Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворители скорость нуклеофильного замещения

    Одним из важнейших обстоятельств, часто приводящих к отсутствию простой корреляции между влиянием растворителя на реакцию и его диэлектрической постоянной, является специфическое взаимодействие реагентов с молекулами растворителя, т. е. специфическая сольватация. В качестве примера в табл. 21 приведены относительные константы скорости нуклеофильного замещения галогенов в п- [c.169]


    Качественная теория влияния растворителя на скорость нуклеофильного замещения [c.728]

    Одна из возможностей установить различие между сольволизом SNl- и 8к2-типа в нуклеофильных растворителях состоит в добавлении к реакционной смеси веществ, которые являются более сильными нуклеофилами, чем растворитель (в относительно малой концентрации). Если скорость нуклеофильного замещения остается при этом практически неизменной , то обычно оказывается возможным утверждать, что реакция протекает по механизму Зк1-Если же скорость замещения существенно возрастает, то механизм реакции относится к 81<12-типу. Например, измеряемая скорость образования г/)ето-бутилового спирта из трет-бутилхлорида пропорциональна только концентрации галогенида. При добавлении гидроксил-иона скорость замещения не возрастает. Это служит свидетельством того, что терет-бутилхлорид гидролизуется по механизму 8м1- [c.264]

    Большое влияние на скорость нуклеофильного замещения оказывает растворитель [76]. Так, кинетическое изучение реакции п-хлор-нитробензола с этилатом натрия в этиловом спирте показало, что скорость замещения хлора этоксигруппой зависит от концентрации воды в спирте при проведении же реакции с метилатом натрия в метиловом спирте при разбавлении последнего водой константа скорости почти не изменяется [77]. На рис. 35 даны кривые зависимости констант скорости реакции от разбавления растворителя водой. Причина различного влияния добавки воды к разным спиртам—неясна. [c.363]

    Механизмы реакций нуклеофильного замещения были предметом обширных исследований и обсуждаются в ряде книг [159,251, 252]. Лимитирующая стадия в реакциях замещения в алифатическом ряду может быть моно- или бимолекулярной (5м1 или 5 2). Нуклеофильное замещение в ароматическом ряду, как правило, протекает по двухступенчатому бимолекулярному механизму, причем лимитирующей стадией может быть образование или распад промежуточного соединения. И в случае алифатических, и в случае ароматических соединений часто образуются заряженные комплексы. Во многих случаях изменения величины и распределения зарядов между исходным и переходным состояниями коррелируют с влиянием среды на скорость нуклеофильного замещения в ароматическом и алифатическом рядах [159]. Различные изменения зарядов, теоретически возможные в реакциях нуклеофильного замещения, могут быть причиной влияния мицелл на скорость этих реакций. По имеющимся данным, мицеллы влияют на скорости реакций нуклеофильного замещения в алифатическом ряду только в тех случаях, когда хотя бы один из реагентов заряжен. Однако вполне возможно, что будут обнаружены мицеллярные эффекты в реакциях нуклеофильного замещения между нейтральными молекулами в тех случаях, когда распределение реагентов между мицеллами и объемом растворителя, а также их реакционная способность в этих двух фазах сильно различаются. [c.316]


    Здесь нам хотелось бы сразу сделать оговорку, что для более подробного рассмотрения основного вопроса данного раздела — связи между строением фосфорорганических соединений и их реакционной способностью,—по-видимому, целесообразно пока оставить в стороне другие вопросы, допустив, что реакции протекают при равных условиях с точки зрения соблюдения порядка реакции, влияния растворителя, стерических факторов, строения нуклеофильного реагента, а также возможности образования водородных связей или циклических структур в переходном состоянии. Некоторые из этих вопросов уже рассматривались ранее (см. стр. 493), другие будут обсуждаться подробнее в последующих разделах обзора (см. стр. 555). Целесообразно, по-видимому, сделать только одно небольшое замечание относительно строения нуклеофильного реагента. Как будет показано ниже (см. стр. 538), строение нуклеофильного реагента и его свойства являются очень важными факторами, определяющими скорость нуклеофильного замещения у четырехкоординационного атома фосфора, поэтому при изучении [c.505]

