Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Марганец и его соединения реакции

    Металлический марганец азотной кислотой окисляется минимально, а рений максимально. Какие соединения при этом получаются Составьте уравнения соответствующих реакций. [c.411]

    Малое число электронов во внешнем слое (два) не создает условий для пополнения его до октета. Поэтому элементы марганец, технеций и рений не в состоянии образовывать отрицательно валентные ноны и не дают газообразных водородистых соединений. В химических реакциях проявляют только положительную валентность. [c.529]


    В побочной подгруппе VII группы периодической системы Д. И. Менделеева находятся элементы марганец Мп, технеций Тс и рений Re. Они относятся к ( -элементам. Их атомы на внешнем электронном уровне содержат по 2 электрона и на предпоследнем — 13 (2.6.5). Участвуя в химических реакциях, эти элементы образуют соединения, в которых проявляют степень окисления от +1 до +7. Технеций получен искусственно в 1937 г. [c.201]

    Характеристические соединения. Марганец в определенном смысле может служить модельным элементом для иллюстрации зависимости кислотно-основных свойств оксидов и гидроксидов от степени окисления, в то же время на примере этого элемента в рядах его производных, отвечающих различным степеням окисления, удобно проследить изменение окислительно-восстановительных свойств и влияние реакции среды на стабильность различных степеней окис- [c.375]

    Окислительно-восстановительные реакции в почве влияют на подвижность и, следовательно, доступность растениям таких элементов питания, как железо, марганец, азот, сера и др. Например, при разложении органических соединений в условиях высоких значений окислительно-восстановительного потенциала сера переходит преимущественно в сульфаты, а при низких значениях, т, е, в анаэробных условиях, — образуются сульфиды. [c.260]

    Теория химической связи должна показать, как валентность атомов определяется другими их свойствами, и объяснить, почему, например, благородные газы не образуют химических связей, а марганец имеет переменную валентность, почему и в каких случаях образуются комплексные соединения. Должен быть объяснен огромный материал по химической активности различных соединений, по теплотам реакций и т. п. [c.320]

    Введение марганца в состав сплава позволяет улучшить его качества марганец вытесняет металлы из их сульфидов и сам образует сульфид MnS с т. пл. 1610°С, не растворяющийся практически в металлах. Переводя таким образом серу в тугоплавкое соединение, уходящее в шлак, снимают ее вредное влияние на кристаллизацию и избегают образования горячих трещин. Для этого нужен некоторый избыток марганца, так как реакция обратима  [c.387]

    С раствором сульфата висмута реакция не удается. Открытию висмута мешают мышьяк, сурьма, олово, трехвалентное железо и марганец. Небольшие количества кадмия не метают. При открытии висмута в присутствии меди получившийся темнобурый раствор (от соединения меди с диметилглиоксимом) нужно профильтровать и осадок промыть водой. [c.178]


    III). Гидроксиды железа (II) и (III). Их свойства. Комплексные соединения железа. Химические реакции, лежащие в основе получения чугуна и стали. Роль железа и его сплавов в технике. Хром, электронная формула, степени окисления. Получение, физические и химические свойства хрома. Оксиды хрома (II) и (III). Гидроксиды хрома (II) и (III). Их свойства. Оксид хрома (VI). Хромовая и дихромовая кислоты. Дихромат калия как окислитель. Марганец, злектронная формула, степени окисления. Получение, физические и химические свойства марганца. Кислотно-основные и окислительно-восстановительные свойства соединений марганца. Оксиды марганца (II) и [c.9]

    Принцип метода. Определение основано на реакции образования окрашенного комплексного соединения хрома (П1) с комплексоном П1. Медь удаляют из раствора с помощью электролиза. Определению не мешают титан (IV), а также железо (III) (до 1 мг), никель (II), кобальт (II), марганец (II), алюминий (до 10 мг). [c.65]

    Реакции окисления на сложных катализаторах, содержащих соединения калия, см. также в разделах хД едь , Марганец , Никель соответствующих глав. [c.68]

    Наиболее часто применяются комп-лексоны, преимущественно комплексен III. Комплексон III образует со многими ионами металлов малодиссоциирующие комплексные соединения. Титруют по предельному току определяемого иона. Определяются висмут, железо, никель, свинец,-цинк, медь, марганец, кобальт, ртуть, кадмий, индий. Устойчивость комплексов этих металлов с комплексоном III различна, поэтому титруют при определенной кислотности среды. Амперометрическое титрование возможно, для определения полярографически неактивных веществ, когда ни титруемый ион, ни реагент не дают диффузионный ток. Для этого в анализируемый раствор вводят специальный ион-индикатор, способный к электродной реакции. Индикатор реагирует с реагентом после того, как прореагируют определяемые ионы. Титрование в этом случае проводят при потенциале, соответствующем предельному току индикатора. Например, при амперометрическом титровании алюминия раствором фторида в качестве индикатора применяют раствор соли железа [c.165]

