Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Миозин строение

    Миозиновые нити образованы белком миозином, строение которого показано на рис. 22.3. Миозин составляет почти половину всех белков скелетной мышцы. Молекула миозина содержит две идентичные тяжелые полипептидные цепи (молекулярная масса каждой 200 ООО) и четыре легкие цепи (молекулярная масса около 20 ООО). Каждая тяжелая цепь на большой части длины с С-конца имеет конформацию а-спирали, и обе спирали скручены друг с другом эта часть молекулы имеет форму палочки. Противоположные концы каждой цепи (К-концы) имеют глобулярную форму, образуя головки молекулы. К каждой из головок нековалентно присоединены по две легкие цепи. [c.520]


Рис. 20.3. Строение молекулы миозина. Объяснение в тексте. Рис. 20.3. <a href="/info/4829">Строение молекулы</a> миозина. Объяснение в тексте.
Рис. 12.8. Схема строения молекулы миозина. Указаны продольные размеры фрагментов и их м. м. Рис. 12.8. <a href="/info/659907">Схема строения молекулы</a> миозина. Указаны <a href="/info/230941">продольные размеры</a> фрагментов и их м. м.
    Таким образом, специализированные структурные функции фибриллярных белков определяются их специфическим ориентированным строением. Биологическая роль таких белков не только защитная, как в случае кератина и фиброина. Выше уже указывалось, что коллаген необходим для остеогенеза, а миозин обладает ферментативной активностью — он катализирует гидролиз АТФ. [c.260]

Рис. 146. Строение молекулы миозина. Рис. 146. <a href="/info/4829">Строение молекулы</a> миозина.
    Рис 39 Схематичное строение актомиозинового пучка в попе речном разрезе 1 актин 2 миозин [c.122]

    В поперечном сечении мышцы волокна миозина часто находятся в гексагональной упаковке (рис. 2,г,д). У некоторых групп животных, а именно у членистоногих, толстые волокна представляются пустотелыми или просто более прозрачными в направлении вдоль их осей при наблюдении в электронном микроскопе (рис. 2,г,д и 6). Это строение, показанное на рис. 2, в, повторяется вдоль всей мышечной клетки (рис. 3). [c.287]

    Миозин-это очень длинная палочковидная молекула с хвостом, состоящим из двух навитых друг на друга а-сни-ральных полипептидов она имеет также сложную по своему строению головку , обладающую ферментативной активностью (рис. 7-18). Общая молекулярная масса миозина составляет 450 ООО, молекула имеет в длину около 160 нм и содержит шесть полипептидных цепей. Длинный хвост состоит из двух цепей, каждая с молекулярной массой 200000 это тяжелые цепи, в которых находятся гибкие шарнирные участки. Головка имеет глобулярную форму и содержит концы тяжелых цепей, а также четыре легкие цепи, свернутые в виде глобул, каждая с молекулярной массой около 18 ООО. Головка молекулы миозина обладает ферментативной активностью она катализирует гидролитическое расщепление АТР на ADP и фосфат. Многочисленные молекулы миозина, регулярно уложенные в виде пучка, образуют толстые нити скелетной мышцы. Миозин встречается и в немышечных клетках (см. рис. 2-15 и разд. 2.13). [c.182]


    Строение миозина (а) и актина (б) [c.241]

    Схема строения молекулы миозина (а), миозинового пучка (б) и миозиновой толстой нити (в) [c.297]

Рис. 11. Схема строения молекулы миозина Рис. 11. <a href="/info/659907">Схема строения молекулы</a> миозина
    Молекулы фибриллярных белков обычно имеют волокнистое строение они могут образовывать высокомолекулярные нитевидные агрегаты — фибриллы, имеющие высокую механическую прочность. Фибриллярные белки нерастворимы в воде, поскольку на поверхности фибриллярного агрегата находится много гидрофобных радикалов. Фибриллярные белки главным образом выполняют опорные функции, обеспечивая тем самым прочность тканей. К ним относятся кератин волос, кожи, ногтей коллаген сухожилий и костной ткани миозин мышечной ткани. [c.66]

    Протеолитический фермент папаин расщепляет молекулу миозина на длинный а-спиральный участок, называемый миозиновым стержнем (или миозиновым хвостом), и две раздельные глобулярные миозиновые головки, называемые также субфрагментами-1 или S1-фрагментами (рис. 11-10). Эти две части молекулы выполняют разные функции - хвост ответствен за самопроизвольную сборку толстых филаментов, а с помощью головок осуществляется движение этих филаментов относительно прилегающих актиновых нитей Вначале мы опишем строение и самосборку хвостов, а затем рассмотрим, каким образом головки создают мышечное усилие. [c.259]

