Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кремний экстракция

    Разработан метод радиохимического определения Р в воде, охлаждающей реактор [1098], основанный на экстракции фосфора в виде фосфорномолибденовой кислоты. После сорбции радиоактивного мышьяка на сульфиде меди и извлечения радиоактивного кремния экстракцией из сильнокислого раствора радиохимически чистый Р экстрагируют 10%-ным раствором бутанола в эфире. Метод дает точные результаты. [c.66]


    Нафталин получают из ароматизированных фракций, выкипающих в пределах 200—300 °С, которые содержат значительные количества нафталина и его производных. В качестве таких фракций используются продукты каталитического риформинга тяжелого бензина с к. к. выше 200 °С (140—250 или 200—270 °С). Сырьем для получения нафталина может быть также легкий газойль каталитического крекинга (фр. 200—350 °С), в котором содержится 25—30% нафталина и его производных. Для того чтобы повысить концентрацию ароматических углеводородов, применяют процесс термического крекинга или экстракции. Каталитическое гидродеалкилирование с целью получения нафталина проводят над алюмокобальтмолибденовым катализатором с добавкой окиси кремния при 6 МПа, 550 °С и объемной скорости подачи сырья 0,5 ч с добавкой к водороду водяного пара. Термическое гидродеалкилирование проводят при 4 МПа, 700 °С и объемной скорости подачи сырья 2,5 ч . [c.19]

    Химические свойства ионов титана(IV), циркония(IV) и гафния (IV) напоминают свойства ионов урана, церия, олова, свинца, германия и кремния той же степени окисления свойства ионов титана(III) обнаруживают общность с ионами V(III), Fe(III) и Al (III). Имея почти одинаковые атомные и ионные радиусы вследствие лантаноидного сжатия (2г 0,145 нм Hf 0,144 нм 2г + 0,074 нм Hf+ 0,075 нм), цирконий и гафний очень похожи друг на друга по химическим свойствам. Цирконий и гафний образуют всегда общие минералы. Наиболее удобными технологическими методами разделения циркония и гафния являются ионный обмен или жидкостная экстракция. [c.609]

    Способность к образованию тройных комплексов встречается у ограниченного числа элементов, что способствует улучшению избирательности данной реакции. Наиболее часто фосфору в природных объектах сопутствуют кремний и мышьяк, также образующие гетерополикислоты. Однако гетерополикислоты этих элементов образуются при различной кислотности среды и в разных модификациях. Например, мышьяковая гетерополикислота образуется в 0,6—0,9 М растворе минеральной кислоты, кремневая гетерополикислота — в слабокислом растворе (pH =1,5—2,0 и pH = 3,0—4,0). Молибденовая гетерополикислота всегда образуется в а-форме, которая при рН=1,0 переходит в более устойчивую р-форму. В случае кремния реакционноспособной является только его мономерная форма силикат-ионы. Различную устойчивость гетерополикислот широко используют при определении этих элементов в смеси. Для разделения и концентрирования гетерополикислот применяют экстракцию их органическими растворителями, молекулы которых имеют электронодонорные атомы азота или кислорода (кетоны, спирты, амины), что позволяет определять меньшие, чем в обычной фотометрии, количества фосфора. [c.67]


    Хлор является весьма активным реагентом. При высоких температурах он способен вытеснять серу из сульфидов, а в присутствии восстановителей хлорировать окислы различных металлов и вытеснять из сульфатов, фосфатов, силикатов кислородные соединения серы, фосфора, кремния с образованием соответствующих хлоридов. Это используют в технологии благородных и цветных металлов при рафинировке золота, алюминия, свинца и олова а также в металлургии титана и редких металлов — циркония, тантала, ниобия и др.При хлорировании полиметаллических руд образующиеся хлориды могут быть разделены на основе различия в температурах испарения, а также методами экстракции [c.731]

    Для определения кремния в сложных сплавах, содержащих, в частности, более 5% ванадия, рекомендуется метод, описанный на стр. 89. В этом методе предусмотрено предварительное отделение ванадия экстракцией купфероната ванадия хлороформом одновременно экстрагируется титан. [c.88]

    Использование экстракции из нитратных и нитратно-хлорид-ных растворов ТБФ в промышленности связано с некоторыми трудностями. Получение азотнокислых растворов, пригодных для экстракции, после вскрытия циркона спеканием со щелочью довольно сложно вследствие затруднительной очистки от кремния. Наличие большого количества кремния в растворах приводит к образованию коллоидных растворов, затрудняет разделение ( )аз и ухудшает экстракционные характеристики. Вследствие большого расхода азотной кислоты необходимо предусмотреть возможность ее регенерации и очистки сбросных вод. Применение соляно-азотнокислых растворов требует к тому же очень коррозионно устойчивой аппаратуры. [c.205]

