Го [162], в определенных случаях наблюдается полностью неселективный гидрогенолиз циклопентанового кольца. Например, для метил- и 1,3-диметил-циклопентанов в присутствии (6—20% Pt)/АЬОз (315°С, 3 МПа) реакция протекает очень селективно, в то время как при низком содержании Pt в катализаторе (0,15—0,60%) гидрогенолиз связей кольца происходит по статистическому закону распределения. В присутствии катализаторов с большим содержанием платины при относительно низких температурах и низких давлениях водорода преобладает главным образом селективный разрыв С—С-связей кольца метилциклопентана. В то же время при неселективном разрыве на катализаторах с низким содержанием платины не наблюдается какой-либо определенной зависимости от температуры. В случае 1,3-диметилциклопентана влияние температуры сказывается более значительно. [c.130]

    Ранее при обсуждении механизмов гидрогенолиза циклопентанов на Pt/ обсуждалась реберная дублетная схема гидрогенолиза [152], которая в дальнейшем была отвергнута [124], так как в соответствии с этой схемой подобно циклопентанам должны были бы подвергаться гидрогенолизу циклогексаны и алканы, адсорбцию которых на Р1 можно представить совершенно аналогичным образом. Однако, как показано выше, в присутствии КЬ, Ки, Оз и 1г гидрогенолиз углеводородов этих классов проходит вполне успешно. В связи с этим была высказана мысль [228, 229], что на указанных катализаторах обсуждаемая реакция проходит по дублетной схеме. Этому предположению соответствуют факты, [c.169]

    Открытие ароматизации алканов на Pt/ — закономерное следствие исследований реакции гидрогенолиза циклопентанов. Действительно, Б. А. Казанским и А. Ф. Платэ [2] в продуктах гидрогенолиза бутилцикло-пентана были обнаружены арены, которые отсутствовали при аналогичных реакциях низших гомологов циклопентана. Полученные результаты привели к выводу, что в условиях опыта происходит замыкание шестичленного цикла с образованием бензольного кольца  [c.190]

    Была описана Сз-дегидроциклизация алканов в присутствии алюмохромового катализатора [36, 37]. Однако в этом случае условия реакции неизмеримо жестче, чем в случае Pt/ , что вызывает ряд побочных и вторичных преврашений и, естественно, затрудняет интерпретацию полученных данных. К тому же выходы циклопентанов на этих катализаторах были существенно меньше, чем на Pt/ . Этим, по-видимому, объясняется то, что Сз-дегидроциклизация в присутствии оксидных катализаторов осталась мало исследованной. [c.192]

    Необходимо подчеркнуть правильный с нашей точки зрения вывод об общей природе пятичленного переходного состояния двух реакций Сз-дегидроциклизации алканов и гидрогенолиза циклопентанов. Эти реакции обратимы и идут в сходных условиях на поверхности одних и тех же Pt-катализаторов. [c.202]

    Таким образом, можно констатировать, что на селективность Сб-дегидроциклизации н-гептана по направлениям 1 и 2 влияет не только характер адсорбции н-гептана, но и относительная концентрация водорода на поверхности катализатора. Из сказанного выше становится очевидным, что использование представлений секстетно-дублетного механизма оказалось плодотворным для предсказания и объяснения ряда результатов в ходе протекания реакций Сб-дегидроциклизации алканов и гидрогенолиза циклопентанов. [c.219]

    В работе >20], посвященной каталитическим превращениям углеводородов в присутствии Р1-черни, авторы также пришли к заключению о двух механизмах изомеризации— циклическом с промежуточным образованием циклопентанов и механизме сдвига связей. Важная роль при активации катализатора в обсуждаемой работе отводится кислороду, который в незначительных количествах присутствует в зоне реакции. В работах [121, 122] исследованы превращения алканов в присутствии напыленных Р1—КЬ- и Р1—8п-пленок, а также на нанесенных и ненанесенных 1г- и 1г—Аи-катализаторах. Пути протекания реакций Сз-дегидроциклизации — скелетной изомеризации обсуждены с позиций циклического механизма и механизма сдвига связей. [c.225]