    Прежде чем рассмотреть исследования Астбери, кратко остановимся на предложенной им классификации белков, в основу которой был положен структурный признак [11, 12]. По этому признаку все белки делятся на два больших класса фибриллярных и глобулярных белков. Первые имеют вытянутую, волокнистую структуру вторые -форму глобулы (во времена Астбери они назывались корпускулярными белками). Такое разделение отчасти согласуется со спецификой функционирования белков и растворимостью их в воде. Фибриллярные белки входят в состав кожи, соединительных тканей, хрящей, скелета, волос, рогов и т.д. Как правило, в обычных условиях они химически инертны, не растворяются в воде и выполняют структурную или защитную функцию. Глобулярные белки играют активную роль в метаболизме, участвуя во всех процессах жизнедеятельности организма. Многие глобулярные белки растворимы в воде. Четкой структурной или функциональной границы между двумя классами белков, однако, провести нельзя. Например, миозин (белок мышц), хотя и имеет волокнистое строение, тем не менее химически не инертен. Функция миозина связана с превращением химической энергии в механическую работу. Несмотря на значительную условность, предложенная Астбери и сохранившаяся до сих пор классификация белков по структурному признаку остается все еще целесообразной. Сама идея разделения белков в зависимости от топологии структуры хорошо согласуется с одной из задач молекулярной биологии, а именно с установлением связи между строением (в том числе пространственным) и функцией биологических молекул. У. Астбери были изучены структуры разнообразных фибриллярных белков [13, 14]. Оказалось, что эти белки по структурному признаку могут быть разделены на две конформационные группы. Первая группа, названная по начальным буквам входящих в нее белков группой к.т.е.Г., включает такие белки, как кератин (белок волос, шерсти, ногтей и т.д.), миозин (белок мышц), эпидермин (белок кожи) и фибриноген (белок плазмы крови). Во вторую группу фибриллярных белков (группа коллагена) входят белки сухожилий, соединительных тканей, хрящей и др. Белки каждой группы имеют близкие картины рентгеновской дифракции, что указывает на их конформационную аналогию. [c.11]

    А. Основанием для такого представления о структуре глобулярных белков послужили появившиеся к тому времени данные о наличии белковых субъединиц у альбумина яйца и гемоглобина. В рентгенограммах фибриллярных белков и специально обработанных денатурированных глобулярных белков Астбери находил много общего, из чего он делал вывод об аналогичном характере пространственного строения белков в двух состояниях. У. Астбери писал, что "...все белки на некоторой стадии их существования являются фибриллярными в молекулярном смысле" и еще "...два наиболее стабильных и нерастворимых состояния белковой структуры, волокнистое и денатурированное, основываются на фундаментально подобных видах молекулярной организации денатурированное состояние является в основном фибриллярным состоянием, поскольку оно всегда представляет собой полностью вытянутые пептидные цепи, организованные после коагуляции в параллельные пакеты, как в фиброине шелка, р-кератине, (3-миозине и Р-фибриногене" [27. С. 502]. Замечательны здесь не столько предложенные Астбери конкретные модели фибриллярных, глобулярных и денатурированных белков, а высказанная им впервые идея общности их молекулярной пространственной организации. [c.14]


    Тпксотропия — явление довольно распространенное. Оно наблюдается в золях V2O5, WO3, РегОз, в различных суспензиях бентонита, в растворах вируса табачной мозаики, миозина. Причем тиксот-ропныегели легче всего образуются у золей, обладающих асимметричным строением частиц (например, палочкообразной формы). Тиксотропные структуры возникают лишь при определенных концентрациях коллоидных частиц и электролитов. Для обратимого (тиксотропного) застудневания требуется определенное значение дзета-потенциала, лежащее выше критического. В этом случае заряд коллоидных частиц хотя и понижен, но не в такой степени, что- бы начался процесс коагуляции. В этих условиях уже становятся заметными силы взаимодействия между отдельными частицами дис- персной фазы, они образуют своеобразную сетку, каркас. При сильном встряхивании связь между частицами дисперсной фазы нарушается — тиксотропный гель переходит в золь. В состоянии покоя связи в результате соударения частиц при броуновском движении восстанавливаются, золь вновь переходит в тиксотропный гель и т. д. [c.379]