    Сверху вниз в группах периодической системы нуклео-фильность возрастает, хотя основность падает. Так, обычный порядок нуклеофильности галогенидов выглядит следующим образом 1->Вг->С1 >р- (хотя, как будет показано ниже, этот порядок зависит от природы растворителя). Аналогично любой серосодержащий нуклеофил сильнее соответствующего кислородсодержащего аналога, и то же справедливо для соединений, содержащих фосфор и азот. Главная причина различий между основностью и нуклеофильностью заключается в следующем меньшие по размеру отрицательно заряженные нуклеофилы лучше сольватированы обычными полярными протонными растворителями, т. е. поскольку отрицательный заряд С1 по сравнению с I" более сконцентрирован, первый более плотно окружен оболочкой молекул растворителя, которая образует барьер между нуклеофилом и субстратом. Это особенно важно для полярных протонных растворителей, молекулы которых могут образовывать водородные связи с нуклеофилами небольшого размера. В качестве доказательств можно привести следующие факты многие реакции нуклеофильного замещения с участием небольших отрицательно заряженных нуклеофилов значительно быстрее происходят в полярных апротонных, чем в протонных растворителях [260], и в ДМФ — апротонном растворителе — порядок нуклеофильности галогенид-ионов имеет следующий вид С1->Вг->1- [261]. В другом эксперименте, проведенном в ацетоне, в качестве нуклеофилов были использованы ВщЫ+Х- и их (где Х- галогенид-ион). Ассоциация галогенид-иона в первой соли значительно ниже, чем в иХ. Относительные скорости реакций с участием ЫХ составили для С1- 1, для Вг- 5,7 и для 1 6,2 это нормальный порядок, тогда [c.76]

    Одна из трудностей, возникающих иногда при проведении реакций нуклеофильного замещения, заключается в том, что реагенты не смешиваются. Для осуществления реакции реагирующие молекулы должны столкнуться. В реакциях нуклеофильного замещения субстрат обычно нерастворим в воде и других полярных растворителях, тогда как нуклеофил чаще всего представляет собой анион, который растворим в воде, но не растворим в субстрате и других органических растворителях. Следовательно, при смешении таких реагентов их концентрация в одной фазе оказывается слишком низка для проведения реакции с удобными скоростями. Один из способов преодоления этой трудности — использование растворителя, растворяющего оба реагента. Как обсуждалось в разд. 10.14, для этой цели подходит диполярный апротонный растворитель. Другой спо- [c.91]

    Совершенно иначе влияет полярность растворителя на скорость реакции нуклеофильного замещения в случае о-нитрохлорбензола. В неполярной среде реакция этого соединения с пиперидином идет значительно быстрее, чем пара-изомера, и несколько замедляется с увеличением полярности. Так, отношение констант скоростей к 1кп реакции нитрохлорбензолов с пиперидином при 170 °С в бензоле 64, в метаноле 2,8 и в диметилформамиде 1,3. Большее активирующее действие заместителя в орто-положении объясняют образованием внутримолекулярной водородной связи в а-комплексе. [c.163]

    Из-за большого объема переходного состояния и рассредоточенности в нем заряда взаимодействие с протонными растворителями с образованием сильных водородных связей происходит в значительно меньшей степени, чем взаимодействие меньших по размеру анионов с этими растворителями. Вследствие этого бимолекулярные реакции анионов, протекающие через промежуточное образование большого поляризуемого активированного комплекса, содержащего этот анион, осуществляется в апротонных полярных растворителях гораздо быстрее, чем в протонных [12]. Некоторые примеры влияния водородных связей на скорость реакций нуклеофильного замещения в протонных растворителях приведены в табл. 2. При этом надо подчеркнуть следующее. [c.13]


