Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизм и скорость нуклеофильного замещения

    При атаке атома углерода, несущего частичный положительный заряд (вследствие поляризации связи С—X), реагентом 0Н начинает намечаться образование связи НО—С с одновременным ослаблением С—Х-связи. Реакция идет через переходное состояние (реакционный комплекс), в котором три атома водорода расположены в одной плоскости, перпендикулярной линии связи НО—С—X. При дальнейшем удалении галогена от углеродного атома и перехода его в ион Х группа ОН приближается к атому углерода настолько, что образует с ним обычную ковалентную связь. Весь процесс замещения осуществляется в одну стадию. Рассмотренный механизм реакции называется бимолекулярным нуклеофильным замещением и обозначается символом 5к2 (Ингольд). Скорость этой реакции пропорциональна концентрациям галогеналкила и нуклеофильного реагента  [c.94]


    Считают, что в щелочной и нейтральной средах реакции в а-положении пропановой цепи в фенольных единицах лигнина, как и в кислой среде, идут по механизму мономолекулярного нуклеофильного замещения 8м1, но с образованием в качестве активной промежуточной частицы хинонметида. Эта стадия и лимитирует скорость реакции. Затем нуклеофил Ыи (например, сульфит-анион при нейтрально- или щелочно- [c.440]

    Механизмы реакций нуклеофильного замещения были предметом обширных исследований и обсуждаются в ряде книг [159,251, 252]. Лимитирующая стадия в реакциях замещения в алифатическом ряду может быть моно- или бимолекулярной (5м1 или 5 2). Нуклеофильное замещение в ароматическом ряду, как правило, протекает по двухступенчатому бимолекулярному механизму, причем лимитирующей стадией может быть образование или распад промежуточного соединения. И в случае алифатических, и в случае ароматических соединений часто образуются заряженные комплексы. Во многих случаях изменения величины и распределения зарядов между исходным и переходным состояниями коррелируют с влиянием среды на скорость нуклеофильного замещения в ароматическом и алифатическом рядах [159]. Различные изменения зарядов, теоретически возможные в реакциях нуклеофильного замещения, могут быть причиной влияния мицелл на скорость этих реакций. По имеющимся данным, мицеллы влияют на скорости реакций нуклеофильного замещения в алифатическом ряду только в тех случаях, когда хотя бы один из реагентов заряжен. Однако вполне возможно, что будут обнаружены мицеллярные эффекты в реакциях нуклеофильного замещения между нейтральными молекулами в тех случаях, когда распределение реагентов между мицеллами и объемом растворителя, а также их реакционная способность в этих двух фазах сильно различаются. [c.316]

    Механизмы реакций замещения. Комплексы с координационным числом 6. Среди комплексов этого типа больше всего изучены комплексы Со(1П), а также Сг(1П) и элементов платиновой группы. Трудности измерений в активных комплексах обусловлены тем, что образующиеся комплексы почти все являются аква-комплексами, поэтому был исследован достаточно ограниченный круг систем. К нуклеофильным реакциям замещения относятся мономолекулярные реакции, для которых скорость реакции определяется разрывом связи при отщеплении основания Льюиса (механизм S.nI), а также бимолекулярные реакции, для которых скорость реакции определяется образованием связи координирующимся основанием и наблюдается много промежуточных продуктов с координационным числом 1 (механизм 5n2). Однако, когда координационное число равно 6, механизм реакций нуклеофильного замещения существенно иной, чем в случае тетраэдрического углерода. Этим отличием дело не ограничивается. Поскольку комплекс слабо связывает молекулы растворителя за пределами первой координационной сферы, они образуют вторую координационную сферу, причем это происходит не только в водных, но и в неводных растворах. Кроме того, комплексные ионы часто образуют с ионами-партнерами ионные пары. Обычно при замещении лигандов в комплексах реа ция начинается с обмена лигандами в координационной сфере. Если обозначить [c.247]


    Одна из возможностей установить различие между сольволизом SNl- и 8к2-типа в нуклеофильных растворителях состоит в добавлении к реакционной смеси веществ, которые являются более сильными нуклеофилами, чем растворитель (в относительно малой концентрации). Если скорость нуклеофильного замещения остается при этом практически неизменной , то обычно оказывается возможным утверждать, что реакция протекает по механизму Зк1-Если же скорость замещения существенно возрастает, то механизм реакции относится к 81<12-типу. Например, измеряемая скорость образования г/)ето-бутилового спирта из трет-бутилхлорида пропорциональна только концентрации галогенида. При добавлении гидроксил-иона скорость замещения не возрастает. Это служит свидетельством того, что терет-бутилхлорид гидролизуется по механизму 8м1- [c.264]