    Данилевский Александр Яковлевич (f 838—f 923). Академик. Один из основоположников отечественной биохимии, в I888 г. предложил теорию строения белковой молекулы. Экспериментально доказал, что действие сока поджелудочной железы на белки представляет собой гидролиз. Изучал белки мышц (миозин), обнаружил антипепсин и антитрнпсин. [c.18]

    Еще в 30-х годах главным образом в работах Астбери была дана рентгеногра(ф Ическая характеристика многих фибриллярных белков. Важнейший результат работ Астбери сводится к следующему. Многие совершенно различные в химическом отношении белки, такие например,, как кератин волос, шерсти и рога, миозин мышц, эпидермис кожных покровов, фибриноген—фибриллярный белок, образующийся при (свертывании крови, а также М(ногие другие дают практически одинаковые рентгенограммы. Это возможно только лишь В том случае, если конфигурации цепей этих белков и их упаковка (Или, иначе, их вторичная и третичная структуры в своих общих чертах не за(висят от специфччеокого чередова(Ния аминокислотных остатков. Здесь речь идет именно об общих чертах вторичной и третичной структур, так как на отдельных участках возможны существенные отклонения от общего плана строения за счет специфического взаимодействия боковых групп остатков, к чему, как указывалось выше, рентгенографический метод исследования оказывается нечувствительным (речь идет об изучении фибриллярных структур). [c.542]

    РИС. 4-23. А. Схема молекулы миозина. На расстоянии 90 нм от С-конца расположен участок, по которому расщепляется молекула при кратковременной обработке трипсином. В результате расщепления образуются два фрагмента—легкий и тяжелый меромиозииы (ЛММ и ТММ). Общая длина молекулы миозина 160 нм, мол. вес 470 000 молекула состоит из двух тяжелых цепей (мол. вес 200 ООО) и двух пар легких цепей головок (мол. вес 16 000—21 000), размером 15X4X3 им. Б. Предложенная Сквайром [87] схема строения толстых нитей скелетной мышцы позвоночных. Показана лишенная головок (оголенная) область вблизи М-линии. Темными кружками обозначены головки на концах миозиновых молекул (палочек), а темными треугольниками — противоположные концы миозиновых палочек. Взаимодействие между антипараллельно расположенными молекулами на протяжении 43 н 130 нм отмечено соответственно одинарной и тройной поперечными линиями. Встречными стрелочками (треугольниками) обозначены места соединения миозиновых молекул (палочек) хвост к хвосту . Молекулы простираются от середины структуры, где расположены их С-концы, к поверхности нитей, где находятся их головки. На уровнях, обозначенных буквой В, к миозиновой нити присоединяется М-мо тик. Уровень Щ—Щ — зпо Центр М-лннци и всей нити. [c.322]

    Некоторые свойства белков можно объяснить только в свете их функции, т. е. их вклада в более сложную деятельность. Одной из немногих систем, для которых удалось установить корреляцию между функцией белков и функцией органа, является скелетная мышца. Клетка мышцы активируется нервными импульсами (мембранно-направленными сигналами). В молекулярном аспекте мышечное сокращение основано на циклическом образовании поперечных мостиков за счет периодических взаимодействий между миозином, актином и Mg-ATP. Ионы Са и кальцийсвязывающие белки являются посредниками между нервными импульсами и эффекторами. Медиация ионами Са " ограничивает скорость реакции на сигналы включение — выключение и предохраняет от сокращений без сигнала. Напротив, отдельные осцилляции маховых мышц крылатых насекомых контролируются не ионами или подобными низкомолекулярными соединениями, а самими сократительными белками. Эго делает возможными очень быстрые периодические сокращения, которые, будучи инициированы (ионами Са +), протекают сами по себе. В заключение отметим, что исследования мышцы показывают, что в функционировании белка отчетливо проявляется связь между деталями молекулярного строения и деятельностью всего организма. [c.292]

    Все рассказанное в этой главе втносилось к глобулярным белкам со свойственным им многообразием структур и функций. Гораздо менее разнообразные фибриллярные белки характеризуются специфическими особенностями строения и выполняют специальные функции. Это — структурные и сократительные белки. Первые играют роль опорных и защитных компонент, входя в состав сухожилий, хрящей, костей, связок и т. д. (коллагены), а также эпидермиса, волос, шерсти, рогов и т. д. (кератины). Вторые входят в состав рабочих веществ механохими-ческих систем, в частности мышц (миозин). [c.254]