    Как и в случае циклопентанов, реакция протекает по первому порядку. Кажущиеся энергии активации гидрогенолиза циклогексана и метилциклогексана равны соответственно 67 и 59 кДж/моль, что практически не отличается от значений, приведенных для гидрогенолиза этилциклопентана на Ru/ [229] и циклогексана на RU/SIO2 [252]. Все это говорит в пользу представлений о единстве механизма гидрогенолиза пяти- и шестичленных колец на Ru-катализаторе. По-видимому, на других обсуждаемых выше катализаторах, в первую очередь на Rh/ , гидрогенолиз циклоалканов протекает по такому же или достаточно близкому механизму. [c.171]

    Изучение конфигурационной изомеризации циклогексанов и циклопентанов показало, что эта реакция имеет ряд сходных черт непосредственное участие в реакции водорода, отсутствие циклоалкенов и аренов в условиях мягкого протекания конфигурационной изомеризации достаточно близкие значения энергий активации и т.д. Все это дает основание полагать, что конфигурационная изомеризация гомологов циклогексана также проходит 1П0 идентичному или близкому механизму Sfj2, описанному для стереоизомерных диалкилциклопен-танов [II]. [c.80]

    Дициклогексил, как сообщают, при более высоких температурах (160—290°) дает 55% парафинов, из которых 41% составляют изо-парафшш, 32% циклогексаны и 12,5% циклопентан [55]. При обработке 2,2,4-тримсти.чпентана хлористым алюминием в бензоле продукты реакции состояли главным образом из изобутана и моно- и дибутил-бензолов, что указывает на расщепление октана на изобутан и бути-лены [39]. [c.97]

    Работа [135] повлекла за собой ряд других исследований, в которых факт гидрогенолиза пятичленного кольца полностью подтвердился. В частности, был констатирован разрыв пятичленного цикла в метил-, этил-, пропилциклопентанах [136], а также в к-бу-тил, Агор-бутил- и изопентилциклопентанах [ 37, 138]. В дальнейшем реакция гидрогенолиза углеводородов этого класса была достаточно подробно изучена [139] на большом числе циклопентанов. Наибольшей скоростью гидрогенолиза обладает сам циклопентан. Введение алкильных заместителей приводит к экранированию связей кольца, прилежащих к алкильным группам, что в свою очередь заметно снижает общую скорость гидрогенолиза пятичленного цикла. Метилзамещенные циклопентаны по относительным скоростям гидрогенолиза можно расположить в следующий ряд [139, 140]  [c.122]

    Переходное состояние для реакций Сб-дегидроциклизации — гидрогенолиза циклопентанов на платине (обозначения те же, что на рис. 22 штрихпунктирными линиями показаны ван-дер-ваальсовы объемы атомов С и Н). [c.126]

    Развивая высказанные выше положения, А. Л. Либерман пришел к выводу [154], что взаимообратимые реакции — гидрогенолиз циклопентанов и Са-дегидроцик-лизация алканов,— идущие в сходных условиях в присутствии одного и того же катализатора (Pt/ ), проходят через общее циклическое переходное состояние (рис. 26), в состав которого входят атомы углерода, водорода и катализатора, непосредственно участвующие в перераспределении связей. В переходное состояние входят также два атома водорода, расположенные по обе стороны разрывающейся во время гидрогенолиза (или образующейся при Сз-дегидроциклизации) углерод-углерод-ной связи. Эти атомы водорода адсорбируются, как и атомы углерода кольца, в междоузлиях решетки платины (см. рис. 26). В отличие от рис. 25, на рис. 26 пока- [c.126]

