Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбционное от растворителя

    Жидкая или газовая смесь пропускается через слой адсорбента, обычно сверху вниз. Цикл адсорбции заканчивается после почти полного использования поглотительной способности адсорбента, на что указывает проскок адсорбируемого вещества. Затем через адсорбент пропускают вытесняющий агент (растворитель, водяной пар и т. д.), который вытесняет адсорбированное вещество с поверхности адсорбента. Иногда этого бывает недостаточно. Например, при адсорбционной очистке масел, парафина часть смолистых ве(цеств остается па поверхности адсорбента после вытеснения. Тогда адсорбент требует дополнительной регенерации путем выжига смолистых отложений, для чего его необходимо выгружать и регенерировать в отдельном аппарате. [c.258]


    Метод адсорбции на активном угле пригоден лишь для отбензинивания не содержащих сероводорода природных газов, так как в порах активного угля сероводород неизбежно окисляется присутствующим кислородом в элементарную серу, которая прочно удерживается углем и может быть удалена лишь специальными растворителями. Применение непрерывного адсорбционного процесса (процесс гиперсорбции) для фракционирования газообразных углеводородов по их молекулярным весам будет рассмотрено подробнее в следующем томе. [c.31]

    Потенциальное содержание дистиллятных и остаточных масел в мазуте определяют делением его на фракции депарафинизацией избирательными растворителями, деасфальтизацией, адсорбционной очисткой на силикагеле с последующим смешением получаемых фракций. Для остатков (гудрона) по кривым качества нахо- [c.35]

    Адсорбция [5.24, 5.31, 5.55]. Метод основан на поглощении одного или нескольких компонентов твердым веществом — адсорбентом — за счет притяжения молекул под действием сил Ван-дер-Ваальса. Адсорбционный метод нашел широкое применение в промышленности при регенерации органических растворителей, очистке газов, паров и жидкостей. Достоинство его — возможность адсорбции соединений из многокомпонентных смесей, а также высокая эффективность при очистке низкоконцентрированных сточных вод. В качестве адсорбентов могут служить практически любые твердые материалы, обладающие развитой поверхностью. Наиболее эффективными адсорбентами являются активные угли (АУ). Адсорбент в процессе очистки используется многократно, после чего его подвергают регенерации. При регенерации образуются водные растворы или газы, которые необходимо дополнительно обработать с целью утилизации уловленных соединений [5.32, 5.33, 5.52]. [c.486]

    Принцип процесса. Процесс адсорбционной депарафинизации основан на способности некоторых адсорбентов, в основном активированных углей, при обработке ими масляного сырья или его растворов в легких углеводородных растворителях-разбавителях [c.221]

    При переработке недостаточно высокоочищенного сырья из него также удается выделить низкозастывающие компоненты, применяя процесс адсорбционной депарафинизации. Но в этом случае активированный уголь быстро теряет ири регенерациях активность и становится непригодным для дальнейшего использования, что делает процесс неэффективным. Если будет найден активный десорбирующий растворитель, способный освобождать отработанный активированный уголь от смолистых веществ, то процесс адсорбционной депарафинизации можно будет применить также и для продуктов невысокой степени очистки. [c.222]


    Сущность метода заключается в том, что нефтепродукт, разбавленный растворителем, заливают в адсорбционную колонку, заполненную адсорбентом, затем последовательно подают растворители метановый бензол, спирто-бензольную смесь. Растворы, вытесненные внизу колонки, отбирают в отдельные приемники, растворитель отгоняют, фракции, полученные после отгона растворителя, взвешивают и подсчитывают процент их выхода. [c.81]

    Метод адсорбционного разделения масляных фракций основан на различной поглотительной способности адсорбента по отношению к веществам различного химического состава. В качестве адсорбента применяют силикагель марки АС, в качестве растворителя — нефтяную фракцию, выкипающую в пределе температур 60—80° С. Нефтепродукт, разбавленный растворителем, заливают в бюретку, заполненную адсорбентом, затем последовательно подают алкилат бензол, спирто-бензольную смесь, вытесняющую постепенно наиболее слабо адсорбированные углеводороды. [c.191]