Рис. 7-18. Миозин и актин-два нитевидных белка сократительной системы. А. Молекула миозина имеет длинный хвост, состоящий из двух суперспирализованных а-спиральньгх полипептидных цепей (тяжелые цепи). Г оловка молекулы, содержащая четыре легкие цепи, обладает ферментативной активностью она способна отщеплять от АТР фосфатную группу. Б. Схема строения р-актина, состоящего из двух обвитых одна вокруг другой цепей С-актина. Рис. 7-18. Миозин и актин-два <a href="/info/915782">нитевидных белка</a> <a href="/info/1876926">сократительной системы</a>. А. <a href="/info/1435305">Молекула миозина</a> имеет длинный хвост, состоящий из <a href="/info/1696521">двух</a> суперспирализованных а-спиральньгх <a href="/info/31816">полипептидных цепей</a> (<a href="/info/104561">тяжелые цепи</a>). Г оловка молекулы, содержащая четыре <a href="/info/509626">легкие цепи</a>, обладает <a href="/info/6448">ферментативной активностью</a> она способна отщеплять от АТР <a href="/info/105049">фосфатную группу</a>. Б. <a href="/info/325342">Схема строения</a> р-актина, состоящего из <a href="/info/1696521">двух</a> обвитых одна <a href="/info/1806906">вокруг другой</a> цепей С-актина.
    Фибриллярные белки построены из цепных макромолекул и имеют очень сложное строение. Среди этих белков многие имеют волокнистую структуру, в частности кератин (шерсть, волос), фиброин (натуральный шелк), коллаген (белок покровных тканей), миозин (мышечный белок) и др. [163]. Все они способйы к гидролитиче-кому расщеплению, однако многие из них гидролизуются только в присутствии кислотно-щело гных катализаторов или ферментов. Способность белковых материалов к рассасыванию в организме резко зависит от их структуры, конформации макромолекул (О- или Ь-форма) наличия боковых заместителей, спшвок, степени кристалличности и других причин. [c.86]

    Следует подчеркнуть, что изображать, строение молекулы любого белка с помощью формулы (H2N)m-R-( 00H) было бы неправильно. В действительности многие белки (например, фибриноген, миозин и др.), по-видимому, не имеют (или почти не имеют) свободных NH2-rpynn. Амфотерный характер этих белков и наличие разноименных электрических зарядов на их частицах могут быть следствием диссоциации ряда других ионогенпых группировок в белковой молекуле. Однако и в этом случае приведенные выше рассуждения об условиях стабилизации коллоидных растворов вполне сохраняют силу. [c.21]

    Актин, открытый Штраубом в 1942 г., экстрагируется водой из мышц после извлечения из них миозина 0,6 М раствором КС1 и последующей обработки ацетоном. Этот белок может существовать в двух формах, резко отличающихся гю своим физико-химическим свойствам — глобулярной (Г-актин) и фибриллярной (Ф-актин), тонкое строение которых хорошо видно на электронных микрофотографиях, полученных с помощью электронного микроскопа (см. рис. 4, стр. 17). Считается, что фибриллы полимеризованного актина получаются не путем развертывания (разматывания) глобул Г-актина, а в результате их ассоциации в длинные цепочки. [c.417]

    Поляризационные исследования Штюбеля показали, что диски Ц состояли из палочкообразных упорядоченных мицелл белка миозина, расположенных длинником по оси мышечного волокна. Эти мицеллы обладают, кроме того, положительным собственным преломлением. Следует сказать, что подобную картину дает и электронный микроскоп. На основании всестороннего г изучения строения миофибрилл различными методами установлено, что каждая мышечная фибрилла строится из вытянутых по ее длиннику молекул белка миозина, обладающих упорядоченной складчатостью. [c.383]

    Ферменты представляют собой вещества или чисто белковой структуры, или протеиды — белки, связанные с небелковой простетической группой. Число уже известных ферментов очень велико. Считают, что одна клетка бактерии использует до 1000 разных ферментов. Однако лишь для немногих установлено строение. Примерами чисто белковых ферментов могут служить протеолитические ферменты пищеварения, такие, как пепсин и трипсин. Известны случаи, когда один и тот же белок несет в организме и структурную и ферментативную функцию. Примером служит белок мышц миозин, каталитически разлагающий аденозинтрифосфат— реакция, в данном случае дающая энергию сокращения мышцы (В. А. Энгельгардт, М. Н. Любимова). [c.698]

