Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиэтилен структура

    Начались интенсивные поиски способов получения линейных неразветвленных полимеров. И в 1953 г. немецкий химик Карл Циглер (1898—1973) открыл свой знаменитый титан-алюминиевый катализатор, на котором был получен полиэтилен с регулярной структурой. [c.136]

    Мономерами являются этилен, пропилен, бутены, бутадиены и стирол. Полиэтилен, полипропилен и полистирол — полимеры, в которых базовая молекулярная структура мономера повторяется в виде длинной цепи подобных структур. Например, моно-и полимер этилена можно записать так  [c.252]


    Эти различные свойства обусловлены различиями в построении молекул. Полиэтилен высокого давления состоит из молекул с разветвленной структурой — им труднее кристаллизоваться и плотность такого полиэтилена поэтому ниже (0,920—0,925 г/см кстати, его часто называют полиэтиленом низкой плотности). Полиэтилен низкого давления (высокой плотности) имеет линейно вытянутые упорядоченные молекулы, поэтому его плотность может достигать 0,97 г/см  [c.127]

    Из-за слабости когезионных сил неполярные молекулы обычно более гибки и рыхло упакованы. Исключения из этого правила возникают в случаях, когда стерические факторы и полярность не усиливают, а ослабляют действия друг друга. Так, поливинилацетат, будучи полярным (благодаря случайному расположению больших ацетатных групп), из-за стерических факторов не способен к кристаллизации. С другой стороны, полиэтилен, несмотря на слабость когезионных сил, обладает такой простой высокосимметричной структурой, что легко кристаллизуется. [c.66]

    Полиэтилен, полученный последними двумя способами (полиэтилен низкого давления), имеет строго линейное строение, более высокую молекулярную массу до 70 000 и температуру плавления на 20° выше, чем полиэтилен высокого давления с разветвленной структурой. Зависимость основных механических свойств полиэтилена от молекулярной массы представлена на рис. 94. Полимеризация этилена при высоком давлении представляет собой цепную реакцию, протекающую по свободно-радикальному механизму с выделением большого количества теплоты  [c.216]

    Для моделирования свойств смол и асфальтенов использовался полиэтилен низкой кристалличности (от 5 до 10%), определенной с помощью ИК-спектроскопии. Рентгенограмма также показала наличие слабых рефлексов, полоса — (200) при 3,7 А. Полиэтилен служил для имитации алифатической части молекул асфальтенов, а в качестве ароматической части таковых бралась сажа. Конечно, оба компонента в этой искусственной смеси (полиэтилен и сажа) не воспроизводили тип углеродного скелета алифатической и ароматической частей молекул асфальтенов. Это была искусственная модель (заменитель), в какой-то мере чисто формально позволившая выявить характер влияния двух образцов углеродистого вещества с разным типом С—С-связей алифатической (полиэтилен) и графитоподобной — ароматической (сажа), на физическую упаковку (структуру) этой бинарной смеси — заменителя асфальтенов. Смесь сажа—полиэтилен составлялась постепенным добавлением сажи к полиэтилену под гидравлическим резиновым прессом. Образец этой смеси проводился 15 раз через пресс. Рентгеновские измерения производились при интенсивности в интервале 20=8н-100°. Были получены записи рентгеновской дифракции для различных асфальтенов и нефтяных смол (рис. 46). Путем нормализации этих кривых и сравнения их с независимой кривой распределения углерода в интервале (sin 0)Д=0,08-н0,5 были получены кривые рентгеновской дифракции (рис. 47) для исследованных природных образцов, которые сопоставлялись с кривыми для образцов кристаллического полиэтилена, сажи и их смесей (рис. 48). Такой прием нормализации был применен с целью разрешения 7- и (002)-полос, которые в дальнейшем служили для количест- [c.232]


    В последние годы в Советском Союзе освоено производство новой полимеризационной пластмассы — полипропилена, получаемого из нефтяных газов. Полипропилен обладает более высокой химической стойкостью и более высокой теплостойкостью по сравнению с полиэтиленом. Это объясняется большим средним молекулярным весом полипропилена (80 ООО— 150 000) и более компактной структурой по сравнению с полиэтиленом. [c.424]

    Отвечает ли название полиэтилен структуре этого полимера Дайте обоснованный ответ. [c.164]