    Во всех цитированных выше работах по гидрогенолизу циклопентанов в качестве катализатора гидрогенолиза применялся платинированный уголь. Значительно сложнее протекает реакция на алюмоплатиновых катализаторах. Подобные катализаторы (содержание Pt от 0,15 до 20%) широко обследовал Го [162] при изучении гидрогенолиза метил-, 1,3-диметил- и полиметилциклопентанов. Оказалось, что относительные скорости гидрогенолиза по различным связям цикла в значительной степени зависят от ряда факторов строения исходного углеводорода, начального давления водорода, температуры, содержания Pt в катализаторе и др. Так, в случае метилциклопентана с ростом начального давления водо  [c.129]

    Оставляя в стороне предположения о п-ненасыщен-ной природе этого переходного комплекса, необходимо подчеркнуть весьма интересный и правильный, с нашей точки зрения, вывод об общей природе пятичленного переходного состояния реакций Сз-дегидроциклизации алканов и гидрогенолиза циклопентанов. Эти реакции обратимы и идут в сходных условиях на поверхности одного и того же Pt-кaтaлизaтopa. Независимо от указанных авторов и в более детализированной форме к такому же выводу пришел один из авторов данной книги [c.135]

    Изучен [183, 184] механизм гидрогенолиза циклопентанов на серии катализаторов PtMlaOa с размерами кристаллитов от 1,0 до 20,0 нм, а также на биметаллических Pt—Re-катализаторах (2% Pt и 1,9% Re на AigOa). Считают, что имеется определенная корреляция между размерами кристаллитов Pt и протеканием реакцин гидрогенолиза метилциклопентана по циклическому механизму или механизму сдвига связи. Наиболее заметное изменение механизма реакции происходит на катализаторах с размерами кристаллитов Pt около 2,0 нм. Предполагается, что атомы на ребрах кристаллов входят как в активные центры, ответственные за протекание реакции по циклическому механизму, так и в центры, ведущие ее по механизму сдвига связи. [c.139]

    Роль носителя в реакции гидрогенолиза циклопентана и его простейших гомологов в присутствии различных платиновых катализаторов исследована в работах [143, 151, 189—191]. Оказалось, что селективность гидрогенолиза метил- и этилциклопентанов по связям а, б и в (см. с. 123) и соответствующие им значения кажущихся энергий активации (Е) в значительной мере зависят от носителя. Наиболее низкие энергии активации получены нри применении (10% Pt)/Si02 [190], наиболее высокие —на (20% Pt)/ [143, 151]. На Pt/ энергии активации гидрогенолиза метил- и этилциклопентанов, а также самого циклопентана довольно близки (155—163 кДж/моль). При использовании в качестве носителей AI2O3, SIO2 и алюмосиликата энергии активации гидрогенолиза различаются сильнее метилциклопентан < этилциклопентан < циклопентан. Предполагают [190], что найденная закономерность связана с заметным проявлением электронодонорных свойств алкильных радикалов под влиянием кислотных свойств оксидных носителей использованных бифункциональных катализаторов. По-видимому, в случае СНз-группы это влияние сказывается сильнее, чем для СаНз-группы, что и приводит к найденным последовательностям энергий активации. Энергии активации гидрогенолиза этих трех углеводородов в присутствии названных катализаторов, а также относительные выходы продуктов гидрогенолиза [c.140]

    В этой конформации две группы атомов водорода по обе стороны плоскости кольца сближены по направлению к центру молекулы и конформационно взаимодействуют между собой. Благодаря этим взаимодействиям в молекуле создается дополнительное внутреннее напряжение. При этом сближение двух Н-атомов приводит к перекрыванию их ван-дер-ваальсовых радиусов. Удаление этих сближенных атомов и образование новой С—С-связи уменьшает энергию системы, делая ее менее напряженной. Указанные стерические факторы и энергетический эффект благоприятствуют протеканию трансаннулярной Сз-дегидроциклизации циклооктана с образованием системы пенталана. Протекание этой реакции в присутствии Pt/ осуществляется, как нам кажется, через промежуточное образование циклического переходного состояния. Образование последнего происходит, по-видимому, по схеме, сходной с механизмом гидрогенолиза циклопентанов и Сз-дегидроциклизацни алканов (для упрощения схемы на ней не показаны атомы катализатора, соединенные со сближенными атомами Н и С адсорбционными связями)  [c.155]