    О—Н и С—Р и образованию новых связей Р—О—С и С—Н. Таким образом, мы полагаем, что фосфонат-фосфатная перегруппировка является трехцентровой и протекает по механизму внутримолекулярного нуклеофильного замещения у тетраэдрического атома фосфора. В соответствии с этим скорость перегруппировки должна зависеть от целого ряда факторов, среди которых наиболее важны такие, как наличие дефицита электронной плотности на атоме фосфора, нуклеофильность атома кислорода гидроксильной группы, прочность связи фосфор — углерод, пространственные и другие эффекты. Дефицит электронной плотности на атоме фосфора зависит прежде всего от заместителей, непосредственно окружающих фосфорильный центр. [c.167]

    ФАКТОРЫ, ВЛИЯЮЩИЕ НА МЕХАНИЗМ И СКОРОСТЬ НУКЛЕОФИЛЬНОГО ЗАМЕЩЕНИЯ [c.14]

    Сделав подобные допущения относительно однородности условий, а также в какой-то степени и механизма сравниваемых реакций, вопрос о зависимости между строением фосфорсодержащих соединений и скоростью нуклеофильного замещения у четырехкоординационного атома фосфора в этих соединениях, согласно вышеперечисленным факторам (стр. 505), можно, по-видимому, свести в основном к двум факторам к изменению прочности связи Р—галоид и величины положительного заряда на центральном атоме фосфора, который во многом определяет подход нуклеофильного реагента к реакционному центру. Следует отметить, что авторами теории абсолютных скоростей реакций уже давно П47 ] на примере многочисленных реакций отмечалось, что влияние заместителей в Y — Z (см. стр. 504) на энергию активации действительно зависит от их влияния на энергию притяжения X к тому месту молекулы, в котором происходит реакция [147]. [c.506]

    Концентрация нуклеофильного реагента. Скорость реакции, протекающей по механизму N1, определяется скоростью диссоциации исходного субстрата на ионы, поэтому концентрация нуклеофильного реагента в данном случае не оказывает существенного влияния на скорость реакции нуклеофильного замещения. [c.129]

    ЧТО находится в соответствии с представлениями о высокой чувствительности р- — --связей к изменению заряда на центральном атоме (см. стр. 537). Это приведет к снижению занятости -орбит атома фосфора в переходном состоянии и увеличению скорости нуклеофильного замещения у атома фосфора. Подобный механизм катализа может предполагать не только снижение энергии активации, но и более благоприятные энтропии активации, что следует из недавно опубликованных работ Густавсона и сотрудников. [c.569]

    Влияние полярных эффектов на механизм и скорость нуклеофильного замещения [c.357]

    Среди наиболее известных механизмов нуклеофильного замещения у насыщенного атома углерода имеются по меньшей мере два механизма, которые могли бы обеспечить сохранение конфигурации расщепляемой связи. Один из них, относящийся к типу SNl, заключается в сравнительно медленной (определяющей общую скорость реакции) диссоциации реагента у реакционного центра и последующей атаке нуклеофильным агентом со стороны ушедшей группы. Второй механизм, называемый двойным замещением 8к2, состоит в двойной инверсии расщепляемой связи. Здесь две нуклеофильные группы последовательно атакуют углеродный атом, каждый раз со стороны, которая противоположна уходящей группе субстрата. В результате двух таких синхронных процессов конфигурация расщепляемой связи возвращается к исходному состоянию. [c.170]

    Реакции нуклеофильного замещения затруднительно изучать путем измерения величины изотопного эффекта галогенов, кислорода и т. д., так как эти эффекты малы. Поэтому в работе [979] с целью изучения механизма процессов нуклеофильного замещения было исследовано изменение их скорости, вызванное заменой одного элемента или остатка другим, названное авторами элемент-эффектом . Изучались скорости замещения в бензольном кольце остатков галогенов, [c.645]

    Факторы, оказывающие влияние на реакционную способность кратных связей углерод — гетероатом в реакциях присоединения, аналогичны факторам, действующим в тетраэдрическом механизме нуклеофильного замещения [8]. Если А и (или) В — электронодонорные группы, скорость реакций снижается, а электроноакцепторные заместители способствуют ускорению реакций. Это означает, что альдегиды более реакционноспособны, чем кетоны. Арильные группы оказываются несколько дезактивирующими по сравнению с алкильными вследствие резонанса в молекуле субстрата, который невозможен при переходе к интермедиату  [c.323]