    Полиэтилен представляет особый интерес с точки зрения изучения полимеризации, так как он получается из родоначальника виниловых мономеров. Знание структуры этого основного винилового полимера, несомненно, будет иметь важное значение для понимания. структуры полимеров вообще. Это основное положение в науке о полимерах подчеркивается тем, что полиэтилен является одним из немногих полимеров, [c.165]

    Полиэтилен. Структура —СНг—СНг—) очень малое содержание групп СНз, которое для полиэтилена высокого давления выше, чем для полиэтилена низкого давления. Молекулярная масса полиэтилена высокого давления 10 000—50 000, низкого давления 50 000—300 000. Плотность 0,92 г/см (полиэтилен высокого давления), 0,94—0,98 г/см (полиэтилен низкого давления) минимальная температура колонки 112°С (полиэтилен высокого давления), 125—134°С (полиэтилен низкого давления) максимальная температура колонки 300°С. [c.128]

    Новые полимеры стремятся заменить, вытеснить старые. Но это им редко удается. Вот другая история, связанная с самым популярным пластиком-полиэтиленом. Структура полимера предельно проста-всего два элемента, углерод и водород  [c.35]

    Гомополимер этилена, получаемый полимеризацией в растворе по способу компании Филлипс , имеет совершенно линейную структуру без коротких боковых цепей. Полиэтилен, образующийся при суспензионной полимеризации, также линеен в пределах ошибок измерений лучших методик определения разветвленности. Однако, согласно косвенным данным, в некоторых фракциях (по индексам расплава) этого полимера содержатся небольшие количества длинных боковых цепей (см. разд. УГБ.З). [c.173]

    Ионный механизм процесса полимеризации и отсутствие передачи цепи через полимер способствует образованию макромолекул более регулярной структуры. Полиэтилен низкого давления имеет ничтожное количество ответвлений в цепях макромолекул и отличается высоким средним молекулярным весом. [c.197]

    Модификаторы позволяют удерживать парафин во взвешенном состоянии на всем пути движения нефти, являются наиболее эффективными ингибиторами парафиноотложений. В качестве модификаторов используют химические вещества, имеющие структуру, сходную со структурой парафина. За рубежом широко применяют полиэтилен в сочетании с другими ингибиторами. [c.192]

    Наиболее простым приемом создания структуры является варьирование температуры нагрева, а также температуры и скорости охлаждения. Но при высокой температуре полиэтилен, как и все полиолефины, подвергается окислительно-деструктивным процессам. Это сопровождается снижением механической прочности изделий и уменьшением эластичности, что приводит к появлению хрупкости, вызывающей растрескивание. [c.121]

    Получение покрытий из кристаллизующихся полимеров — относительно новое направление исследований. Для кристаллических полимеров, каким является полиэтилен, в процессе переработки характерны все стадии кристаллизации, начиная от образования центров кристаллизации и первичных надмолекулярных структур и кончая формированием сферолитной структуры в охлажденном покрытии. [c.121]

    Размещение гетероатомов в представленной модели (см. рис. 13) может быть произвольным без какого-либо изменения структуры. Однако структурная приемлемость еще не является доказательством структуры. Сопоставление дифракционных исследований образцов углеродных полимеров, полученных при 450—750 °С, углерода совмещенного с полиэтиленом [317], конденсированных ароматических систем известной структуры, где максимальный диаметр пластин 1,4 нм [317], а также-смеси конденсированных ароматических систем с порфиринами может служить доказательством того, что структура асфальтенов состоит из конденсированных ароматических пластин, имеющих тенденцию к упорядочению и складыванию в пачки [317]. [c.156]

    Однако на)ряду с этим в нефтеперерабатывающей промышленности существовали факторы, приведшие к снижению производительности труда это ввод новых трудоемких процессов ухудшение состава сырья, увеличение в структуре производства доли масляного и нефтехимического производства. Как показали расчеты, ввод большей части вторичных процессов, которые, как известно, связаны либо с повышением качества продукции, либо с производством новой продукции (полиэтилен, полипропилен и др.), но отличаются высокой трудоемкостью, приводит к снижению производительности труда. Отрицательное влияние яа производительность труда оказывали также медленное освоение этих процессов и недостатки в методике построения цен, -которая не учитывала качество продукции и эффект у потребителя. Поэтому разработка более обоснованных цен, учитывающих общественную полезность продукции и ее качество, введение надбавок при присвоении продукции Знака качества , а также проведение мероприятий, направленных ца ускорение внедрения новой техники и повышение ее эффективности, обеспечат значительный рост производительности труда. [c.238]