    Среди различных методов, применявшихся прежде, только один Грэй-процесс существует до сих пор. Дистиллятные пары выводятся непосредственно из ректификационной колонны крекинг-установки и пропускаются сверху вниз через отбеливающую глину. Часть тяжелых фракций дистиллята конденсируется и служит в качестве растворителя для растворения полимеров, выделенных в адсорбционной башне. Пары, покидающие адсорбционную башню, фракционируются в ректификационной колонне для получения бензина с заданным концом кипения тяжелые фракции растворяют полимеры, которые скопились в адсорбционной башне, и обычно возвращаются на крекинг-установку. Чтобы не допустить чрезмерного коксообразования, они раньше пропускаются через эвапоратор (или смолоотделитель), где более тяжелые полимеры удаляются вместе со смолой. Эти более тяжелые полимеры интересны возможностью применения их вместо окрашенных смол. [c.273]

    Выделение каучука из латекса. Агрегативную и кинетическую устойчивость синтетических латексов, учитываемую на всех стадиях технологического процесса их получения и переработки, определяет наличие на поверхности латексных частиц адсорбционного слоя из молекул гидратированного эмульгатора. Свойства межфазной поверхности — адсорбированного слоя гидратированных молекул поверхностно-активных веществ (ПАВ) со структурой, близкой к мицеллярной [26], — определяют устойчивость латекса при транспортировании насосами, при хранении, при выделении каучука из латекса. Специфичность воздействия отдельных факторов на латексы привела к делению агрегативной устойчивости на отдельные виды стабильности — к механическому воздействию, к электролитам, к замораживанию, к тепловому воздействию, к действию растворителей [27], но во всех случаях при нарушении устойчивости происходит снятие или преодоление одного и того же по своей природе стабилизующего барьера [28—30]. [c.255]

    Удерживаемый объем представляет объем газа-носителя, прошедший через колонку за исправленное время удерживания компонента . Поскольку s = vJv, а —длина колонки, то величина V l=V =lVa=Va—всему объему неподвижного растворителя в колонке или всему объему адсорбционного слоя. Следовательно [c.559]

    Для удаления из растворителя ароматических углеводородов в адсорбционную колонку, заполненную свежей порцией силикагеля, наливают около 15 мл испытуемого растворителя и после того, как он полностью впитается в силикагель, добавляют в колонку 25—35 мл этилового спирта. [c.498]

    Отбор растворителя из адсорбционной колонки прекращают при обнаружении в очередной порции растворителя ароматических углеводородов. Порции растворителя, не содержащие ароматических углеводородов, соединяют вместе. [c.499]

    В технологии нефтепереработки известно много методов очистки бензиновых дистиллятов. Конечная цель всех их — удаление из бензина веществ, понижающих химическую стабильность и антидетонационные свойства бензинов и повышающих коррозионность. Эти методы основаны ка некоторых физико-химических или химических процессах. К группе физико-химических процессов относятся сорбционные, в частности адсорбционные (например, очистка отбеливающими землями), или связанные с различной растворимостью отдельных компонентов бензина в растворителях (экстракционные и др.). [c.72]

    Следовательно, экспериментальные зависимости хорошо согласуются с выводами капиллярно-фильтрационной модели механизма полу-проницаемости. Следует ожидать, что данный подход с учетом взаимного влияния ионов и внешних факторов на процесс гидратации, а также с учетом влияния электролитов на толщину адсорбционных слоев растворителя даст возможность разработать количественную теорию обессоливания растворов обратным осмосом. Однако решение этой задачи невозможно без точного определения размеров пор и их распределения, толщины слоя связанной жидкости на внутренней поверхности пор при течении жидкости под действием градиента давлений. Уместно отметить, что и для процесса ультрафильтрации определение толщины слоя связанной жидкости также имеет важное значение, особенно при сравнительно небольших диаметрах пор (порядка 5 30 нм, или 50—300 А). Как было показано выше (см. стр. 105), в этом случае толщина слоя связанной жидкости становится соизмеримой с радиусом пор ультрафильтров. [c.211]


