Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бутиловые с серной кислотой

    Тот факт, что продукты, получаемые при алкилировании бутенами-1 и -2 в присутствии серной кислоты и фтористого водорода, меньше различаются между собой, можно легко объяснить, если предположить, что при контактировании смеси изобутана и бутена-1 или -2 с жидким фтористым водородом или серной кислотой наиболее легко проходит реакция присоединения кислоты к олефиновому углеводороду с образованием втор-.бутилового эфира. В результате получается равновесная смесь  [c.326]


    Превращение изобутилена в т/ ет-бутиловый спирт с 65—70 %-ной кислотой описано Бутлеровым в 1867 г. [12], однако этот спирт имел малое промышленное значение. До открытия алкилирования при помощи концентрированной серной кислоты полимеризация изобутилена в диизобутилен с последующим гидрированием в изооктан имела незначительное промышленное значение. Изобутилен реагировал с холодной 70 %-ной серной кислотой, а затем раствор нагревался с целью получения полимеров, в основном диизобутилена. [c.355]

    Сущность процесса получения вторичного и трет-бутилового спиртов состоит в двухступенчатом поглощении бутиленов серной кислотой, что обусловлено различной реакционной способностью к-бутилена и изобутилена. Получение бутиловых спиртов гидратацией бутиленов может быть организовано следующим образом. [c.81]

    Кроме полимеризации некоторых простых олефинов, разбавленная серная кислота каталитической гидратацией образует спирты. В случае изобутилена баланс между этими двумя реакциями представляет практический интерес. Абсорбированное количество является функцией водного содерн ания кислоты для наибольшей части олефина, присутствующего в растворе как третичный бутиловый спирт [385]. Однако этот раствор, если его оставить на несколько дней или тотчас же при нагревании до 80—100° С дает свободную кислоту и димер-тримерную смесь 1386] более короткое время реакции при более высокой температуре способствует образованию более летучих полимеров. Летучесть конечных полимеров можно контролировать, регулируя перед нагреванием кислотность раствора [387]. В открытой системе не весь абсорбированный изобутилен нолимеризуется часть его переходит в отходящий газ. Количество перешедшего в газ изобутилена опять-таки зависит от кислотности. Низкая кислотность способствует высокому газообразованию более высокие кислотности дают больше полимера, но он содержит меньше димеров. Это соотношение приведено на рис. П-5, который иллюстрирует взаимодействие в системе изобутилен — 63,5 %-пая серная кислота (кислота такой концентрации, полностью загруженная в изобутилен при комнатной температуре, титруется до получения 30 г НаЗО на 100 мл раствора). [c.113]

    В промышленности раствор серной кислоты применяется в так называемых холодных или горячих кислотных процессах для полимеризации изобутилена. Оба процесса основаны на описанных выше принципах. Холодный кислотный процесс включает в себя абсорбцию изобутилепа при нормальной температуре из нефтезаводских газовых фракций при помощи 60—65% серной кислоты, которая не абсорбирует нормальные бутены. Раствор, в большой степени содержит изобутилен в виде трет-бутиловых спиртов, нагреваемых примерно до 100° С. Получается смесь димера и тримера в отношении 3 1 [392, 393]. Вышеприведенный двухступенчатый процесс дает жидкие углеводороды в количествах, согласующихся только с имеющимся налицо изобутиленом. [c.115]


    Для выделения сульфокислот смесь предварительно очищают серной кислотой, и образовавшиеся гудроны удаляют. Последующее сульфирование масел олеумом (20% ЗОд) позволило получить некоторые кислоты с хорошими моющими свойствами. При сульфировании образуются растворимые в масле (так называемые коричневые ) и растворимые в воде ( зеленые ) кислоты. Первые —это в основном моносульфокислоты ароматических углеводородов н нафтенов с длинными боковыми парафиновыми цепями. Они обладают капиллярноактивными свойствами (эмульгаторы, пенообразователи) их выделяют из сульфированного масла экстракцией щелочами или спиртами (этиловым, изопропиловым, бутиловым). [c.343]

    ДЕГИДРАТАЦИЯ ТЕХНИЧЕСКОГО ТРЕТИЧНОГО БУТИЛОВОГО СПИРТА В ПРИСУТСТВИИ 29%-НОИ СЕРНОЙ КИСЛОТЫ [c.348]

    АЛКИЛИРОВАНИЕ ИЗОПЕНТАНА ТРЕТИЧНЫМ БУТИЛОВЫМ СПИРТОМ В ПРИСУТСТВИИ СЕРНОЙ КИСЛОТЫ [c.475]