Рис. 2.4. Детали структуры сферолита в полиэтилене видны пачки кристаллических ламелл. (С разрешения Фишера, Майнц.) Рис. 2.4. Детали структуры сферолита в полиэтилене видны <a href="/info/856383">пачки кристаллических</a> ламелл. (С разрешения Фишера, Майнц.)
    Под действием литийалюминийгидрида поливинилбромид легко превращается в полиэтилен. Нагреванием раствора поливинилбромида с металлическим цинком также можно легко удалить бром из макромолекул. Структура образующегося при этом полимерного углеводорода не изучалась. [c.276]

    Модификаторы — наиболее эффективные ингибиторы парафиновых отложений. Они позволяют удерживать парафин во взвешенном состоянии на всем пути движения нефти. В качестве модификаторов используют химические вещества, имеющие структуру, сходную с парафином, т. е. длинную цепочку углеводородных радикалов. В зарубежной практике широко используют полиэтилен в сочетании с другими ингибиторами. Механизм его действия обусловливается сходством молекулярных структур парафина и полимера, за счет чего молекула полиэтилена легко внедряется в кристалл парафина и снижает силы когезии и адгезии. [c.92]

    Полимерные материалы состоят из гигантских молекул, молекулярная масса которых составляет 10 —10 . Некоторые полимеры имеют естественное происхождение (целлюлоза, шелк, натуральный каучук, ДНК и т. д.), другие (полиэтилен, полиэфир, найлон и т. д.) — искусственное происхождение. Образование макромолекул связано со способностью определенных мономеров соединяться друг с другом с помощью ковалентных химических связей. Этот химический процесс называется полимеризацией, а образующиеся цепные молекулы могут иметь линейную, разветвленную или трехмерную (сетчатую) структуру. [c.36]

    Примером служит полиэтилен, структура которого исследована Ч. Банном [15]. Молекула полиэтилена представляет собой плоский бесконечный зигзаг метиленовых групп. Поэтому структура полиэтилена практически совпадает с показанной на рис. 6 структурой одного слоя молекул парафина, если представить себе, что число атомов углерода в цепи п- , то есть если не рассматривать особенности упаковки концевых групп. Более сложное строение имеют полиэфиры, жирные кислоты и другие соединения с алифатическим зигзагом. В этом случае усложнения в большей степени связаны со способом замещения атомов углерода атомами другого сорта или способом размещения групп-заместителей. Однаиэ перечисленные соединения имеют общие черты [97]. [c.25]

    Наибольший интерес в настоящее время представляют полимеры этилена молекулярного веса 50000—100000. Полиэтилен, полученный при нор-маллзном давлении, обладает прямой (неразветвленной) структурой, что сообщает ему исключительно ценные для применения в технике качества. [c.224]

    Два последних высокомолекулярных алифатических углеводорода (полиэтилен и гидрированный полибутадиен) уникальны в том отношении, что они представляют собой примеры нерегулярно разветвленных структур. Фокс и Мертин при изучении инфракрасных снектров углеводородов в области 3—4 [л обнаружили полосу поглощения при 3,38 ц в спектре полиэтилена, которая является характеристической областью колебаний связи С—Н в метильных группах. Было определено, что соотношение СНз составляет от 1/д до 1/70- Все эти величины значительно превышают частоты, которых следовало ожидать, если бы полимеры представляли собой линейные углеводороды. Многие исследователи с тех пор способствовали детальной расшифровке инфракрасных спектров полиэтилена. Наиболее полные и точные исследования провели Рагг [28] и Кросс [9]. Последняя работа представляет особый интерес, поскольку в ней была определена зависимость между интенсивностью поглощения метильных групп и плотностью полимера. Степень кристалличности полиэтилена была определена при помощи нескольких различных методов, основанных, например, на измерениях плотности инфракрасных спектров, дифракции Х-лучей и теплоемкости. Ни один из этих методов не принимался за абсолютный, но метод, основанный на определении плотпости полимера, по-видимому, один из дающих наиболее достоверные данные. Поэтому Кросс впервые установил, что существует тесная зависимость между числом метильных групп в нолиэтиленах и их кристалличностью. [c.169]