    Опубликованы данные о влиянии различных факторов на экстракцию гетерополикислот, а также варианты методик для экстракционного разделения и фотометрического определения фосфора, мышьяка, кремния, германия и ванадия в форме соответству-юш,их гетерополикислот в различных материалах. [c.239]

    При определении микрограммовых количеств кремния его переводят в 51р4 и током, воздуха отгоняют в специальный поглотительный раствор, содержащий молибдат аммония [202]. Для отделения кремневой кислоты применяют также отгонку кремния в виде кремнефтористоводородной кислоты. При этом пользуются серебряной аппаратурой [203]. Описан интересный метод отделения кремния экстракцией кремнефтористоводородной кислоты триоктиламином [204]. Этот метод может быть использован для отделения кремния от многих элементов, в том числе и от ниобия и тантала. [c.129]

    При определенной кислотности раствора продукт восстановления экстрагируется кислородсодерващими органическими растворителями (амиловым и изоамиловым спиртами и др.) В настоящее время развивается новое направление, ведущее к повышению чувствительности колориметрических методов определения кремния,-экстракция соединений кремнемолибденовой кислоты с аминами /139/. Для этих целей использованы диоктил- и триоктиламины в сочетании с другими органическими растворителями. Метод дае возможность определения до 1,2.10 % 31 Ог с хорошей воспроизводимостью. Аналогично действие полиоксизтиленлаурид-амина /139,140/ в сочетании с хлороформом. [c.13]

    О разделении гетерополимолибденовых кислот германия, фосфора, мышьяка и кремния экстракцией органическими растворителями уже упоминалось выше [74, 76]. [c.414]

    В основе экстракции лежит процесс избирательного извлечения одного или нескольких компонентов смеси жидких или твердых веществ с помощью органического растворителя, не смешивающегося с водой. Разделение осуществляется благодаря различной растворимости компонентов в водном растворе и в органическом растворителе. Например, если смесь карбоновых кислот и производных фенола, находящуюся в органическом растворителе, обработать разбавленным водным раствором гидрокарбоната натрия, то карбоновые кислоты почти полностью перейдут в водный раствор, а производные фенола останутся в органической фазе. Хорошо растворяются в органических жидкостях (спиртах, эфирах, хлороформе, сероуглероде и др.) многие неорганические соли (нитраты, хлориды, роданиды) комплексные соединения, образованные органическими реагентами (комплексонаты, дитизонаты, оксихи-нолинаты, дитиокарбаминаты и др.) гетерополисоединения фосфора, молибдена, вольфрама, кремния, ванадия и др. неорганические комплексные соединения и т. д. Поэтому часто вначале проводят обработку смеси экстрагируемых компонентов подходящим реагентом, чтобы перевести их в нужную химическую форму. [c.104]

    Гетерополисоединения, экстрагируемые кислородсодержаи ими растворителями. Эти системы используют для экстракции мышьяка, молибдена, фосфора, кремния, вольфрама, ванадия. [c.258]


    Для глубокой очистки чаще всего используют методы экстракции и ректификации. В отдельных случаях применяют химические, сорбционные и кристаллофизические методы. Очистка Ge U затруднена его очень большой реакционной способностью, особенно в сочетании с хлором и хлористым водородом. Такие обычные материалы аппаратуры, как кварц, стекло, эмаль, загрязняют тетрахлорид кремнием (в виде соединений с хлором и кислородом, силоксанов и т. п.), мышьяком и [c.193]

    Гетерополикислоты мышьяка Нз [Аз (МозОю) 4]. фосфора Нз[Р(МозОю)41, кремния Н4 [81 (МозОю) 4] наиболее часто применяют в анализе. Внутренняя сфера комплексов может содержать вместо групп М03О10 аналогичные группы У/зОю или и те, и другие вместе. Экстракцию применяют при определении примесей Аз, Р и 51 и некоторых других элементов, образующих гетерополикислоты, в разнообразных материалах— в сталях, чугунах и т. д. Известен экстракционный метод разделения фосфора, мышьяка и кремния, основанный на различной растворимости гетерополикислот в органических разбавителях и их смесях. Смесь бутанола и хлороформа извлекает из водного раствора только фосфорномолибденовую кислоту Нз[Р(МозОю)4]- Далее экстрагируют из водного раствора смесью бутанола и этилацетата Нз[А5(МозОю)4] и Н4 [51 (МозОю)41. Затем прибавляют к экстракту хлороформ при этом кремнемолиб-деновая кислота переходит в водный раствор, а мышьяковомолибденовая остается в экстракте. [c.573]