    Приведенная на рис. IX.4 схема адсорбционной установки рекуперации летучих растворителей работает по четырехфазному циклу, причем принципиально она практически не отличается от схемы на рис. IX. I. [c.152]

    Адсорбционная способность активного угля по отношению к различным примесям и в различных растворителях неодинакова. Являясь неполярным гидрофобным адсорбентом, он хорошо поглощает растворенные вещества из водных растворов и полярных жидкостей — спиртов, сложных эфиров, амидных растворителей. Для удаления примесей из малополярных и, особенно, неполярных, например углеводородных растворителей, в которых активный уголь не всегда достаточно эффективен, можно рекомендовать использование активного оксида алюминия или порошкообразного силикагеля. [c.116]

    В адсорбционную колонку (d = 20 мм I = ИЗО мм) вносят, как описано выше, 150 г силикагеля марки АСК с частицами размером 45—100 меш. Через адсорбент сначала пропускают 200 мл нетролейного эфира (т. кии. 60—80 °С), затем 15 г исследуемой фракции, разбавленной тем же растворителем в отношении 1 3. Вслед за фракцией досыпают слой (1 —2 см) силикагеля, а затем, последовательно вносят десорбенты 300 мл нетролейного эфира, 150 MJ , бензола и 100 мл сухой спирто-бензольной смеси (1 1). В пробирки отбирают фракции по 20 мл. После отгонки растворителей углеводороды взвешивают и отдельные фракции на основании величин показателей преломления объединяют в четыре группы уг еводородов, указанных выше. Переход от парафино-нафте-новой к легкой ароматической фракции дополнительно контролируют по величине удельной дисперсии (см. стр. 138). [c.266]

    Физические 1. Обезвоживание и обессоливание 2. Атмосферная и вакуумная перегонка 3. Сольвентная деасфальтизация 4. Экстракционное облагораживание полярными растворителями 5. Депарафинизация кристалм1зацией адсорбционная карбамидная [c.94]

    Для адсорбционной очистки сточных вод, кроме активного угля, можно использовать и другие адсорбенты. Фирмой Тек-сакоинк запатентован пенополиуретан в качестве адсорбента при очистке сточных вод нефтеперерабатывающих и нефтехимических производств, содержащих фенол, его хлор-, нитро- и аминопроизводные, а также крезолы, ксиленолы, нафтолы, резорцин, пирокатехин, гидрохинон, 1,2-диоксинафталин. Адсорбционная емкость пенополиуретана по фенолам может превышать массу адсорбента. Регенерацию его осуществляют промывкой растворителями (ацетоном, метанолом, углеводородами). [c.97]

    Анализ существующих тенденций в развитии стадии подготовки гудронов для последующего их каталитического гидрооблагораживания показывает, что эта проблема решается в основном двумя, принципиаль-ально различающимися методами 1) адсорбционно-каталитическим с использованием катализатора гидродеметаллизации и адсорбентов смол и асфальтенов 2) сольвентным, т. е. обработкой гудрона селективными растворителями с удалением концентрата смолисто-асфальтеновых веществ с сопутствующими им металлами. [c.13]

    Может сказаться и вторая положительная сторона некоторых активаторов, которые в таких случаях проявляют себя как десорбирующие растворители в отношении веществ, препятствующих комплексообразовапию, и этим устраняют или уменьшают их адсорбционное выделение и обусловливаемое им тормозящее действие. [c.147]