    Например, реакция между одноименно заряженными ионами будет сопровождаться повышением плотности заряда на стадии образования активированного комплекса. Следовательно, при замене менее полярного растворителя на более полярный скорость такой реакции возрастет. Напротив, реакция между ионами с зарядами противоположных знаков в хорошо сольватирующих ионы полярных растворителях будет замедляться, поскольку в этом случае в активированном комплексе плотность заряда снижается по сравнению с исходными ионами. Кроме того, полярность растворителя должна оказывать большее влияние на скорость реакций, в которых заряд возникает или нейтрализуется на стадии активации, чем на реакции, сопровождающиеся только делокализацией заряда. Действительно, замена воды на этанол приводит к изменению скорости реакций замещения с возникновением или нейтрализацией заряда в 10 —10 раз, тогда как 5м-реакции нуклеофильного замещения, сопровождающиеся делокализацией заряда, при переходе от этанола к воде ускоряются только в 3—10 раз. [c.205]

Таблица 5.4. Предсказываемое правилами Хьюза— Ингольда влияние растворителей на скорости реакций нуклеофильного замещения [16, 44—46] Таблица 5.4. Предсказываемое правилами Хьюза— Ингольда <a href="/info/132078">влияние растворителей</a> на <a href="/info/467931">скорости реакций нуклеофильного</a> замещения [16, 44—46]
    В отношении стадий, определяющих скорость реакции, механизм нуклеофильного замещения весьма близок к механизму р-элиминирования. Так, скорости мономолекулярных 5м1- и Е]-реакций контролируются одной и той же стадией, а у бимолекулярных 5к2- и Ё2-реакций аналогичны стадии переноса электрона от реагента к уходящей группе они различаются лишь тем, что в реакциях элиминирования электроны проходят по большей цепи атомов углерода. В этой связи неудивительно, что для описания влияния растворителей на мономолекулярные (5.20) и бимолекулярные (5.21) реакции р-элиминирования с различной судьбой зарядов при активации Хьюз и Ингольд предложили правила, аналогичные правилам, используемым для оценки эффектов растворителей в 5м1-реакциях [16, 44] (см. табл. 5.6). [c.212]

    Следовательно, протонные растворители должны, как правило, ускорять реакции нуклеофильного замещения В частности, именно по этой причине 5к-реакции с участием галогеналканов и эфиров сульфокислот обычно проводят в средах, состоящих полностью или частично из воды, спиртов или карбоновых кислот. Энергия водородных связей в начальном и переходном состояниях часто превышает изменение энергии Гиббса в ходе активации, обусловленное электростатическими эффектами растворителей. С другой стороны, в 8к2-реакции (5.101) атакующий нуклеофильный реагент Y также может специфически сольватироваться протонными растворителями тогда его реакционная способность, а следовательно, и скорость 8к2-реакции будут снижаться. Примеры специфической (электрофильной) сольватации анионов-нуклеофилов и уходящих групп в З -реакциях можно найти в работах [264—269, 581—585] опубликованы также соответствующие обзоры [581, 582]., .... [c.299]

    Когда нуклеофил отщепляет протон, то говорят, что он ведет себя как основание в таком случае сила нуклеофила соответствует его силе как основания, т. е. основности. Кинетическая и термодинамическая основности изменяются примерно параллельно друг другу об этом свидетельствует широкая применимость каталитического закона Бренстеда. Это соотношение может ие наблюдаться, если нуклеофил не отщепляет протона, а атакует насыщенный или ненасыщенный атом углерода или другого элемента. Например, термодинамическая основность в гидроксилсодержащих растворителях уменьшается в рядах Р- > С1 и т. д. и КО > Н3 и т. д. (К = Н, алкил, арил), однако в этих же растворителях скорость нуклеофильного замещения у насыщенного атома углерода в случае нейтральных субстратов изменяется в обратном порядке. С другой стороны, известно, что скорости замещения у четырехлигандного бора, фосфора и серы соответствуют основности нуклеофилов [70, 73]. [c.374]

Таблица 21. Относительные константы скорости нуклеофильного замещения атома галогена в п-галогеи№ троб1М4золах на пиперидин в разных растворителях Таблица 21. Относительные <a href="/info/599192">константы скорости нуклеофильного замещения</a> атома галогена в п-галогеи№ троб1М4золах на пиперидин в разных растворителях
    С увеличением разветвленности остатка К начинает преобладать механизм 5лг1, поскольку при этом, с одной стороны, увеличивается стабильность соответствующего иона карбения и уменьшается энтальпия активации процесса гетеролиза, а с другой стороны, создаются стерические препятствия для реакции по механизму 5д 2. Природа галогена обычно мало влияет на механизм замещения, однако существенно изменяет скорость реакции. Чем выше нуклеофильность реагента (см. раздел 1.6.1.3), тем более вероятен механизм 8 2 из-за понижения энергии активации. В то же время на реакции 5л 1 нуклеофильность не оказывает влияния. О влиянии растворителей на нуклеофильное замещение у насыщенного атома углерода см. раздел 1.5.6.4. [c.291]