    Этернфикация синтетических жирных кислот метиловым спиртом осуще ствляется в колпачковой тарельчатой колонне. Пары метилового спирта, перегретые до 120—130 °С, поступают в нижнюю часть колонны, а сверху подаются нагретые до 115—120 С жирные кислоты вместе с 50%-ной серной кислотой в количестве 1—2% (масс.). Поскольку в данном случае не образуется азеотропная смесь, отгонка которой позволила бы смещать равновесие реакции, применяется большой (пятикратный) избыток метилового спирта. Глубина этерификации достигает 97—98%. Полученные метиловые эфиры имеют остаточное кислотное число 5—7 мг КОН/г, т. е. несколько больше, чем при этерификации бутиловым спиртом. [c.32]

    Преимуществами использования метилового спирта являются его доступность, значительно меньшая стоимость и более низкий расход. Кроме того, скорость гидрогенизации метиловых эфиров несколько больше, чем бутиловых. Недостатки метилового спирта летучесть, высокая токсичность и необходимость применения коррозионностойких материалов, поскольку этернфикация проводится в присутствии серной кислоты. В настоящее время разрабатывается термическая этернфикация кислот метиловым спиртом в более жестких условиях (250—320 С и 1—30 МПа). [c.32]

    При промышленной этерификации высокомолекулярных алифатических или нафтеновых спиртов серной кислотой [12] целесообразно вводить инертный растворитель, например четыреххлористый углерод или насыщенны углеводород. В этом случае реакционная смесь состоит из двух слоев, в одном из которых содержится избыток серной кислоты, а в другом—сложный эфир и растворитель. Прибавление спирта, нанример н-бутилового, к реакционной смеси, полученной прп этерификации цетилового или олеилового спиртов, способствует отделению кислого эфира от избытка серной кислоты. При последующем прибавлении воды образуются два слоя, причем практически вся серная кислота уходит в водный слой [13]. С целью удаления кислоты рекомендуется [14] к реакционной смеси прибавлять глицерин или его [c.8]

    Однако этерификация спиртов, высших чем м-бутиловый, дымящей серной кислотой, содержащей заметные количества серного [c.9]

    Регенерировать изобутилен из сернокислотного раствора можно различными способами. Один из них состоит в том, что серную кислоту разбавляют водой до такой концентрации, при которой образовавшийся в результате гидролиза трете-бутиловый спирт пе может дегидрироваться. Следовательно, перегнав с водяным паром продукты гидролиза, можно получить трет-бутиловый спирт, который затем легко дегидратируется в чистый изобутилен под действием катализаторов. Этот метод относительно дорог, требует особых материалов для изготовления аппаратуры, устойчивой к корродирующему действию разбавленной серной кислоты, но зато дает возможность получать весьма чистый изобутилен. [c.187]

    В экстракте изобутилен, серная кислота, трет-бутилсульфат и трет бутиловый спирт находятся в равновесии друг с другом. [c.190]

    После освобождения фракции от изобутилена и бутадиена нужно еще отделить к-бутены от бутанов и друг от друга. Эта задача встает перед технологами редко, потому что в большинстве случаев к-бутены в смеси с бутанами непосредственно подвергают обработке серной кислотой, чтобы получить втор-бутиловый сиирт. [c.193]

    Изобутен из Б — В фракции выделяют обработкой ее 65%-ной серной кислотой, которая не реагирует с и-бутеном, а с изобутеном при 0° дает трет-бутилсулъфат. Из оставшейся части углеводородов С4 при помощи аммиачно-щелочного раствора хлористой меди выделяется бутадиен, содержащийся в газах в небольшом количестве. В остатке получают газ, из которого можно получить етор-бутиловый спирт. [c.203]

    Непрямая гидратация олефпнов может осуществляться также периодическим способом. Так, например, по способу Рейнско-Прусского акционерного общества в стационарных условиях получают изопропиловый и втор-бутиловый спирты. Для этого смесь фракций Сз и С4 с общим содержанием олефинов около 30% при температуре 40 " смешивают в автоклаве с 75%-ной серной кислотой. Молярное отношение кислоты к Олефинам составляет 3 2. Продолжительность реакции 1 час. За это время иревращение пронена протекает практически на 100%, бутена па 29%. Около 30% бутенов дают нри этом полимерные продукты. [c.204]


    По окончании реакции верхний слой, содержапщй пропан, бутан и продукты полимеризации, отделяется. Сернокислотный слой, содержащий алкилсульфаты, настолько разбавляется водой, чтобы в результате образовалась 30%-ная серная кислота. Гпдролпз и выделение спиртов производятся непрерывным способом. Ректификацией на ряде колонн из конденсата выделяют изопропиловый и втор-бутиловый спирты и соответствующие эфиры. [c.204]