    Описаны в литературе экстракционные методы очистки четыреххлористого кремния [91—94]. Предложено [91] зкстрагировать примеси концентрированными серной и фосфорной кислотами при 20 °0. После очистки содержание соединений железа, меди, бора и титана снижается примерно в 5 раз. В качестве высокополярного неорганического экстрагента может применяться треххлористая сурьма [92]. Большая область расслаивания и высокая относительная летучесть в системе 81014—8ЬС1з, а также значительная растворимость некоторых хлоридов в 8ЬС1д позволяют очищать тетрахлорид кремния методом экстрактивной ректификации или путем последовательной экстракции и ректификации. При этом достигается удовлетворительная очистка от железа, алюминия, титана, кальция и меди. К органическим экстрагентам относятся уксусная кислота и ее ангидрид [93]. Для удаления примеси бора предложено [94] использовать фенол. [c.541]

    Растворы вольфрамата натрия можно очищать методами селективного осаждения, экстракции или сорбции. Экстракция и сорбция в технологии вольфрама стали применяться лишь в последнее время они наиболее экономичны и перспективны. Обычная очистка раствора Na2W04 от кремния основана на гидролизе Наг5Юз при pH 8—9  [c.261]

    Из проб и эталонного материала готовят 10%-ный раствор золота. Для это го порошок, корольки или губчатое золото растворяют в смеси (3 1) НС1 и [N03 и добавляют равный объем бидистиллята. Спектрально-чистое золото для эталонов получают экстракцией его диэтиловым эфиром из среды 1 М НС1 с последующим восстановлением до металлического сернистым газом. Примеси определяемых элементов добавляют в эталонные растворы в виде водного раствора шгт-ратов, натрий и кремний вводят в виде N828103. Электродами служат угольные стержни ДЛ1Ш0Й 30 мм с плоским торцом. [c.101]

    Очистка экстракцией от кремния, германия, мышьяка и фосфора. К 40 г молибдата аммония во фторопластовом стакане приливают 100 мл нагретой до кипения бидистил-лированной воды и размешивают фторопластовой палочкой. После растворения фильтруют через фильтр, помещенный в полиэтиленовую воронку. К фильтрату добавляют при перемешивании азотную или серную кислоту до pH 1,5, через [c.16]

    Метиллитий (-1 М в эфире, 8,5 ммоль) перемешивают и охлаждают до -78 С в атмосфере азота. Раствор метоксиамина (0,40 г, 8,5 ммоль) в гексане (9 мл) добавляют со скоростью приблизительно 1 капля в секунду, затем добавляют фениллитий (-1,5 М в смеси эфир циклогексан, 30 70, 4,3 ммоль). Смеси дают нагреться до -15 С и выдерживают при этой температуре 2 ч. Добавляют воду (0,5 мл), а затем смесь пиридина (7 мл) и эфира (6 мл), после чего раствор бензоилхлорида (1,9 мл) в эфире (7 мл). Смесь продолжают перемешивать до следующего утра. Продукт выделяют экстракцией хлороформом и очищают хроматографически (диоксид кремния, 20% этилацетат -гексан), получая N-фeнилбeнзaмид (0,76 г, 90%), т. пл. 161,5 - 163 С. [c.125]

    Разработан пейтронно-активационный метод определения содержания до 2-10 % Re в трихлорсилане, пригодный и для анализа кремния, карбида кремния и германия. Около 300 мкг трихлорметилсилана подвергают гидролизу, остаток высушивают и облучают в течение 8 час. потоком медленных нейтронов 1,8-10 нейтрон см -сек. После облучения образцы протравливают соляной кислотой, обмывают водой и дальше выделяют группы элементов экстракцией по схеме (стр. 264, приведена часть схемы, относящаяся к выделению рения) [1288]. [c.263]

    Стандартное отклонение составляет 21 % при содержании 0,01 мкг Сг и 4,7% при содержании —1 мкг Сг. Метод применяют при анализе кремния и алюминия. Субстехиометрпческая экстракция хромата тетрафениларсония использована для определения хрома в алюминии и его сплавах [589], хлориде титана особой чистоты [433], в четыреххлористом кремнии и Si-полупроводниковых пленках [243]. Анализ А1 и его сплавов проводят по методике [589]. [c.105]

    Резину после экстракции ацетоном минерализуют концентрированной серной кислотой (см. разд. III.2.3). После отделения осадка и определения двуокиси кремния определяют в фильтрате фосфор и бор фосфор — по реакции образования фосформолиб-деновой гетерополикислоты и восстановления ее до молибденовой сини (см. разд III.3.2), бор — по окрашиванию пламени борнометиловым эфиром. Для определения бора аликвотную часть раствора 7 помещают в фарфоровый тигель, упаривают раствор до объема 2—3 мл, добавляют 3—5 мл метилового спирта, смесь перемешивают стеклянной палочкой и зажигают. В присутствии соединений бора края пламени окрашиваются в зеленый цвет. [c.123]