    Специфическая сольватация (образование водородных связей, it-комплексов и других донорно-акцепторных комплексов) в ряде случаев оказывает более сильное влияние на скорость и направление реакции, чем неспецифическая (электростатическая) сольватация. В этом случае растворитель проявляет специфическое химическое сродство к одному или ко всем участникам реакции. Так, на скорость нуклеофильного замещения при насыщенном атоме зтлерода (механизм 8 ,1 и Sj,2) большое влияние оказывает сольватация отщепляемого аниона, которая в протонных растворителях HS (вода, спирты или карбоновые кислоты) осуществляется преимущественное участием водородных связей  [c.143]

    Таким образом, электростатическая модель Ингольда-Хьюза качественно правильно предсказывает влияние растворителя на скорость нуклеофильного замещения у насьпценного атома углерода. Однако она учитьшает лищь электростатическую ориентацию растворителя относительно реагентов и совершенно игнорирует специфическое донорно-акцепторное взаимодействие или образование водородных связей с молекулами растворителя, которые вместе составляют наиболее важную особенность процессов ион-дипольного и диполь-дипольного взаимодействия. Кроме того, эта теория рассматривает только одну составляющую свободной энергии активации АО, а именно энтальпию активации ЛВ, не принимая во внимание изменение энтропии активации ЛЗ, чей вклад может бьпъ очень значителен. [c.114]

    Скорость замещения атомов галогенов в галогеналкилах весьма различна и в значительной степени зависит от строения радикалов, с которыми связан атом галогена, а также от природы атома галогена, нуклеофила и растворителя. О влиянии строения радикала на скорость нуклеофильного замещения можно сделать заключение из сравнения следующих относительных скоростей гидролиза галогеналкилов в присутствии гидроксильных ионов (80%-ный этанол при 55°)  [c.102]

    Реакционная способность иона в растворе тем выше, чем слабее связан он с молекулами растворителя. В протонных растворителях сольватация анионов за счет йодородных связей возрастает с увеличением плотности заряда при уменьшении размера иона, т. е. с увеличением его жесткости. Вследствие этого нуклеофильность аниона при переходе от протонного растворителя к полярному апротонному растворителю увеличивается тем больше, чем более жестким является анион. Иллюст рацией может служить влияние - растворителя на скорость нуклеофильного замещения атома галогена в й-галогеннитро-бензолах ОгЫСбН4Х под действием более жесткого (N3 ) и бо- [c.79]

    Одна из возможностей установить различие между сольволизом Sj l- и Sj 2-типа в нуклеофильных растворителях состоит в добавлении к реакционной смеси веществ, которые являются более сильными нуклеофилами, чем растворитель (в относительно малой концентрации). Если скорость нуклеофильного замещения остается при этом практически неизменной , то обычно оказывается возможным утверждать, что реакция протекает по механизму Sj 1. Если же скорость замещения существенно возрастает, то механизм реакции относится к Sj 2-Tnny. Например, измеряемая скорость образования mpem-бутилового спирта из /прет-бутил- [c.322]

    Как мы уже знаем, лз спиртов и щелочей образуются алкоголяты, основность которых вйсока. Такие смеси, обладающие одновременно высокой основностью и хорошей сольватирующей способностью, пригодны для дегазации даже таких ОВ, которые в водных средах очень устойчивы к нуклеофильным атакам. При рассмотрении процессов, происходящих при дегазации различных ОВ этими дегазирующими жидкостями, возникает вопрос о том, как влияет полярность растворителей на скорость нуклеофильного замещения. С возрастанием полярности растворителей возрастает их склонность к образованию водородных связей если ОВ обладает высокой полярностью, то скорость реакции уменьшается. С такими отношениями столкнулись при дегазации У-газов [c.316]