    Суть различных механизмов, предложенных для истолкования реакций нуклеофильного замещения, сводится к рассмотрению синхронного или асинхронного (ступенчатого) их протекания. В первом случае в реакции замещения может происходить одновременный разрыв старой и образование новой связи. Следовательно, в образовании активированного комплекса участвуют обе частицы субстрат и реагент. Эксперимент подтверждает факт участия обеих частиц в стадии, определяющей скорость реакции с синхронным механизмом. Повышение концентрации каждого компонента ведет к возрастанию скорости, которая пропорциональна произведению этих концентраций. Если атом углерода, при котором протекает замещение, является оптически активным, то можно проследить за стереохимией реакции. [c.143]

    Изменение в применяемом нуклеофильном реагенте, т. е. замена вступающей группы, не приводит к изменению скорости реакции замещения по механизму SnI- Это наблюдается, например, при использовании разных галогенидов, поскольку такие реагенты не принимают участия в стадии, лимитирующей скорость реакции. Если же реакция замещения протекает по механизму Sn2, то, чем более нуклеофильным является реагент, тем быстрее должна протекать реакция. Казалось бы, что нуклео-фильность любого реагента должна коррелировать с его основностью, поскольку для реагентов обоего типа характерно наличие доступных электронных пар. Такую параллель, хотя ее часто и используют, ни в коем случае нельзя считать строгой, поскольку такой ион, как Y , проявляет нуклеофильность в реакции замещения (обусловленную наличием у него пары электронов) обычно по отношению к углероду, тогда как его действие в качестве основания связано с передачей пары электронов водороду первый из этих процессов обычно значительно более чувствителен к стерическим факторам. Существенное различие между нуклеофильностью и основностью состоит также в том, что нуклеофильность характеризует скорость реакции, [c.108]

    По своему механизму реакции нуклеофильного замещения делятся на две категории. Первичные алкилгалогениды (в которых атом галогена связан с первичным атомом углерода) реагируют обычно следующим образом сначала нуклеофильный реагент подходит к положительно заряженному атому углерода, связанному с атомом галогена, и из двух частиц (реагента и субстрата) образуется активированный комплекс, который затем распадается на продукт н галогенид-анион. Образование этого комплекса — самый медленный этап реакции и поэтому определяет полную скорость реакции. Таким образом, реакция является бимолекулярной и обозначается Sn2 (от англ. bimole ular nu leofili substitution — бимолекулярное нуклеофильное замещение). [c.139]

    Tot факт, что скорость гидролиза пероксикеталей растет с увеличением объема заместителей R, и Rj, позволяет полностью исключить возможность протекания реакции по механизму бимолекулярного нуклеофильного замещения, поскольку стерические затруднения — преграда нуклеофильной атаке. Подобная зависимость может быть объяснена снятием в ходе образования алкилпероксикарбонового иона В-напряжения, обусловленного стерическим взаимодействием заместителей у цен аль-нОго атома углерода пероксикеталя. [c.318]

    Специфическая сольватация (образование водородных связей, it-комплексов и других донорно-акцепторных комплексов) в ряде случаев оказывает более сильное влияние на скорость и направление реакции, чем неспецифическая (электростатическая) сольватация. В этом случае растворитель проявляет специфическое химическое сродство к одному или ко всем участникам реакции. Так, на скорость нуклеофильного замещения при насыщенном атоме зтлерода (механизм 8 ,1 и Sj,2) большое влияние оказывает сольватация отщепляемого аниона, которая в протонных растворителях HS (вода, спирты или карбоновые кислоты) осуществляется преимущественное участием водородных связей  [c.143]

    Б.щдер и сотр. [298], пытаясь внести ясность в этот вопрос, изучили влияние о-гидроксильной группы на скорость нуклеофильного замещения с использованием таких нуклеофилов, которые не могут выступать в роли катализаторов общего основного типа. Например, если реакция протекает по механизму (1-239, И) (нуклеофильное замещение + общин кислотный катализ), то следует ожидать, что реакция азид-иона также будет облегчаться соседней группой ОН. С другой стороны, реакция азид-иона, не имеющего кислых водородов, не должна облегчаться при механизме (1-239,1). Величины относительных скоростей нуклеофильной атаки сульфит-ионом, азид-ионом и имидазолом для пар эфиров 5-нитросалицилат — 3-нитробензоат, [c.177]