    При анализе некоторых соединений кремния (тетрахлорсилан, трихлорсилан) часто также используют обогащение. Предложен метод без концентрирования, основанный на гидролизе Si l4 в 10 мл СС1 ш АО мл 2 N NH4OH. В отсутствие мышьяка гидролиз можно проводить в воде в закрытом сосуде нри 0° С. Следы многих элементов, в том числе и кальция, изолируют от основы экстракцией трифенилхлорметаном. Экстракт концентрата выпаривают при 60° С в токе азота и анализируют на эмиссионном спектрографе [1594]. Концентрировать примеси из трихлорсилана и четырехфтористого кремния можно обработкой фтористоводородной кислотой, как это делается при анализе кремния высокой чнстоты [84]. [c.124]

    Магний в виде оксихинальдината отделяют от кремния и щелочных металлов, мешающих определению его атомно-абсорбционным методом [1192]. Экстракцию проводят по методике для экстрагирования оксихинолината магния (см. выше), используя [c.48]

    Первые попытки добиться увеличения выхода фенола при ис пользовании гетерогенных катализаторов не дали положительны результатов, что, по-видимому, связано с дальнейшим окислениел фенола на поверхности катализатора из-за низкой скорости еп десорбции. Так, Вейс [147] на многочисленных металлическю и окисных катализаторах получал лишь следы фенола. На окис нованадиевом катализаторе, например, при 316—430°С выход фе нола составил всего 1,9%, причем фенол оставался адсорбиро ванным на катализаторе, и его выделение рекомендуется [148 проводить экстракцией из движущегося слоя. Несколько лучши( результаты получены в присутствии окислов бора [149], кремни и алюминия [150], где при 700—800 °С может быть достигну выход фенола до 6% при степени преврашения бензола 50%. [c.283]

    Химический состав показывает, что цирконий, фториды магния и др. нацело остаются в остатках от разложения. Весь ниобий и тантал, а также частично железо и кремний переходят в плавнковокислый раствор, из которого ниобий и тантал могут быть выделены гидролитическим осаждением, фракционной кристаллизацией комплексных фторидов либо экстракцией органическим растворителем. [c.119]

    Бериллий из растворов после выщелачивания экстрагируют диалкилфосфорными кислотами в керосине. Литий можно отделять от щелочных металлов экстракцией хлорида лития бутиловым или амиловым спиртом. Вольфрам и молибден можно разделить экстракцией метилизобутилкетоном из кремний-содержащнх кислых растворов. Германий и мышьяк разделяются экстракцией хлоридов четыреххлористым углеродом. Галлий от сопутствующих металлов можно отделить экстракцией эфиром или трибутилфосфатом в виде хлоридов. Ванадий извлекают из нефтяных топлив пиридином. [c.658]

    При разделении микрокомпонентов и основы экстракцией могут экстрагироваться либо примеси, либо основа. Применение экстракции для той или другой цели зависит не только от характера определяемых примесей, но в равной мере и от характера элемента-основы. Например, при анализе германия или кремния отделение главной массы элемента-основы наиболее удобно производить испарением в виде легколетучего галогенида (соответственно тетрахлорида и тетрафторида). При анализе же титана или циркония, которые значительно труднее переводятся в лет5гчие соединения, причем в летучие соединения часто переходят и определяемые примеси, во многих случаях предночтительпее экстракционное отделение основы. [c.5]

    Групповая экстракция примесей при их фотометрическом определении применяется реже, так как она требует последующего разделения микрокомпонентов. Это может быть достигнуто с помощью той же экстракции и иногда реэкстракции в водную фазу. Так, отделение висмута, свинца и кадмия при их определении в ванадии производится экстракцией диэтилдитиокарбаминатов хлороформом из щелочного (pH 11—12) раствора, содержащего тартрат и цианид [18]. Последующее определение выделенных микропримесей производится фотометрически. Разделение висмута и свинца для этого достигается реэкстракцией разбавленной соляной кислотой. Свинец и кадмий определяются затем в солянокислом реэкстракте, а висмут в хлороформном остатке. Селективное экстракционное разделение следов элементов в виде близких по свойствам соединений происходит при избирательном последовательном извлечении гетерополимолибденовых кислот фосфора, мышьяка и кремния дифференцирующими растворителями [19]. [c.7]


Смотреть страницы где упоминается термин Кремний экстракция: [c.94]    [c.426]    [c.37]    [c.311]    [c.311]    [c.312]    [c.111]    [c.77]    [c.66]    [c.112]    [c.173]    [c.220]    [c.91]    [c.145]    [c.77]    [c.970]    [c.4]   
Калориметрические (фотометрические) методы определения неметаллов (1963) -- [ c.39 ]

Фотометрическое определение элементов (1971) -- [ c.217 ]




ПОИСК







© 2025 chem21.info Реклама на сайте