    Этот механизм чрезвычайно гибок и потому может легко объяснить картииу пепредельных структур, на11денных и полиэтилене. Он согласуется также с наблюдаемым фактом, что на молекулу полиэтилена непредельность является практически величиной постоянной. Так, папример, Кросс [9 нашел, что, начиная от твердых полимеров молекулярного веса 15 ООО до смазок низкого молекулярного веса до 480 и кончая жидкими продуктами пиролиза молекулярного веса 220, непредельность колебалась в пределах от 0,3 до 0,4 двойных связей на молекулу. [c.173]

    Можно работать нри значительно более низких давлениях, если использовать в качестве катализатора алкилалюминий в смеси с тетрахлорэтаном [266, 267], окисью хрома на носителе [268— 270], никелем или кобальтом на древесном угле [271] или промо-тированным молибдатом алюминия [272]. При этом полимеры имеют более линейную структуру. Подобным образом может быть получен и полипропилен. Из этилено-нропиленовых и этилено-бутеновых смесей можно получить высокомолекулярные сополимеры с хорошей эластичностью. Полиэтилен представляет интерес прежде всего с точки зрения его отличных электроизоляционных свойств его химическая стойкость, легкость обработки, легкий вес и большая упругость дают возможность его применения для многих других целей. [c.581]

    Кристь-лличеокие полимеры образуются в том случав, если их макромолекулы достаточно гибкие и имеют регулярную структуру. Тогда при соответствупцих условиях возмошш фазовыВ переход внутри пачки и образование пространственных решеток кристаллов. Кристаллизующимися полимерами являются полиэтилен, полипропилен, полиамиды и др. Кристаллизация осуществляется в определенном интервале температур. [c.22]

    Улучшение кристаллической структуры с помощью модифика- торов структуры. Имеется много предложений по совершенствованию процессов депарафинизации и обезмасливания путем введения в сырьевой раствор различных добавок и присадок [144—146 и др.]. Для улучшения кристаллической структуры были рекомендованы депрессорные присадки, в особенности парафлоу (продукт конденсации хлорированного парафина с нафталином) в количестве 0,1 —1,6 вес. %, сантопур (продукт конденсации хлорированного парафина с фенолом) в количестве 0,05—1,0 вес. %, полисти-ролметакрилаты (0,2—0,6 вес. %) и ряд других присадок. В патентах [147—153] в качестве модификаторов структуры парафина в процессах депарафинизации и обезмасливания рекомендуются продукты алкилирования бензола, толуола или нафталина хлорированным парафином, полиэтилен и полиэтиленовые воски, смесь сополимера винилацетата и диалкилфумарата, а также парафино- / ме углеводороды is-С22 [153]. Добавка их позволяет снизить" кратность разбавления, улучшить четкость разделения парафина и масла и повысить скорость фильтрации. [c.155]

    Во-вторых, нанесение полимерного защитного покрытия резко меняет природу материала подложки место кристаллического атомного соединения - металла - занимает аморфное атомное соединение - полимер, т.е. происходит замена типа электронной структуры материала подложки. Замена кристаллического атомного соединения, у которого каждый электрон взаимодействует сразу со всей системой в целом, на аморфное атомное соединение, электронная структура которого представляет собой набор дискретных уровней, разделенных высокими потенциальными барьерами, препятствующими распределению электронных волн за границу каждой данной межатомной связи, меняет механизм взаимодействия подложки с такими типичными молекулярными твердыми соединениями, какими являются кристаллические парафиновые частицы. В результате такой замены более интенсивная адгезионная связь, основанная на образовании двойного электрического слоя, возникающего в результате контактной электризации поверхностей металла и парафиновой частицы, с энергией более 65 кДж/моль /56/, сменяется адгезионной связью, определяемой ван-дер-ваальсовыми силами, энергия которых не превышает 50 кДж/моль. Поэтому смена металлической поверхности на полимерную уже сама по себе должна привести к ослаблению адгезионной связи. Действительно, как бьшо показано экспериментально /30/, сила прилипания парафина к поверхности такого наиболее интенсивно парафинирующегося полимера, как полиэтилен, в 2,3 раза ниже, чем у стали. [c.143]

    Полиэтилен высокого давления имеет не чисто цепочечную, н т также и разветвлашуто структуру скелета, что ухудшает потребитель ские свойства такого полиэтилена [c.87]