    В других опытах [39] изобутилен пропускался в 67 %-ную серную кислоту при температуре ниже 20°. При этой температуре изобутилен поглощался с образованием т/гет-бутилового спирта, но образования полимера не наблюдалось. Полученная смесь затем нагревалась до 70—100° и реакция полимеризации происходила как в неразбавленной смеси, так и в разбавленном водой растворе серной кислоты с концентрацией последней, равной соответственно 66 и 58%. Во время нагревания часть изобутилена регенерировалась, причем количество регенерированного изобутилена было больше при большем насыщении им серной кислоты. При применении перемешивания или при добавлении к раствору твердого пористого материала количество регенерированного изобутилена увеличивалось. При разбавлении серной кислоты полимеризация тормозилась, но увеличивалось содержание диизобутилена в продукте полимеризации, а также повышалась степень регенерации изобутилена. Содержание диизобутилена увеличивалось также с повышением температуры реакции. Если раствор полимеризовался при комнатной температуре в течение длительного времени, то образовывались небольшие количества диизобутилена и большие количества триизобутилена. При исследовании продукта полимеризации в ходе этой реакции было замечено, что количество образовавшегося диизобутилена было значительно большим в начале реакции, т. е. когда раствор содержал больше 7ирет-бутилового спирта. [c.193]

    Как уже наблюдалось, при алкилировании изобутана олефинами нормального строения и с разветвленной цепью в присутствии серной кислоты реакция переноса водорода идет несколько меньше с ето/)-бутиловым спиртом, чем с грет-бутиловым спиртом [27]. При реакции изопентана с втор-буталовым спиртом при 24° образовалось 44 % нонанов, 12 % изобутана, 18% деканов, 31% гексанов, 7% гептанов и 12% октанов м-бутан в продуктах реакции обнаружен не был по-видимому, изомеризация сопровождала перенос водорода. [c.336]

    Эфиры легче всего образуются с олефинами, содержащими третичный углеродный атом (гидролиз этих эфиров ведет к образованию третичных спиртов). Так, например, изобутилен растворяется в 63%-ной серной кислоте при комнатной температуре и атмосферном давлении. При этом образуется моноизобутилсерная кислота (но не диизобутилсерная), которая легко гидролизуется в третичный бутиловый снирт. Спирт может быть выделен путем отгонки с водяным паром пли высаливания сульфатом аммония. Образование сложных эфиров серной кислоты протекает наиболее интенсивно с олефинами Сб—Се [23]. [c.225]

    Вторичный бутиловый спирт. Вторичный бутиловый спирт образуется при поглощенпп бутена-1 или бутена-2 78—80%-ной серной кислотой, после чего следуют разбавление и гидролиз. Более высокие концентрации кислоты вызывают значительную полимеризацию. Вторичный бутиловый спирг конвертируется в метил-этилкетон путем каталитического окисления или дегидрирования. [c.578]

    Блестящее решение проблемы сокращения расходов серной кислоты и рационального использования ее в отработанном виде заключается в сочетании производства синтетического этилового спирта с каким-либо другим химическим производством. В частности, при организации в промышленных масштабах синтеза этилового спирта из этилена коксового газа совершенно не нужно стремиться к получению высококонцептрировапной серной кислоты после гидролиза, поскольку в комплекс химической переработки продуктов коксования каменного угля входит также производство синтетического аммиака, и поэтому гидролиз этилсерной кислоты можно проводить смесью паров воды и аммиака, в результате чего образуется водный раствор сульфата аммония. В производстве этилового спирта из этилена газов крекинга и пиролиза нефти параллельно можно получать изопропиловый, бутиловый и амиловый спирты. В этом случае 80—85 %-ную серную кислоту после гидролиза (в производстве этилового спирта) без предварительного концентрирования можно использовать в производстве изопропилового и дру1 их высших спиртов. [c.24]

    Бутиловый СП 1РТ. Вода. ........ Диэтиловый эфир. 19 2 16 Серная кислота, 95%......... Серная кислота, 60% 22 26 15 Уксусная кислора. Четыреххлористы1( углерод. ..... Этилацетат. .... 28 27 21 [c.570]