    Технологически процесс адсорбционной депарафинизации осуществляется по следующему принципу. Исходный продукт растворяют в легкокипящем углеводородном разбавителе, не содержащем ароматических углеводородов. Раствор пропускают через активированный уголь, и он освобождается от застывающих компонентов. Когда уголь отработается, отлшвают механически удержанные им низкозастывающие компоненты тем же растворителем, который был применен для разбавления исходного сырья. Затем этот растворитель удаляют из угля пропаркой водяным па- [c.162]

    Технологическая схема динамического варианта процесса адсорбционной депарафинизации следующая. Исходное сырье разбавляют растворителем-разбавителем (бензином) и профильтровывают через слой гранулированного депарафинирующего адсорбента. При фильтрации застывающие компоненты сырья удерживаются адсорбентом, а депарафинировапный раствор, содержащий не адсорбируемое данным адсорбентом целевое низкозастывающее масло, выводят из слоя адсорбента и отправляют на регенерацию растворителя. Отработанный адсорбент для удаления оставшегося раствора сырья промывают чистым растворителем-разбавителем, затем пропаркой водяным паром освобождают его от растворителя, просушивают воздухом и далее промывают десорбирующим растворителем (бензолом) для извлечения из него застывающих компонентов и восстановления его адсорбирующей способности. После отмывки застывающих компонентов адсорбент еще раз пропаривают водяным паром для удаления из него десорбирующего растворителя, просушивают воздухом и снова возвращают в процесс для повторных использований. [c.223]

    При газосорбционной хроматографии колонка заполнена твердым адсорбентом и разделение основано на различии адсорбционных свойств компонентов смеси. При газожидкостной хроматографии колонка заполняется инертным твердым веществом, носителем , на который наносится слой жидкости, играющей ту же роль, что и твердый адсорбент, разделение компонентов с меси достигается благодаря их различной растворимости в соответствующем жидком растворителе. Компоненты распределяются по зонам и разделяются нри промывании колонки каким-либо инертным газом. Как и в первом случае, из колонки будут выходить отдельные компоненты в виде бинарных смесей углеводород — инертный газ. [c.251]

    Если добавить чистый растворитель в адсорбционную колонну, заполненную жидкостью концоитрациси с , то концентрация проходящей жидкости будет изменяться, как это схематически изображено на рис. 16. Снижение концентрации растворенного вещества мел<ду точками А и В (ается следующим уравнением и виде функции объема чистиго растворителя V, поступившего в колонну  [c.155]

    Для выяснения тех пределов адсорбционного сродства, внутри которых растворители могут быть использованы в качестве десорбеитов для промышленных процессов, целесообразно ввести эмпирическое понятие индекса адсорбционного сродства, который в дальнейшем будет называться индексом адсорбции (ИА) [231. За индекс адсорбции какого-нибудь соединения принимается его кажущаяся адсорбция, выраженная в миллилитрах на килограмм адсорбента при равновесной концентрации 0,2% объемн. в определенном растворителе (обычно в к-гептаие или в другом продельном углеводороде). Если построить графики изотерм адсорбции для веществ с сильно различающимся адсорбционным сродством, применяя в качество единицы количества адсорбента 1 кг, то индекс адсорбции будет выражаться ординатой точки пересечения вертикали, соответствующей концентрации с=0,2%, с данной изотермой. Выбор концентрации 0,2% в известной мере произволен, но эта концентрация была выбрана с тем, чтобы по меньшой мере для того интервала значений индекса адсорбции, в котором лежат все углеводородные системы, индекс адсорбции был пропорционален количесигу гептана, затрачиваемому для десорбции данного соединения из силикагеля и подсчитываемому по уравнению типа (24). [c.158]