    Циклические углеводородные структуры могут быть получены из диенов не только по реакции Дильса-Альдера, как было указано выше. Известны многие реакции циклизации диенов, осуществляемые над слабокислыми катализаторами, Стивенс и Спельдинг [50] указали, что такие реакции циклизации легко можно объяснить реакциями иона карбония. Они показали также, что в некоторых случаях образуются производные циклопентанов. [c.91]

    Циклогептан в присутствии Pt/ изомеризуется в метилциклогексан, который в свою очередь претерпевает ряд превращений с образованием толуола и бензола кроме того, катализат содержит к-гептан — продукт прямого гидрогенолиза циклогептана [199]. Кинетика и механизм последней реакции описаны в работе [159]. Оказалось, что гидрогенолиз циклогептана и метилциклогеп-тана проходит согласно нулевому порядку по углеводороду. Введение алкильного заместителя в кольцо циклогептана приводит к тем же результатам, что и в случае циклопентанов значительно снижается общий выход продуктов гидрогенолиза, кроме того, практически отсутствует гидрогенолиз по прилежащей к заместителю связи а. Относительные скорости гидрогенолиза над Pt/ различных связей в кольце метилциклогептана, метилциклопентана и этилциклопентана приведены ниже  [c.156]

    Металлы VHI группы периодической системы элементов различным образом ведут себя в качестве катализаторов гидрогенолиза циклопентанов. Платиновые катализаторы являются весьма специфическими в присутствии этого металла водород, присоединяясь к двум соседним атомам углерода, расщепляет С—С-связь кольца практически без каких бы то ни было побочных реакций. Соверщенно иначе, и в то же время по-разному, ведут себя в этой реакции Pd- и Ni-катализаторы. Б. А. Казанским с сотр. показано, что Pd/ не активен в реакциях гидрогенолиза циклопентана и его гомологов [216—218], в то время как над Ni/A Oa [142, 218, 219] происходит глубокий распад циклопентанов с преимущественным образованием метана. Исследован [138, 220] гидрогенолиз пятичленного цикла над Pt- и Ni-ка-тализаторами при гидрогенолизе н-бутилциклопентана над Ni/AbOa обнаружено большое количество нпзкомо-лекулярных углеводородов [138]. Аналогично при гидрогенолизе метилциклопентана над тем же катализатором при 240°С образовывалось до 40% газообразных алканов [142]. Подробно изучен [218] гидрогенолиз самого циклопентана над Ni-катализатором. Прн 250 около 30% циклопентана превращалось в метан, а жидкий катализат почти целиком состоял из исходного циклопентана. Таким образом, Ni-катализаторы оказались далеко не столь селективными при гидрогенолизе циклопентанового кольца, как Pt/ . Такое же жесткое действие на циклопентан и метилциклопентан оказывают и [c.160]

    Исследована кинетика гидрогенолиза циклопентана на перечисленных выше катализаторах при этом получены [243] следующие значения энергий активации на Pd 193 кДж/моль, на Со, N1 и восстановленной при 300 °С Р1 142—151 кДж/моль, на НИ, 1г и восстановленной при 500 °С Р1 109—113 кДж/моль, на Ни, Оз 54—63 кДж/моль. Активность металлов в реакции гидрогенолиза циклопентанов по триадам уменьшается слева направо (за исключением Ре и Оз) Со > № Ки > ЕИ > Pd 1г > Р1. Наименее активными катализаторами гидрогенолиза циклопентана являются Pd и Р1. По селективности в этой реакции металлы VIII группы можно расположить в следующий ряд Со < Ки < < Оз < N1 < КЬ = 1г < Pd = Р1. Наблюдаемые различия в активности металлов VIII группы в реакции гидрогенолиза циклопентана обусловлены, по мнению авторов [243], геометрическими факторами, на что указывает существование зависимости между энергиями активации исследуемой реакции и параметрами кри- [c.167]