    В побочную подгруппу vn группы периодической системы входят марганец и рений. Интересно, что, несмотря на сходство строения электронной оболочки атомов рассматриваемых элементов и близость их атомных радиусов, каталитические свойства марганца и его соединений резко отличаются от свойств рениевых катализаторов. Так, если для марганцевых контактов характерными являются процессы с участием молекулярного кислорода, то рениевые катализаторы оказались достаточно активными в реакциях гидрирования-дегидрирования. [c.93]

    Общая характеристика элементов подгруппы марганца. Электронная конфигурация их п — l)d ns Высшее окислительное число г 7. Для марганца и рения характерны соединения, где степень их окисления +2, -f3, +4, - 6 и +7 (-[-1 и +5 мало характерны). Технеций больше похож на рений, чем на марганец. Соединения рения (VII) наиболее устойчивы (отличие от марганца). Технеций получен из молибдена в небольшом количестве в процессе ядерных реакций (1937г.) и мало изучен. Рений получен в 1924 г. и изучен довольно хорошо. Он похож на вольфрам и платиновые металлы, соседние с ним. Пассивен в обычных условиях. Устойчив в своих высших соединениях. [c.340]

    Реакции окисления перекисью водорода и кислородом. Марганец катализирует реакцию разложения Н2О2 [768]. Она весьма чувствительна в щелочной среде к присутствию очень малых количеств марганца и позволяет обнаружить присутствие его в растворе в количестве до 20 мкг. Чувствительность реакции резко увеличивается (до 0,03 жкз/л-л) при введении в раствор триэтилен-тетрамина, который образует каталитически активное комплексное соединение с марганцем. Реакцию проводят в растворе при pH 10. Применяют 0,15 М HjOg и 0,048 М раствор триэтилентетр-амина. Скорость реакции измеряют газоволюмометрическим либо химико-аналитическим методом. [c.82]

    Для спектрофотометрического определения никеля применяются малоизбирательные пиридин [222] и 2,2-диэтиленамин (12731 ЩдМСНг—СНг гМН. Последний образует с ионами никеля комплекс фиолетового цвета с максимумом светопоглощения при 540 и 880 ммк для окрашенных растворов соблюдается закон Бера в интервале концентраций 0,01—0,06 г-ион1л. Медь, марганец, хром мешают определению, так как образуют окрашенные в голубой, пурпурный и желтый цвета соединения. Реакцию проводят при pH 6—14. Железо (III) и олово (IV) гидролизуются при таких значениях pH, и их необходимо отделить. [c.128]

    Уже давно в масла, на основе которых готовят к >аски и лаки, а также в алкидные смолы, чтобы ускорить их высыхание и твердение, добавляют катализаторы, известные под названием сиккативы, или сушки. Интересно сравнить действие сиккативов и катализаторов, описанных в предыдущем разделе, В обоих случаях используются одни и те же элементы с переменной валентностью и в обоих случаях они образуют с органическими молекулами растворимые соединения. Кобальт и марганец при комнатной температуре и церий при температуре затвердевания инициируют высыхание за счет образования промежуточьых продуктов, обладающих окислительными свойствами. Другие элементы типа свинца, цинка, кальция и циркония дополняют действие кобальта и марганца, облегчая процесс полимеризации. В отсутствие кобальта или марганца, иницируюших процесс высыхания, полная реакция полимеризации протекала бы значительно медленнее /40/. [c.291]


    Если в состав молекул некоторого вещества входят химические элементы в своих высших валентных состояниях, то такое соединение в химических реакциях может выступать лишь в роли окислителя. В частности, в состав молекул хлорной НСЮ4, марганцевой НМПО4, серной Нз504, азотной НЫОз кислот хлор, марганец, сера и азот входят в своих высших валентных состояниях. Поэтому в данном случае эти химические элементы уже не могут отдавать электроны и ни одна из названных кислот не может быть восстановителем ни при каких условиях. Эти кислоты — типичнейшие окислители, причем их окислительная способность существенно возрастает с повышением концентрации в растворе. [c.53]