    Тропонин — Са -связующий регуляторный белок миофибрилл. Связан с актином, блокирует центры контакта актина с миозином. Убихинон (кофермент О) — небелковый компонент дыхательной цепи, который участвует в передаче электронов и протонов на цитохромы. По строению близок к витамину К. Углеводы (СдН О ) — класс органических веществ, состоящих из атомов С, Н и О. В организме выполняют энергетическую роль, обеспечивая более 50 % потребностей в энергии. Основные представители — глюкоза, фруктоза, рибоза, дизоксирибоза, гликоген. Ферменты-энзимы — биологически активные белки, синтезируемые в организме и выполняющие роль катализаторов биохимических реакций. [c.493]

    Структура миозиновых нитей. Миозин (сокращенно Му) составляет почти половину (55 %) всех белков скелетной мышцы. В настоящее время известно около 10 различных видов молекул миозина. Рассмотрим строение наиболее изученного миозина скелетных мышц. Миозин состоит из шести субъединиц, две из которых представлены одинаковыми полипептидными цепями с высокой молекулярной массой (около 200 ООО) — тяжелые цепи миозина, а остальные четыре имеют молекулярную массу около 20 ООО — легкие цепи миозина. Большая часть длины тяжелой цепи, начиная с С-конца, имеет конфигурацию а-спирали, причем а-спираль-ные участки обеих тяжелых цепей взаимодействуют между собой, что приводит к дополнительной спирализации и придает этой части молекулы миозина форму палочки (рис. 17.3). Противоположные К-концы каждой тяжелой цепи миозина имеют глобулярную форму, образуя головки молекулы. С каждой из головок за счет нековалентных межмолекуля -ных взаимодействий связаны по две легкие цепи. Обе легкие цепи миозина способны влиять на процесс взаимодействия миозина с актином и тем самым участвуют в регуляции мышечного сокращения. [c.477]

Рис. 17.3. Строение молекулы миозина (а) и тонкой нити (б). В расслабленной мышце тропомиозин препятствует взаимодействию головки миозина с актином. Внизу (в) схематически показано различие геометрических характеристик (размеров) моторньсх участков (трех разных типов) молекул миозина Рис. 17.3. <a href="/info/4829">Строение молекулы</a> миозина (а) и тонкой нити (б). В <a href="/info/614680">расслабленной мышце</a> тропомиозин <a href="/info/488716">препятствует взаимодействию</a> головки миозина с актином. Внизу (в) схематически показано различие <a href="/info/12785">геометрических характеристик</a> (размеров) моторньсх участков (трех <a href="/info/304850">разных типов</a>) молекул миозина
    Один из основоположников отечественной биохимии. Осн. работы посвящены химии белков, ферментов, вопросам питания. Впервые разделил амилазу и трипсин поджелудочной железы, применив разработанный им метод избирательной адсорбции на частицах коллодия. Предоожил (1888) теорию строения белковой молекулы. Экспериментально доказал, что действие сока поджелудочной железы на белки представляет собой гидролиз и установил обратимость этого процесса. Изучал белки мышц (миозин), печени, почек и мозга. Предложил разделять белковые фракции иа глобулиновую, строминовую и нуклеиновую. Изучал вопрос о связи различных белковых фракций между собой и с др. в-вами в цитоплазме живой клетки. Обнаружил антипепсин и антитрипсин. [c.143]