    В настоящее время хорощо известны два типа реакций каталитической дегидроциклизации углеводородов, при которых открытая цепь углеродных атомов замыкается в цикл с отщеплением водорода. Эта. открытая цепь может принадлежать либо углеводороду ряда алканов, либо являться достаточно длинной боковой цепью циклана, например алкилбензола или алкилциклопен-тана. Первым типом рассматриваемой дегидроциклизации является ароматизация, известная также как Сб-дегидроциклизации [1] по числу углеродных атомов, входящих в образующийся цикл. Вторым типом является С5-дегидроциклизация, приводящая к углеводородам с пятичленным циклом, например к циклопентанам (из алканов) или дигидроинденам (из соответствующих алкилбензолов). Различие направлений реакции основывается в ряде случаев на разных типах применяющихся катализаторов и условиях протекания реакций, наконец, на неодинаковых механизмах обсуждаемых превращений. [c.189]

    В большом цикле работ Го и сотр. [71—73, 82, 83, 86—93] исследованы превращения насыщенных углеводородов (Сб-дегидроциклизация, скелетная изомеризация, гидрогенолиз циклопентанов, гидрокрекинг) в присутствии различных платиновых и других металлических катализаторов. Подробно изучены [73] изомеризация 2-метил-2- С-пентана, З-метил-З- С-пентана и гидрогенолиз метил- С-циклопентана при 270 °С в присутствии (10% Pt)/АЬОз. Состав продуктов превращения существенным образом отличался от состава катализатов, полученных ранее в присутствии (0,2% Pt)/Al203. Анализ полученных результатов привел к заключению, что перемещение и распределение метки С в продуктах реакции обусловлено рядом последовательных перегруппировок в адсорбированном на поверхности катализатора углеводороде перед стадией его десорбции в объем. Исходя из начальных концентраций продуктов реакции, в каждом случае обсуждается вероятность циклического или стадийного механизма сдвига связей. При этом важную роль играет дисперсное состояние активной металлической фазы — в данном случае платины. [c.203]

    Рассмотрение всех описанных выше фактов позволило А. Л. Либерману предложить механизм Сз-дегидроциклизации алканов [63], основанный на прямой циклизации. Новые данные, которые были получены с тех пор, хорошо согласуются с предложенной схемой, дополняют и углубляют ее, позволяя, в частности, рассматривать некоторые аспекты изучаемой реакции с позиций современных конформационных представлений. Учитывая принцип микрообратимости, можно полагать, что в присутствии Pt/ реакции гидрогенолиза циклопентанов и Сз-дегидроциклизации алканов проходят через общее переходное состояние (см. разд. V.1). Для понимания причин, благодаря которым фактически в одних и тех же условиях происходят обе названные реакции, были привлечены конформационные представления и предложена новая мультиплетно-деформационная схема переходного состояния обеих обсуждаемых реакций (см. рис. 26). При рассмотрении этой схемы следует помнить, что в переходное состояние входят также два атома водорода, расположенные по обе стороны от С-атомов, участвующих в разрыве илн образовании С—С-свя- [c.208]

    Таким образом, сочетание модифицированного принципа геометрического соответствия [62] с моделью циклического переходного состояния, в состав которого входят и субстрат и катализатор, по-видимому, наиболее логично может объяснить механизм реакции Сз-дегид-роциклизации углеводородов на поверхности Pt/ . Что же касается некоторой модификации принципа геометрического соответствия, то здесь необходимо сделать небольшое пояснение. В тех случаях, когда переходное состояние близко по геометрическим параметрам к исходным молекулам и деформации невелики, наше толкование геометрического соответствия сливается с его толкованием в мультиплетной теории. В случае же Сз-дегидроциклизации и гидрогенолиза пятичленного кольца положение иное в свободном циклопентане все пять С—С-связей равны, а в переходном состоянии одна из них сильно растянута и валентные углы искажены. Поэтому положения мультиплетной теории в их классическом толковании здесь неприменимы. В связи с этим предложена [63] новая (в определенном смысле, более строгая) формулировка должно иметься геометрическое соответствие между молекулами в переходном состоянии и поверхностью катализатора. Такого рода де-формационно-мультиплетные представления позволили охватить несколько больший круг явлений, че.м это делала мультиплетная теория, не теряя ничего пз достижений последней. В частности, эти соображения хорошо согласуются с конформационными представлениями, благодаря которым можно объяснить ряд тонких эффектов, проявляющихся в ходе Сб-дегидроциклизации. [c.210]