    Марганец относится к активным металлам. На воздухе он окисляется и покрывается видимой пленкой оксидов, вначале красноватой, затем почти черной. С водой на холоду марганец взаимодействует очень медленно при повышении температуры скорость реакции окисления марганца водой увеличивается. В разбавленных кислотах марганец растворяется с образованием солей марганца (П). В растворах щелочей марганец устойчив. В соединениях марганец имеет окислительные числа +2, +3, +4, +6 и +7. Наиболее устойчивы соединения Мп (И), Мп (IV) и Мп (VII). Наиболее часто возможные степени окисления марганца выражены в его оксидах МпО — одноокись, Мп Оз — полутораокись, МпОа—двуокись, МпОз—трехокись и Мп О, — полусемиокись. С повышением окислительного числа характер оксидов и гидроксидов изменяется от основного до кислотного  [c.248]

    Образование интерметаллидов во многих случаях сопровождается значительным тепловым эффектом, получающиеся продукты реакции имеют индивидуальные признаки (определенные температуры плавления, специфические магнитные свойства и т. п.), т. е. представляют собой настоящие химические соединения. В частности, например, интерметаллическое соединение марганца с оловом Мп45п является ферромагнетиком, хотя марганец и олово сами по себе не обладают ферромагнетизмом. [c.295]

    Так как марганец в своих соединениях имеет разную степень окисления (от +2 до +7), то соединения марганца должны обладать оки> лнтельно-восстановительными свойствами. Те соединения или те ионы, в которых марганец имеет низшую степень окисления, очевидно, будут восстановителями, т. е. сами будут окисляться. Те же соединения или ионы, в которых марганец имеет высшую степень окисления, будут окислителями, т. е. сами будут восстанавливаться до соединений или ионов с низшей степенью окисления. Наконец, соединения илн ионы с промежуточной степенью окисления (МпОг, НоМпОд, Н2МПО4) будут либо восстановителями, либо окислителями — все зависит от условий протекания реакции и веществ, с которыми они взаимодействуют. Например  [c.205]

    Успешная попытка систематизировать многочисленные аналитические реакции с участием соединений металлов по определенной логической схеме была осуществлена немецким химиком Генрихом Розе (1795—1864) и описана в 1829 г. в его книге Руководство по аналитической химии . Разработанная им общая схема систематического качественного анализа металлов (катионов металлов — на современном языке) основана на определенной последовательности действия химических реагентов (хлороводородная кислота, сероводород, азотная кислота, раствор аммиака и др.) на анализируемый раствор и про укты реакций компонентов этого раствора с прибавляемыми реагентами. При этом исходный анализируемый раствор в схеме Г. Розе содержал соединения многих известных к тому времени металлов серебро, рт>ть, свинец золото, сурьма, олово, мышьяк кадмий, висмут медь, железо, никель, кобальт, цинк, марганец, алюминий барий, стронций, кальций, магний. Здесь химические элементы перечислены в последовательности их разделения или открытия по схеме Г. Розе. [c.35]

    Пример, КМп04, МпОг, MnS04. В первом соединении марганец имеет максимальную степень окисления и повысить ее не может. Он может только принимать электроны, а значит КМПО4 может быть только окислителем. В третьем соединении у марганца низкая степень окисления — он обычно бывает восстановителем. Во втором соединении марганец с промежуточной степенью окисления, а потому может быть и восстановителем и окислителем, все зависит от условий протекания реакции и веществ, с которыми будет взаимодействовать МпОг- [c.148]

    Протекание реакций диспропорционирования сопровождается одновременным увеличением и уменьшением степени окисления атомов одного и того же элемента. При этом исходное вещество образует соединения, одно из которых содержит атомы с более высокой, а другое с более низкой степенями окисления. Очевидно, эти реакции возможны для веществ, содержащих атомы с промежуточной степенью окисления. Примером может служить превращение манганата калия К2МПО4, в котором марганец имеет промежуточную степень окисления +6 (в примере между +7 и +4). Раствор этой соли имеет красивый темно-зеленый цвет (цвет иона МПО4 ), однако цвет раствора превращается в бурый. Это выпадает осадок МпОз и образуется ион ШОГ. Протекает реакция [c.150]