    В литературе имеется большое количество иротиворечивых данных относительно зависимости скорости гидрогенизации от строения углеводородов. Отсутствие согласия в этом вопросе неудивительно, если учесть различие условий проведения эксперимента разными исследователями. Построение рядов соединений по их химической активности не простое дело. Экспериментальные условия должны быть идентичными, а выполнить это требование не так легко, если учесть многообразие переменных факторов, влияющих на процесс каталитической гидрогенизации количество и активность катализатора, чистоту растворителя и углеводорода (яды катализатора), давление, температуру, скорость перемешивания и т. д. Трудно приготовить второй катализатор, в точности воспроизводящий активность первого, даже при точном воспроизведении всех операций приготовления. Могут отличаться по активности даже последующие образцы катализатора, взятые из одной и той же порции [163]. Кроме того, наблюдаемые скорости гидрогенизации нельзя строго сравнивать, если нельзя сопоставить концентрации водорода и непредельных углеводородов в адсорбционном слое в различных опытах [43]. К тому же серии активности, применимые к катализатору А, не могут быть применены к катализатору Б (например, Р1 к Рс1). [c.247]

    Физически смолы являются вязкими полужидкостями коричневого цвета, плавящимися ниже 100° С, и можно предположить, что они напоминают смолы, удаляемые из фракций смазочного масла экстракцией водным спиртом [16]. Они также напоминают смолообразные вещества, выделенные из окисленного смазочного масла Гарнером (Garner), который применил тот же адсорбционный метод [17]. Как уже указывалось, смолы десорбируются большинством растворителей, а в ацетоне — слабо. Содержание серы и азота в них выше, чем в стандартных нефтях, молекулярный вес меняется в связи с молекулярным весом нефти, из которой они выделены, соотношение углерод водород порядка 8 1 [18], Элементарный анализ [c.537]

    В некоторых процессах избирательной экстракции г.спользуют сырье с содержанием бензола от 8 до 14%, толуола от 12 до 20%, в других, где применяют два растворителя (один —для ароматических, другой—для неароматических углеводородов), используют в качестве сырья фракции, содержащие до 20% ароматики. В адсорбционных процессах можно перерабатывать фракции, содержащие от 10 до 30% ароматических углеводородог. [c.59]

    По способу выделения из нефтей различают дистиллятные, остаточные и смешанные нефтяные масла. По методу обработки сырья масла делятся на выщелоченные, кислотно-щелочной очистки, кис-лотно-контактной очистки (серной кислотой и отбеливающей глиной), селективной очистки (избирательными растворителями), адсорбционной очистки и гидроочистки (на катализаторе в присутствии водорода). Выбор метода очистки сырья определяется его химическим составом, требованиями к качеству масла и экономической целесообразностью. [c.136]

    Потенциальное содержание дистиллятных и остаточных масел в нефтях определяют с помощью адсорбционного метода. Масляный дистиллят направляют на депарафини- чацию. Затем депарафинированное масло подвергают адсорбционному разделению (пропускают через слой силикагеля) и получают по%Тт%77 б1емн.о/о парафино-нафтеновую часть дистиллята. На силикагеле остаются ароматические углево-67. График Скобло. дороды и смолистые вещества. Промывая силикагель последовательно различными растворителями, десорбируют сначала легкие ароматические углеводороды, затем средние, полутяжелые, тяжелые и смолистые вещества. Смешивая парафино-нафтеновую фракцию вначале с легкими ароматическими углеводородами, затем со средними и полутяжелыми, получают в конечном счете дистиллятное масло заданного качества. Выход его на нефть и соответствует потенциальному содержанию этого масла в пефти. [c.150]

    Для определения потенциального содержания и качества остаточного масла вначале гудрон подвергают деасфальтизации, а затем разделяют деасфальтизат на силикагеле. Полученную при адсорбционном разделении парафино-нафтеновую фракцию смешивают с легкими ароматическими углеводородами. Смесь подвергают депарафинизации с помощью избирательных растворителей. Депара-финировапное масло смешивают со средними ароматическими углеводородами или, если нужно, с полутяжелыми до получения остаточного масла заданного качества. Суммируя выходы базовых масел, получаемых из дистиллятных фракций (при перегонке) п остатка, вычисляют потенциальное содержание масел, считая на нефть. [c.150]