    В 1953 г. Карл Циглер в Гермашш и Джулио Натта (Милан) создали катализатор, позволяющий проводить полимеризацию даже при атмосферном давлении. Это позволило снять сразу несколько проблем. Во-первых, избежать высокого давления и температуры (при этом полиэтилен и другие полимеры при каталитической или ионной полимеризации получаются неразветвленные). Это резко улучшает свойства полимера - более высокая температура плавления, хорошие механические свойства. Во-вторых, достаточно просто регулировать длину цепи образующегося полимера (грубо говоря, количеством катализатора). В третьих, появилась возможность регулировать структуру полимеров. [c.88]

    К неомыляемым полимерам (число омыления менее 20) относятся полиэтилен, полиизобутилен, полистирол, полиспирты, полиметиленфенолы, поливинилацетали, поликетоны. полиальдегиды, поливиниловые эфиры. К полимерам с высокими числами омыления (более 200) относятся полимерные сложные эфиры карбоцепной и гетероцепной структуры. [c.32]

    Как и парафины, полиэтилен при на1рева нии на воздухе подвергается медленному окислению (старению). Поглощение первых доз кислорода вызывает еиижеиие молекулярного веса полимера и температуры его размягчения. В макромолекулах появляются альдегидные и кетонные группы. При нагревании частично окисленного полиэтилена молекулярный вес ого увеличивается в результате соединения макромолекул кислородными мостиками. Таким образом, процесс старения полиэтилена сопровождается изменением не только химического состава макромолекул, ио и их структуры. В процессе старения полиэтилен приобретает сетчатую структуру и потому становится нерастворимым. При этом происходит также потеря эластических и пластических свойств полиэтилена. Пленка становится жесткой и хрупкой. Солнечный свет илп ультрафиолетовое облучение епо-еобствуют ускорению процесса окисления полиэтилена. [c.211]

    Для повышения прочности полимера и п )идания ему большей перастворимости, а также для более надежного сохранения формы изделия, находящегося под нагрузкой при повышенных температурах (формоустойчивость), с одновременным сохранением высокоэластических свойств хлорсульфонированному полиэтилену придают сетчатую структуру путем соединения макромолеку/  [c.223]


Смотреть страницы где упоминается термин Полиэтилен структура: [c.115]    [c.202]    [c.517]    [c.18]    [c.23]    [c.23]    [c.238]    [c.573]    [c.5]    [c.208]    [c.223]   
Линейные и стереорегулярные полимеры (1962) -- [ c.55 , c.59 , c.129 , c.134 , c.135 , c.315 , c.316 ]

Технология синтетических пластических масс (1954) -- [ c.178 ]

Технология пластических масс Издание 2 (1974) -- [ c.71 ]

Физика макромолекул Том 3 (1984) -- [ c.378 , c.379 ]

Химия полимеров (1965) -- [ c.57 , c.102 ]

Введение в химию высокомолекулярных соединений (1960) -- [ c.197 ]

Основы технологии переработки пластических масс (1983) -- [ c.17 ]

Химия искусственных смол (1951) -- [ c.230 ]

Технология производства полимеров и пластических масс на их основе (1973) -- [ c.125 ]

Полиолефиновые волокна (1966) -- [ c.39 ]

Линейные и стереорегулярные полимеры (1962) -- [ c.55 , c.59 , c.129 , c.134 , c.135 , c.315 , c.316 ]

Синтетические полимеры и пластические массы на их основе Издание 2 1966 (1966) -- [ c.35 , c.37 ]




ПОИСК





Смотрите так же термины и статьи:

О спиральных и полосатых структурах полиэтилена (совместно с М. Б. Константинопольской и 3. Я. Берестневой)

Полиэтилен высокого давления структура

Полиэтилен высокой плотности структура

Полиэтилен двухфазная структура

Полиэтилен изменение структуры

Полиэтилен кристаллическая структура

Полиэтилен молекулярная структура

Полиэтилен структура и свойства

Полиэтилен структура сферолитов

Полиэтилен структура шиш-кебаб

Полиэтилен структуры шиш-кеба

Полиэтилен, диэлектрическая проницаемость замещенные полимеры, структур

Полиэтилен, диэлектрическая проницаемость структура кристаллов

Структура и свойства полиметилена и полиэтилена

Тонкая структура полиэтилена



© 2025 chem21.info Реклама на сайте