    При Сб-дегидроциклизации алканов и Сз-циклизациц алкенов на Pt/AbOa показано [84, 126], что скорость реакции в отсутствие Нг быстро падает, доходя фактически до нуля, и наоборот, в токе Нг проходит успешная циклизация как алканов, так и алкенов. Роль водорода при образовании циклопентанов в присутствии алюмоплатиновых катализаторов с низким содержанием Pt пока недостаточно ясна. Возможно, что влияние водорода на протекание реакции осуществляется по нескольким направлениям, часть которых обсуждалась выше. Не исключая этих возможностей и в случае нанесенных Pt-катализаторов, следует также обсудить ассоциативный механизм действия водорода [84], представляющийся авторам книги одним из наиболее вероятных. В соответствии с обсуждаемой схемой водород в случае реакции Сб-дегидроциклизации алканов играет ту же роль, что и в ряде других реакций, протекающих в присутствии металлсодержащих катализаторов, в частности в реакции миграции двойной связи в алкенах [127] и в конфигурационной изомеризации диалкилциклоалканов [128]. В этих реакциях водород входит в состав переходного комплекса, образующегося на поверхности катализатора по ассоциативной схеме. Можно полагать, что реакция Сз-дегидроциклизации, также протекающая при обязательном присутствии и, по-видимому, с участием Нг, проходит через промежуточные стадии образования и распада переходного состояния  [c.230]

    Подводя итоги исследованиям влияния водорода на протекание реакций дегидроциклизации, можно констатировать, что в присутствии различных Pt-катализато-ров (Pt-чернь, Pt/ , Pt/AbOa) наличие водорода по-разному сказывается на ходе реакций s- и Се-дегидро-циклизации углеводородов. Первая реакция ускоряется в атмосфере Иг, вторая — замедляется. Эта закономерность и ряд других отмеченных выше фактов служат основанием для предположения о существовании принципиальных различий в механизмах образования циклопентанов и аренов на металлических, в частности платиновых, катализаторах. [c.236]

    Реакция изомеризации фуллеровой землей или другими кислыми силикатными катализаторами экспериментально до конца не изучена. Хотя отношение циклопентанов к циклогексанам в некоторых нефтях значительно превышает равновесное отношение при 65°, но возможно, что первые не происходят исключительно из циклогексанов, образующихся при изомеризации, а могут частично образовываться при циклизации, как было показано в некоторых случаях Стивенсом и Спельдингом. [c.91]

    Качественно был изучен гидрогенолиз некоторых фенил- и циклогек-силзамещенных циклопентанов над платиной при 300° [36]. Циклогек-силзамещенпые дали те же продукты реакции, что и фенилзамещенные, [c.258]

    Природа катализатора также влияет на результат процесса. Например, катализатор, содержащий небольшое количество платины на кислотном носителе (катализатор платформинга) преимущественно ускоряет реакцию изомеризации циклопентанов в циклогексапы, что позволяет получить максимальное количество ароматики [165]. [c.54]


Смотреть страницы где упоминается термин Циклопентан реакция: [c.149]    [c.89]    [c.110]    [c.115]    [c.127]    [c.129]    [c.134]    [c.160]    [c.172]    [c.211]    [c.217]    [c.234]    [c.455]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.1121 ]




ПОИСК





Смотрите так же термины и статьи:

Циклопентан



© 2025 chem21.info Реклама на сайте