    Одна из возможностей установить различие между сольволизом Sj l- и Sj 2-типа в нуклеофильных растворителях состоит в добавлении к реакционной смеси веществ, которые являются более сильными нуклеофилами, чем растворитель (в относительно малой концентрации). Если скорость нуклеофильного замещения остается при этом практически неизменной , то обычно оказывается возможным утверждать, что реакция протекает по механизму Sj 1. Если же скорость замещения существенно возрастает, то механизм реакции относится к Sj 2-Tnny. Например, измеряемая скорость образования mpem-бутилового спирта из /прет-бутил- [c.322]

    Так как скорость нуклеофильного замещения не зависит от концентрации аце-тат-ионов, имеем механизм SnI. Ему способствует ионизирующая среда и сольватация образующихся ионов водой, которая ускоряет реакцию. Образующийся (на наиболее медленной стадии замещения) карбониевый ион может претерпевать 1,2-перегрунпировку с миграцией метильной группы [c.100]

    Заключая краткое рассмотрение механизмов реакций нуклеофильного замещения, можно отметить, что они значительно сложнее и разнообразнее электрофильных реакции. В общем виде невозможно сказать, какой из этапов этих реакций является узким звеном процесса, от которого зависит суммарная его скорость. Более того, экспериментальные данные показывают, что в различных нуклеофильных реакциях лимитирующая стадия может оказаться разной. К этому надо добавить все еще недостаточную изу-чснность ТаКйх реакции. [c.149]

    Высказано мнение [87, с. 393], будто правильнее считать, что механизм ароматического нуклеофильного замещения в большинстве случаев описывается схемой, занимающей промежуточное положение между чисто одностадийной и чисто двухстадийной. Так как структуры переходных состояний, определяющих скорость реакций, в случае одностадийного (рис. 2.5, кривые 1 ъ 2) а асинхронного одностадийного механизма (рис. 2.5, кривые 1а и 2а) одинаковы, с точки зрения интерпретации влияния структурных и других факторов на течение реакции вопрос о выборе между этими схемами не имеет принципиального значения. [c.78]

    Из ограниченного числа кинетических данных, которые можно найти в литературе, большинство посвящено изученкв реакции аминолиза Опубликованы еще некоторые данные о реакции ацетатаниона (ацетат калия + 18-краун-6) со сложными эфирами в некоторых непол фных и диполярных апротонных растворителях Имеющиеся данные показывают, что замена водных растворителей на ахфотонные приводит к существенному изменению как скоростей, так и механизмов реакций нуклеофильного замещения сложных эфиров. [c.581]

    С целью продолжения выяснения механизма влияния водно-органических растворителей на скорость нуклеофильного замещения при ненасыщенном атоме серы в настоящей работе исследована кинетика нейтрального сольволиза п-толуолсуль-фохлорида в смесях воды с метиловым и изопропиловым спиртами, проявляющими в отличие от ранее иссяедованных ацето- [c.273]

    Следовательно, механизмы реакций нуклеофильного замещения (57) (бимолекулярной, Sn2) и (58) (нономолекулярной, Sn ) можно разграничить экспериментально. Схема (58) для реакций 5л 1 может быть дополнительно проверена разнообразными no-собами. Простая кинетика первого порядка будет наблюдаться только в том случае, если реакция (58а) очень медленна. Однако если скорости реакций (—58а) и (586) сравнимы, суммарная скорость реакции будет падать во времени быстрее, чем предсказывается уравнением скорости первого порядка, поскольку, когда накопится значительная концентрация галогенид-и9на, алкилгалогенид будет снова образовываться по реакции (—58а). Падение скорости должно также наблюдаться при добавлении к реакционной смеси в начале реакции соответствующего иона галогена. Это падение скорости часто объясняют эффектом общего иона или законом действующих масс. Реакционная схема-(58) "предполагает также, что использование в реакции вместо одного нуклеофильного реагента смеси нуклеофилов должно привести к получению смеси продуктов, хотя скорость за- [c.55]