    Реакционная способность иона в растворе тем больше, чем слабее связан он с молекулами растворителя и с противоионом. Оба эти фактора решающим образом влияют на нуклеофильность анионов по отношению к органическим субстратам. В жестких протонных растворителях сольватация анионов за счет водородных связей увеличивается с увеличением плотности заряда при уменьшении размера иона, т. е. с увеличением его жесткости. В мягких биполярных апротонных растворителях сольватация анионов, вообще лезначительная, увеличивается в обратной последовательности с увеличением размера иона. В результа1е нуклеофильность аниона при переходе от протонного к биполярному апротонному растворителю возрастает, и тем больше, чем более жестким является анион. Иллюстрацией этого может служить влияние растворителя на скорость нуклеофильного замещения атома галогена в п-нитрогалоге-нобензоле под действием более жесткого (Нз) и более мягкого (5СМ ) аниона (табл. 2.4). При сравнении для уменьшения влияния природы уходящей группы (см. 2.5) в первом случае использовано вытеснение жесткого (Х=Р), а во втором мягкого (Х=1) основания. [c.58]

    Выше отмеча.тось (разд. 11,2), что во многих реакциях замещения галогена на амин важную роль играет образование водородной связи[50, 1101. Поэтому не так уж удивительно, что о- и и-хлорнитробензо.лы обнаруживают в реакции с пиперидином совершенно различное отношение к растворителю. Например, при замене бензола на метанол скорость замещения в ортоизомере снижается в 4 раза, а в тра-изомерв — повышается в 6 раз [46]. Некоторые общие правила, касающиеся влияния растворителя на нуклеофильное замещение в ароматическом ядре, даны Миллером [153]. Влияние растворителя изучалось широко, но тем не менее многие аспекты остаются слишком сложными для однозначной интерпретации и имеют главным образом эмпирическое значение [9, 10, 58, 60. 68, 101, 115, 129, 143, 162, 164-166, 288, 304, 318, 322, 348, 408]. [c.422]

    Продолжая изучение влияния условий реакции на скорость нуклеофильного замещения в ряду галогенпиримидинов мы исследовали каталитический эффект реагента при взаимодействии замещенных галогенпиримидинов с пиперидином в среде различных растворителей изооктане, бензоле, метаноле, толуоле и диметилформамиде (ДМФА). В качестве субстратов были использованы незамещенные 2-хлор- (I) и [c.486]

    С целью продолжения выяснения механизма влияния водно-органических растворителей на скорость нуклеофильного замещения при ненасыщенном атоме серы в настоящей работе исследована кинетика нейтрального сольволиза п-толуолсуль-фохлорида в смесях воды с метиловым и изопропиловым спиртами, проявляющими в отличие от ранее иссяедованных ацето- [c.273]

    В реакциях нуклеофильного замещения возможны случаи, когда за взаимодействие с субстратом Р—X конкурирует два или несколько нуклеофилов. В частности, во многих растворителях, имеющих нуклеофильные центры, взаимодействие субстрата с реагентом происходит параллельно с взаимодействием субстрата с растворителем. Например, при действии на /и/7< т-бутилхлорид водного раствора азида натрия наряду с /прет-бутилазидом образуется третичный бутиловый спирт. При этом выход азида выше, чем выход спирта, так как реакция с заряженным азид-ионом протекает с большей скоростью, чем с водой  [c.99]

    Поляр1[ый растворитель повышает скорость реакции нуклеофильного замещения, если в активированном комплексе разделение зарядов выражено сильнее, чем в исходных реагентах  [c.239]

    Реакции с хорошими нуклеофилами в растворителях с низкой иони-ауюшей способностью зависят от структурного типа углеродного атома, у которого происходит замещение. Реакции этого тина наиболее близки к реакциям прямого замещения, они замедляются пространственными затруднениями в переходном состоянин. Относительные скорости реакций алкилхлоридов с иодид-ионом в ацетоне составляют метил- 93, этпл- 1,0 и нзопропил- 0,0076 [62]. Это соотношение скоростей является примером случая, когда доминирует пространственный эффект. Статистический анализ скоростей для 18 групп реакций нуклеофильного замещения субстратов типа ХСН,У, где У — уходящая грунпа и X —Н или алкил, показал, что пространственное влияние X является наиболее важным фактором [03]. В табл, 5,3 приведены некоторые данные, огкосящнеся к этому аспекту. [c.193]