    Процесс этерификации заканчивается примерно через 24 ч. Поскольку реакция обратима, несмотря на значительный мольный избыток бутилового спирта и непрерывный отвод воды из реакционной смеси, не удается получить эфиры без примеси кислот (остаточное кислотное число 2—3 мг КОН/г). Поэтому сырые эфиры нейтрализуют 25%-ным раствором щелочи прн 50— ) ХЗ для удаления кислот, не вступивших в реакцию. Из нейтрализатора отбирают три слоя эфирный, мыльво-щелочной и промежуточный (эмульсионный). Эмульсионный слой собирают в емкость и вновь направляют в нейтрализатор. Щелочной раствор натриевых солей жирных кислот (мыл) отделяют от эфиров отстаивание и обрабатывают серной кислотой. При этом регенерируются свободные [c.31]

    Очищенная бутан-бутиленовая фракция с содержанием изобутилена не более 2% (масс.) контактирует с 80—85%-ной серной кислотой по схеме двухступенчатого противотока в реакторах 1 и 2 при температуре 30—45 °С (рис. 6.23). Насыщенная бутилсерная кислота из отстойника 3 попадает в гидролизер 5, а затем в отстойник 6, в котором отделяются полимеры. Нижний водный слой подается в спиртоотгонную колонну 7. Из куба колонны отбирается отработанная серная кислота для концентрирования, а из верха верхней части — пары воды, вторичного бутилового спирта и полимеров и туман серной кислоты. После отмывки серной кислоты водой и щелочью (колонны 8, 9) происходит конденсация продуктов гидролиза — вторичного бутилового спирта-сырца и примесей. Вторичный бутиловый спирт подается в двухколонный агрегат 11, 13. С верха колонны II отводится азеотроп 2БС — вода [68—73% (масс.) спирта], а с низа—фузельная [c.203]

    Поскольку склонность олефинов к полимеризации возрастает с увеличением молекулярной массы, технические фракции, используемые для синтеза спиртов, должны быть тщательно очищены от примесей высших олефинов. Последние вовлекают в полимеризацию и низший олефин, который самостоятельно в данных условиях обычно не полимеризуется. Особенно важна очистка этан-этиленовой фракции, так как сульфатирование этилена протекает в наиболее жестких условиях. Загрязнение серной кислоты полимерными продуктами препятствует ее дальнейшему использованию. В связи с этим содержание пропилена в этан-этиленовой фракции не должно превышать 0,1%, а содержание бутадиена в бутан-бутеновой фракции при получении вотор-бутилового спирта — 0,3—0,5%. [c.222]

    Конденсация вторичного и третичного бутиловых спиртои серной кислотой дает смесь диизобутиленов, содержащую 25% [c.60]

    Кроме этилового спирта таким же путем из пропилена с помощью серной кислоты получают пропропиловый спирт, из бутиленов — бутиловые спирты. [c.328]

    При действии избытка 100%-ной серной кислоты при комнатной температуре нормальные первичные спирты превращаются в алкипсерные кислоты, не образуя диалкил сульфатов [8], но после длительного стояния от кислоты отслаивается сложная смесь углеводородов, относящихся главным образом к парафиновому ряду. При этерификации первичных изоспиртов с разветвленными цепями, включая изобутиловый,. изоамиловый и оптически активный амиловый спирты, кроме сложных эфиров, получаются соединения, обесцвечивающие бромную воду. Наибольшее количество этих соединений отмечено при этерификации изо-бутилового спирта. При действии серной кислоты вторичные и третичные спирты сначала превращаются главным образом в сложные эфиры, которые при стоянии в присутствии избытка серной кислоты образуют углеводороды. Маслянистый слой, медленно отслаивающийся от серной кислоты, содержит большой процент насыщенных углеводородов [9]. Водород, необходимый для их образования, освобождается путем диспропор-ционирования типа сопряженной полимеризации [10], в результате которого получаются циклоолефины, остающиеся в кислом растворе. Из цетилового спирта получается вещество с т. пл. 50°, обладающее свойствами парафинового воска. Цикло-гексанол превращается в высококинящие углеводороды [11]. Кислый сульфат, приготовленный из трифенилкарбинола [8], представляет собой сильно диссоциированную кислоту, судя по его низкому молекулярному весу в растворе сернох кислоты. Он разлагается водой, регенерируя трифенилкарбинол. [c.8]