Рис. 11-12. Толстый миозиновый филамент. А. Электронная микрофотография толстого филамента из мышцы морского гребешка. Видна центральная голая зона. Б. Схема строения (без соблюдения масштаба). Молекулы миозина связаны хвостовыми участками в пучок, на поверхности которого выступают головки. Голая зона в центре содержит только хвосты миозина. В. Небольшой отрезок толстого филамента реконструкция по электронным микрофотографиям. Одна из молекул миозина выделена цветом. (А-с любезного разрешения R. raig В-по R. А. Рис. 11-12. Толстый <a href="/info/1350643">миозиновый филамент</a>. А. <a href="/info/73091">Электронная микрофотография</a> толстого филамента из мышцы морского гребешка. Видна центральная голая зона. Б. <a href="/info/325342">Схема строения</a> (без соблюдения масштаба). <a href="/info/1435305">Молекулы миозина</a> связаны хвостовыми участками в пучок, на поверхности которого выступают головки. Голая зона в центре содержит только хвосты миозина. В. Небольшой отрезок толстого филамента реконструкция по <a href="/info/73091">электронным микрофотографиям</a>. Одна из <a href="/info/1435305">молекул миозина</a> выделена цветом. (А-с любезного разрешения R. raig В-по R. А.
    Начатое незадолго до 1951 г. Астбери, Амброзе, Бэмфордом, Эллиоттом и другими изучение пространственного строения синтетических полипептидов получило после опубликования работ Полинга и Кори стремительное развитие. Повышенный интерес к таким соединениям был стимулирован результатами уже первых работ в этой области, которые вселили надежду, что исследование гомополипептидов может существенно помочь в решении одной из основных задач проблемы белка — установлении принципов пространственной организации белковых молекул. Такой оптимизм в то время казался вполне оправданным. Синтетические полипептиды состоят из тех же структурных элементов, что и белки, и, следовательно, конформации тех и других определяются одними и теми же видами взаимодействий. Учитывая одинаковую природу в обоих случаях взаимодействий между валентно несвязанными атомами, можно было полагать, что изучение структуры более простых по химическому строению синтетических полипептидов при относительной легкости целенаправленного моделирования аминокислотного состава, последовательности и длины пептидной цепи поможет выяснить основные факторы, ответственные за формирование пространственного строения белков. Особое значение эти соединения приобрели в связи с обнаруженной общностью между их структурами и структурами природных полипептидов — фибриллярных и глобулярных белков. Первые же исследования показали, что синтетические полипептиды образуют два главных типа структур, аналогичных а- и -формам кератина, миозина, фиброина шелка и др., которые, как и в случае белков, могут обратимо переходить друг в друга. После работ Полинга и Кори эти формы были интерпретированы как а-спираль и -структура складчатого листа. Еще более обоснованной стала выглядеть основная, а по существу единственная в то время структурная гипотеза белков, согласно которой их пространственное строение представлялось в виде [c.28]

    В течение последующих более чем двух десятилетий, вплоть до 1990-х годов, предложенное объяснение механизма мышечного сокращения, несмотря на продолжающееся все это время изучение цитоскелета, не претерпело значительного изменения и не смогло обрести доказательной силы. В чем же причины быстрого развития этой области в 1950-1960-е годы, отсутствие заметного прогресса в 1970-1980-е и всплеск достижений в первой половине 1990-х годов Приведенное выше краткое описание основных этапов развития исследований скелетных мышц как будто бы неоспоримо свидетельствует о наличии прямой связи темпа и глубины познания с достижениями в изучении морфологии, точнее, с временем прохождения исследований от внешней формы и строения биосистемы и далее через все уровни ее структурной организации, от вышестоящей, более сложной, к ближайшей нижестоящей, менее сложной. В 1950-1960-е годы имел место прогресс в изучении морфологии - разработаны модель скользящих нитей, молекулярная модель актомиозинового комплекса и схема молекулярного механизма относительного перемещения толстых и тонких филаментов. В 1970-1980-е годы отсутствовал прогресс в изучении морфологии, не было качественного развития представления о работе скелетных мышц. В начале 1990-х годов удалось закристаллизовать О-актин и глобулярную головку миозина и с помощью рентгеноструктурного анализа идентифицировать их атомные трехмерные структуры. Приблизительно в это же время была расшифрована дифракционная картина малоуглового рентгеновского рассеяния актомиозинового комплекса, а также получены его крио-электронные микрофотографии высокого разрешения. Последствиями морфологических достижений явились создание атомно-молекулярной модели мышечного сокращения, определение местоположения и геометрии АТР-связывающего активного центра и области миозина, периодически контактирующей с актином и обусловливающей относительное перемещение нитей, уточнение мест локализации на тонком филаменте тропомиозина и тропонинового комплекса и их роли в реализации и регуляции АТР-зависимого механизма мышечного сокращения. Сказанное выше о связи между знанием строения мышечной системы и пониманием механизма ее действия, т.е. между морфологией различных уровней структурной организации и физиологией мышцы, иллюстрирует схема, приведенная на рис. 1.37. Жирные стрелки указывают направление строго последовательного ступенчатого процесса познания структуры, а противоположно ориентированные тонкие стрелки - процесса познания функтщи биосистемы. [c.133]


Смотреть страницы где упоминается термин Миозин строение: [c.72]    [c.256]    [c.163]    [c.170]    [c.117]    [c.362]    [c.310]    [c.173]    [c.95]    [c.35]    [c.190]    [c.135]   
Молекулярная биология клетки Том5 (1987) -- [ c.80 , c.81 ]

Белки Том 1 (1956) -- [ c.277 ]

Мышечные ткани (2001) -- [ c.188 , c.190 ]




ПОИСК





Смотрите так же термины и статьи:

Миозин



© 2024 chem21.info Реклама на сайте