    При объяснении закономерностей влияния растворителя на скорость реакций нуклеофильного замещения Хьюз и Инголд исходили из элементарных представлений об электростатическом взаимодействии между ионом и полярной молекулой растворителя (см. с. 34). Несмотря на первую степень приближенности, им удалось достичь хорошей предсказательности, а это, как известно, является отличительным признаком плодотворной теории. [c.78]

    Для реакций нуклеофильного замещения, механизм которых связан с распределением зарядов в реагирующей молекуле в момент активации, скорость реакции повышается с ростом диэлектрической проницаемости растворителя, что способствует ионизации связи. Так, в реакциях сольволиза грет-бутилхлорида (СНз)зСС1, являющегося излюбленным объектом в исследованиях влияния среды на кинетику химических процессов, протекание процесса связано с промежуточным образованием ионный пары (СНз)зС" "С1 , вследствие чего в ряду растворителей этиловый спирт (ДП = 24,3) — метиловый спирт (ДП = 32,6) —формамид (ДП= 109,5) соотношение скорости реакций равно 1 9 430. Интересно, что в воде, которая из-за своей исключительно высокой сольватирующей способности обеспечивает ионизацию, скорость реакции в 335 000 раз выше, чем в этаноле. [c.78]

    Естественно, что нейтрализация зарядов при реакции нуклеофильного замещения также ведет к тому, что повышение диэлектрической проницаемости растворителя понижает скорость процесса. Так, скорость гидролиза солей триметилсульфония (СНз)з5++0Н = СНзОН+ СНз)28 при переходе от этилового спирта к воде уменьшается в 20 ООО раз. [c.79]

    Впервые чнсто качественную теоррпо влияния растворителя на скорость реакции нуклеофильного замещения предложили К. Ингольд и Э. Хьюз на основе простой модели сольватации ири учете только электростатического взаимодействия между ионами и молекулами растворителя в исходном и переходном состоянии. [c.728]

    Влияние растворителя ия скорость реакции нуклеофильного замещения у насыщенного атома углд) ода [c.728]

    Этот механизм называется 8 1 мономолекулярное нуклеофильное замещение. Используется термин леономолекулярное , поскольку в стадии, определяющей скорость реакции, участвует только одна молекула (молекулы растворителя не учитываются). [c.455]

    Приведенные выше правила, называемые правилами Хьюза—Ингольда, позволяют качественно оценить влияние полярности растворителя на скорость любой гетеролитической реакции, если известен ее механизм. Для реакций нуклеофильного замещения типа (5.11) и (5.12)  [c.205]

    Простейшим примером ароматического нуклеофильного замещения является ЗмАг-реакция между 1-хлор-2,4-динитробен-золом и пиперидином, протекающая, как это теперь достаточно надежно установлено, по двухстадийному механизму [см. уравнение (5,26)] [501—503]. Этот механизм включает образование биполярного активированного комплекса, превращающегося в промежуточное соединение цвиттерионного типа (соединение Майзенхаймера), которое спонтанно или под действием оснований отщепляет НС1, образуя продукт реакции. Независимо от этой последней стадии растворитель может изменять относительные скорости первой и второй стадий, а также порядок реакции. [c.218]


Смотреть страницы где упоминается термин Растворители скорость нуклеофильного замещения: [c.189]    [c.108]    [c.394]    [c.100]    [c.95]    [c.728]    [c.807]    [c.835]    [c.515]   
Курс теоретических основ органической химии издание 2 (1962) -- [ c.324 , c.363 ]

Курс теоретических основ органической химии (1959) -- [ c.287 , c.318 ]




ПОИСК





Смотрите так же термины и статьи:

Замещение нуклеофильное

Нуклеофильное замещение скорость

Растворители нуклеофильные



© 2025 chem21.info Реклама на сайте