    Дэвис и сотрудники [56а] обстоятельно исследовали абсорбцию газообразных олефинов серной кислотой различной концентрации. Они нашли, что скорость абсорбции пропорциональна давлению олефина, если реакция проводится при постоянном объеме, и не зависит от перемешивания серной кислоты, не считая влияния увеличения поверхности кислоты при перемешивании, Повидимому, в поверхностной пленке реакция идет быстрее, чем в основной массе жидкости. Скорость абсорбции зависит в значительной степени от природы олефина. Например, 80%-ная и более концентрированная серная кислота растворяет пропилен в 300 раз скорее, чем этилен. Пропилен и бутилен-1 растворяются приблизительно с равной скоростью, которая в 1,7—2,6 раза меньше скорости растворения бутилена-2. Триме-тилэтилен абсорбируется в несколько раз быстрее, чем изобутилен, который в свою очередь реагирует в 10—80 раз скорее, чем бутилен-2. Изопропилэтилен реагирует с серной кислотой приблизительно с той же скоростью, что и пропилен. Отмечено, что при абсорбции 60%-ной серной кислотой изобутилен непосредственно превращается в третичный бутиловый сиирт, в то время как пропилен дает только изопропилсерную кислоту. При действии 80%-ной серной дислоты бутилен-2 превращается главным образом в спирт [566]. В оригинальной литературе [56 подробно рассмотрена возможность использования различия [c.15]

    W-Бутилсерная кислота. н-Бутилсульфат бария приготовлен из к-бутилового спирта и серной кислоты путем нейтрализации реакционной смеси углекислым барием [220]. Аммониевая соль может быть получена нагреванием к-бутилового спирта с аммониевой солью аминодисульфокислоты NH(SO3NH4)2 в пиридиновом растворе [221]. [c.43]

    Бутилены серной кпслотой абсорбируются легче, чем пропилен и этилен, и поэтому можно приготовить смесь бутилсерных кислот [242], практически свободную от низших гомологов, применяя серную кислоту соответствующей концентрации. Изобу-тилен можно абсорбировать 65%-ной кислотой [243], а прочие бутилены—85° о-ной кислотой при 30° или с концентрацией 88% и выше прп температурах 3° и ниже [244]. Запатентована [245] абсорбция бутиленов в жидкой фазе иод давлением при температуре 30—35°. При растворении в 78°о-ной кислоте жидкий бути-лен-2 образует ничтожное количество полимеров, тогда как абсорбция более концентрированной кислотой соировождается значительной полимеризацией [233]. Бутилсерная кислота, полученная из бутилена-1 пли бутилена-2, в результате омыления дает вторичный бутиловый спирт [246]. [c.46]

    В патентной литературе имеются указания о получении дибу-тилсульфата путем присоединения серной кислоты к олефинам [469] предпочтительно в жидкой фазе под давлением [470]. Несомненно, полученное таким путем соединение представляет собой вторичный дибутилсульфат. Третичный бутиловый эфир был бы неустойчив, и, кроме того, присоединение серной кислоты к олефинам до сего времени удавалось проводить только в согласии с правилом Марковникова. [c.83]

    Гидратацию олефиновых углеводородов, вероятно, можно считать наиболее широкораспространенным процессом гидратации. Он используется для получения этилового спирта из этилена, изопропилового - из пропилена и бутилового - из бутиленов. Например, изопропанол получают поглошением жидкого или газообразного пропилена 75%-ной серной кислотой при комнатной температуре. Продукт реакции разбавляют водой и гидролизуют водяным паром, с которым и удаляется изопропиловый спирт /4/. Читатель вправе подумать, что серная кислота - реагент, который образует в качестве промежуточного соединения изопропилсерную кислоту, гидролизующуюся водой. Это действительно так и есть, и в других каталитических реакциях образуются аналогичные промежуточные соединения. [c.340]

    Существует практически только одна возможность выделить изобутилен из бутан-бутиленовой фракции. Для этого изобутилен экстрагируют из его смесей с / -бутепами, к-бутаном и изобутанои 65%-ной серной кислотой, которая в условиях, когда к-бутены не реагируют, легко поглощает изобутилен с образованием трет-бутилсерной кислоты и соответственно трет-бутилового спирта. [c.187]

    Количество трет-бутилового спирта, содержащегося в рафинате, вследствие частичной растворимости в углеводородах будет тем больше, чем выше температура и степень насыщения серной кислоты. Если поддерживать преднисаннып режим процесса, то в раффииате будет присутствовать всего 0,1% объемн. трет-бутилового спирта. В раффинат переходят также продукты полимеризации, количество которых при правильном проведении процесса не должно превышать 1% объема рафината. [c.190]


Смотреть страницы где упоминается термин Бутиловые с серной кислотой: [c.203]    [c.235]    [c.408]    [c.415]    [c.351]    [c.21]    [c.473]    [c.40]    [c.17]    [c.192]    [c.297]    [c.466]    [c.466]   
Основы органической химии (1968) -- [ c.357 ]

Основы органической химии 1 Издание 2 (1978) -- [ c.431 ]

Основы органической химии Часть 1 (1968) -- [ c.357 ]




ПОИСК







© 2025 chem21.info Реклама на сайте