    Блокировать активную поверхность может продукт реакции или одно из исходных веществ блокирующее вещество может стехиометрически и не участвовать в реакции. Последний случай особенно важен для каталитических реакций в ншдкой фазе. Растворители, в отличие от инертных газов в газофазных процессах, имеют, как правило, достаточно высокие адсорбционные Коэффициенты, и замена одного растворителя другим может привести к резкому изменению кинетики каталитической реакции. Блокирование поверхности исходным веществом может вызвать специфическое для гетерогенного катализа явление самоторможения процесса, когда одно иа исходных веществ, сильно адсорбируясь на поверхности катализатора, затрудняет доступ к ней остальных реагентов и тем самым замедляет каталитическую реакцию. [c.83]

    Ф эакцию 50—150° С подвергают адсорбционной хроматографии 1а силикагеле для разделения на ароматическую и парафино-нафт новую часть. (Берется силикагель, поглощающий на 100 г не менее 11 г бензола. Размер частиц адсорбента проходят через сито. № 40 и не проходят через сито № 80.) Фракцию ароматических углеводородов перегоняют на колонке № 3 — сначала для удаления пентана (или изопентана), добавленного при адсорбции в качестве смещающего растворителя. Для депентанизированной фракции определяют физические характеристики п , й , ани-линоьую точку). После этого фракцию перегоняют, причем снимают кривую перегонки и выделяют следующие фракции  [c.99]

    Пргведенный в табл. 22 групповой состав керосиновых и со-ляровпх фракций некоторых нефтей определен адсорбционным методом. Для фракций, выкипающих выше 200 °С, абсорбционным методом можно определить отдельно сумму парафиновых и наф еновых углеводородов, три группы ароматических углеводородов и после них смолистые вещества. Адсорбционное разделение в этом случае осуществляют со смещающим растворителем (см. стр. 100). Три группы ароматических углеводородов выделяют в соответствии с величинами показателей преломления фракций после удалепия из них растворителя  [c.112]

    Для бензинов, содержащих до 15 объемн. % ароматических углеводородов, удобно применять адсорбционное разделение с вытесняющим ])астворителем и отбором промежуточной фракции. При более высоком содержании в бензине ароматических углеводородов рекомендуется разделение при помощп смегцающеы жидкости + вытесняющий растворитель. [c.161]


Смотреть страницы где упоминается термин Адсорбционное от растворителя: [c.76]    [c.156]    [c.157]    [c.158]    [c.502]    [c.259]    [c.307]    [c.594]    [c.538]    [c.361]    [c.91]    [c.160]    [c.252]    [c.265]   
Хроматография полимеров (1978) -- [ c.69 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбционная хроматография селективность растворителя

Адсорбционное разделение смесей Ш е п е л е в а, Н. Н. Грязев, Г. А. Румянцева. Взаимное вытеснение органических кислот при адсорбции из неполярных растворителей

Адсорбционный метод рекуперации летучих растворителей

Активность растворителя в адсорбционной хроматографии

Актиниды адсорбционные свойства и распределение между растворителями

Влияние неводного растворителя на адсорбционное поведение радио- , активных изотопов

Влияние природы растворителя, адсорбента и адсорбционного слоя модификатора на адсорбцию полимера

Диэлектрическая постоянная растворителя и адсорбционная способность адсорбента

Зависимость адсорбционного взаимодействия от химической природы сорбента, полимера и растворителя

Измайлов. Влияние растворителей на адсорбционное равновесие и выбор условий осуществления адсорбционной технологии выделения веществ

Линейное элюирование и программирование растворителя в адсорбционной хроматографии

Растворители для адсорбционной хроматографи

Рекуперация паров растворителей адсорбционным

Роль растворителя в традиционной жидкостной адсорбционной



© 2025 chem21.info Реклама на сайте