    Протекание реакций диспропорционирования сопровождается одновременным увеличением и уменьшением степени окисления атомов одного и того же элемента. При этом исходное вещество образует соединения, одно из которых содержит атомы с более высокой, а другое с более низкой степенями окисления. Очевидно, эти реакции возможны для веществ, содержащих атомы с промежуточной степенью окисления. Примером может служить превращение манганата калия К2МПО4, в котчзром марганец имеет прюмежуточ-ную степень окисления +6 (в примере между +7 и +4). Раствор этой соли [c.179]

    Перекись водорода при растворении осадка 2, содержащего соединение марганца (IV), способствует его быстрому растворению в азотной кислоте. Разложение избытка Н2О2 необходимо для успешного проведения поверочной реакции на марганец. Ионы марганца. обнаруживают окислением Мп+" -нонов в МпОГ-ионы при помощи РЬОа (см. 28, стр. 261). [c.275]

    Пример — КМПО4, МпОг, MnSO . В первом соединении марганец имеет максимальную степень окисления и не йожет ее больше повышать, он может только принимать электроны, т. е. являться окислителем. В третьем соединении у марганца низкая степень окисления — он может быть только восстановителем. Во втором соединении марганец с промежуточной степенью окисления может быть и восстановителем и окислителем, все зависит от условий протекания реакции и веществ, с которыми он будет взаимодействовать. Таким образом, по степени окисления атома в соединении можно определить, является ли это соединение окислителем или восстановителем. [c.90]

    В системах, где возникают такие радикалы (спирты, амины, некоторые непредельные соединения), ионы металлов переменной валентности проявляют себя как катализаторы обрыва цепей (см. гл. 13). Реакция ионов с пероксильными радикалами проявляет себя и в составе продуктов окисления, особенно на ранних стадиях окисления. Так, например, при автоокислении циклогексана единственным первичным продуктом окисления является гидропероксид Другие продукты, в частности спирт и кетон, появляются позднее как продукты распада гидропероксида. В присутствии стеаратов таких металлов, как кобальт, железо, марганец все три продукта (ROOH, ROH и кетон) появляются сразу с началом окисления и в начальный период (пока распад ROOH незначителен) образуются параллельно с постоянной скоростью. Соотношение скоростей их образования определяется катализатором. Причина такого поведения, очевидно, связана с быстрой реакцией взаимодействия R02 с катализатором. Таким образом, реакция пероксильньос радика- [c.518]

    НОМ 3, И Нг К Н2О, превышающем 1,2, окалины на стали (не образуется. Поскольку от сжигания топлива до СО получается мало тепла, а несгоревший водород и вовсе не дает тепла, то невозможно при вышеуказанных соотношениях достичь температуры 1200°, если не принять каких-либо специальных мер для повышения температуры печи. Такими мерами могут быть сжигание топлива в кислороде или дожигание его в регенераторах или рекуператорах, которые служат для подогрева воздуха, расходуемого на горение или дожигание газов в особой камере, из которой тепло передается в нагревательное пространство через тонкую муфельную стенку. Номограмма на рис. 151 применима только для железа и стали. Разные металлы имеют различное химическое сродство с кислородом. Чтобы для других металлов получить номограмму, аналогичную изображенной на рис. 151, надо ее продлить в направлении обеих стрелок. Такое распространение номограммы на другие металлы было выполнено тем же Нейманном (рис. 152). Номограмма дана в логарифмических координатах со следующими делениями 1, 2, 5, 10, 20, 50, 100 и т. д. Более мелкие деления показаны на вспомогательных шкалах. iMeждy прочим, из рис. 152 видно, что никель в так называемой окислительной атмосфере печи не окисляется. Количество водорода может составлять нё более 1% от количества водяного пара, а окиси углерода — всего 1 % от количества углекислого газа, никель окисляться не будет. Кривая равновесия марганца располагается вблизи противоположного конца номограммы. При температурах, поддерживаемых в печи, марганец будет окисляться даже в том случае, если атмосфера печи будет состоять из чистого водорода, окиси углерода и инертного газа, например азота. Активность марганца при высоких температурах по отношению к кислороду используется для восстановления стали в мартеновских печах. В атмосфере, состоящей из окиси углерода и инертного газа, марганец при температурах печи окисляется благодаря реакции 2С0 = С -f СО2. Хотя окись углерода (СО) при повышенных температурах является весьма устойчивым соединением, указанное выше явление временной и исчезающей диссоциации обусловливает и эту быстг ро протекающую реакцию. Вновь возникающие молекулы углекислого газа диссоциируют таким же способом, и марганец окисляется временно освобождающимся кислородом. На рис. 152 приведены также кривые равновесия других используемых в промышленности металлов. [c.201]