    Такой механизм называется диссоцштивным и обозначается 8 1, поскольку это нуклеофильное замещение, в котором наиболее медленная (скоростьопределяющая) стадия включает диссоциацию отдельной молекулы. Различие между этими механизмами должно проявляться в энтропии активации, если ее вычислить из уравнения (22-16) по экспериментальным данным о константах скорости. Механизм 8 2 должен характеризоваться больщой отрицательной энтропией активации, поскольку активированный комплекс образуется из двух молекул. В отличие от этого механизм 8 1 должен характеризоваться почти нулевой энтропией активации, потому что в этом случае активированный комплекс лищь незначительно отличается от молекулы реагента. [c.379]

    Скорость реакции, протекающей по механизму 5м1, имеет первый порядок относительно алкилгалогенида и нулевой — относительно нуклеофильного реагента. Существование мономоле-кулЯ )ного механизма нуклеофильного замещения 5 1 подтверждают следующие экспериментальные факты независимость скорости реакции от концентрации нуклеофильного реагента сравнительно высокие значения энергии активации, наблюдающиеся обычно при гетеролитическом разрыве свя )ей рацемизация при использонании в качестве субстрата оптически активного третичного алкилгалогенида, а котором атом галогена связан с асимметрическим атомом углерода, нуклеофильное замещение галогена по механизму I и и.аеальном случае сонро- [c.127]

    Среди прочих удалось синтезировать антранилы, содержащие разнообразные галогены в различных положениях молекул, структуры с набором различных гетероциклов в дополнение к банзизоксазольному (имидазольный, фурановый и др.). Получены данные по влиянию структуры субстрата и реагента на протекание реакции нуклеофильного замещения водорода, что позволило разработать количественный критерий, дающий возможность оценить границы применимости данного процесса для целей органического синтеза. Этот критерий имеет характер индекса реакционной способности, устанавливающий связь структуры субстрата и реагента со скоростью образования целевого продукта. Получены достоверные данные о механизме процесса взаимодействия карбанионов арилацетонитрилов с нитроаренами, что позволяет предсказывать его поведение в широком интервале условий. [c.127]

    Кинетическое исследование большого числа таких реакций свидетельствует о том, что они действительно протекают по би-молекулярйому механизму. В отличие от реакции бимолекулярного нуклеофильного замещения в алифатических соединениях, когда связь с покидающей группой разрывается одновременно с образованием связи с присоединяющейся группой, в рассматриваемом случае действительно образуется промежуточное соединение типа XXXI. Об этом свидетельствует тот факт, что хлориды и бромиды в большинстве случаев реагируют практически с одной и той же скоростью. Если бы стадией, лимитирующей скорость реакции, являлся разрыв связи углерод—галоген, то очевидно, что для хлорзамещенных реакция должна была бы протекать медленнее, чем для бромзамещенных, поскольку связь углерод—хлор разорвать труднее, чем аналогичную связь углерод—бром. [c.170]

    Ионизационный механизм нуклеофильного замещения включает стадию, определяющую скорость всей реакции, гстеролитической диссоциации субстрата на трехкоординационннн карбокатнон (карбоние-вый ион нли карбениевый ион) и уходящую группу. За диссоциацией [c.169]

    Для реакций нуклеофильного замещения, механизм которых связан с распределением зарядов в реагирующей молекуле в момент активации, скорость реакции повышается с ростом диэлектрической проницаемости растворителя, что способствует ионизации связи. Так, в реакциях сольволиза грет-бутилхлорида (СНз)зСС1, являющегося излюбленным объектом в исследованиях влияния среды на кинетику химических процессов, протекание процесса связано с промежуточным образованием ионный пары (СНз)зС" "С1 , вследствие чего в ряду растворителей этиловый спирт (ДП = 24,3) — метиловый спирт (ДП = 32,6) —формамид (ДП= 109,5) соотношение скорости реакций равно 1 9 430. Интересно, что в воде, которая из-за своей исключительно высокой сольватирующей способности обеспечивает ионизацию, скорость реакции в 335 000 раз выше, чем в этаноле. [c.78]


Смотреть страницы где упоминается термин Механизм и скорость нуклеофильного замещения: [c.95]    [c.195]    [c.334]    [c.194]    [c.113]    [c.491]    [c.544]    [c.78]    [c.246]    [c.100]    [c.124]    [c.420]    [c.7]    [c.170]    [c.187]   
Смотреть главы в:

Реакционная способность лигнина -> Механизм и скорость нуклеофильного замещения




ПОИСК





Смотрите так же термины и статьи:

Замещение механизм

Замещение нуклеофильное

Механизмы нуклеофильного

Нуклеофильное замещение механизм SnI

Нуклеофильное замещение скорость



© 2025 chem21.info Реклама на сайте