    В присутствии ионов разных металлов реакции образования пероксидов и их распад ускоряются, но в различной степени Так, ионы кобальта в большей степени ускоряют процесс образования пероксида, а марганец более эффективно его разрушает, свинец ускоряет образование гидропероксидов, но не влияет на процесс их распада Поэтому, сочетая в определенных соотношениях сиккативы на основе разных металлов, можно более эффективно влиять на скорость отверждения покрытия Так, в присутствии марганцевого сиккатива льняное масло высыхает за 12, в присутствии свинцового — за 26, а при введении в это же масло их смеси — за 7 ч Следует отметить, что в присутствии антиоксидантов и сернистых соединений, содержащихся в неко торых растворителях, активность сиккатива может снизиться [c.200]

    Метод колориметрического титрования особенно удобен в тех случаях, когда окраска развивается быстро. Если реакция переведения определяемого иона в окрашенное соединение требует длительного времени или сложной обработки (кипячение, фильтрование и т.п.), но сам окрашенный раствор устойчив во времени, поступают следующим образом известное количество определяемого вещества заранее переводят в окрашенное соединение и затем разбавляют до определенного объема и получают, таким образом, окрашенный стандартный раствор титрование проводят этим окрашенным стандартным раствором до уравнивания окрасок. Например, так можно определять марганец, применяя для титрования стандартный раствор КМПО4. Метод колориметрического титрования очень прост, выполняется быстро и широко применяется в производственных лабораториях для определения алюминия, молибдена, ниобия, нитритов и др. Точность метода при некотором навыке вполне удовлетворительна (2—5% относительных). Метод колориметрического титрования особенно удобен при единичных анализах, так как требует небольшого расхода реактивов и времени. [c.30]

    Метод колориметрического титрования особенно удобен в тех случаях, когда при переведении определяемого иона в окрашенное соединение окраска развивается быстро. Если же реакция требует длительного времени или сложной обработки (кипячение, фильтрование и т. п.), но сам окрашенный раствор устойчив во времени, поступаю иначе. Известное количество определяемого вещества заранее переводят в окрашенное соединение, затем разбавляют до определенного объема и получают окрашенный стандартный раствор. Титрование проводят этим раствором до уравнивания окраски с анализируемым раствором. Например, так можно определять марганец, применяя для титрования стандартный раствор КМПО4. [c.30]

    Комплексное соединение олова КгСЗп ), полученное на фильтровальной бумаге, после высушивания имеет ярко-желтую люминесценцию. Реакция образования кристаллофосфора олова с иодидом калия позволяет обнаружить его в сульфидных породах и сплавах, содержащих цинк, кобальт, медь, марганец и железо. [c.157]

    Марганец, железо, никель, кобальт или их окиси, или, наконец, сульфиды, обработанные основаниями и одновременно свободными галоидами, особенно хлором, гало-идоводородом или соединениями, дающими его в условиях реакции, а также хлористым аммонием или органическими галоидными соединениями в качестве оснований можно пользоваться щелочными или щелочноземельными металлами, их окисями, гидроокисями, сульфи- [c.313]

    Определение никеля фотоколориметрическим методом. Метод основан на реакции образования растворимого окрашенного в красный цвет комплексного соединения никеля с диметилглиоксимом в щелочной среде в присутствии окислителя. Состав образуемого комплекса пока полностью не установлен. Определению мешает большой избыток окислителя, так как он может вызвать обесцвечивание раствора. Определению мешают также железо, хром и марганец, поэтому при определении их связывают в растворимые бесцветные комплексные соединения сегнетовой солью (виннокислый калий-натрий). В этих условиях определению не мешают кобальт до 1,5%, молибден до 3%, хром до 18%, вольфрам до 18 %, медь до 2%, ванадий до 1 %. Измерение интенсивности окраски можно проводить визуальным методом, методом шкалы эталонных растворов, на фотоколориметре и спектрофотометре. [c.308]


Смотреть страницы где упоминается термин Марганец и его соединения реакции: [c.531]    [c.343]    [c.143]    [c.135]    [c.165]    [c.89]    [c.214]    [c.225]    [c.342]    [c.140]    [c.58]    [c.253]   
Перекись водорода (1958) -- [ c.339 ]




ПОИСК





Смотрите так же термины и статьи:

Марганец реакции

Марганец экстракция соединений обменная реакция

Марганца ато-соединения



© 2025 chem21.info Реклама на сайте