Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиэтилен структура и свойства

    Эти различные свойства обусловлены различиями в построении молекул. Полиэтилен высокого давления состоит из молекул с разветвленной структурой — им труднее кристаллизоваться и плотность такого полиэтилена поэтому ниже (0,920—0,925 г/см кстати, его часто называют полиэтиленом низкой плотности). Полиэтилен низкого давления (высокой плотности) имеет линейно вытянутые упорядоченные молекулы, поэтому его плотность может достигать 0,97 г/см  [c.127]


    Под действием света и тепла в присутствии кислорода воздуха полиэтилен окисляется (старение). При старении макромолекулы полиэтилена соединяются кислородными мостиками, что вызывает изменение его химического состава и структуры. Полиэтилен приобретает сетчатую структуру, теряет пластические свойства и эластичность. Пленка полиэтилена становится жесткой и хрупкой. Для предотвращения старения в полиэтилен вводят антиокислители (стабилизаторы) ароматические амины, фенолы и сернистые соединения. Добавляют и некоторое количество наполнителей (например, сажу), которые повышают отражающую способность полиэтилена по отношению к ультрафиолетовым лучам, атмосферостойкость. [c.138]

    Полиэтилен, полученный последними двумя способами (полиэтилен низкого давления), имеет строго линейное строение, более высокую молекулярную массу до 70 000 и температуру плавления на 20° выше, чем полиэтилен высокого давления с разветвленной структурой. Зависимость основных механических свойств полиэтилена от молекулярной массы представлена на рис. 94. Полимеризация этилена при высоком давлении представляет собой цепную реакцию, протекающую по свободно-радикальному механизму с выделением большого количества теплоты  [c.216]

    Для моделирования свойств смол и асфальтенов использовался полиэтилен низкой кристалличности (от 5 до 10%), определенной с помощью ИК-спектроскопии. Рентгенограмма также показала наличие слабых рефлексов, полоса — (200) при 3,7 А. Полиэтилен служил для имитации алифатической части молекул асфальтенов, а в качестве ароматической части таковых бралась сажа. Конечно, оба компонента в этой искусственной смеси (полиэтилен и сажа) не воспроизводили тип углеродного скелета алифатической и ароматической частей молекул асфальтенов. Это была искусственная модель (заменитель), в какой-то мере чисто формально позволившая выявить характер влияния двух образцов углеродистого вещества с разным типом С—С-связей алифатической (полиэтилен) и графитоподобной — ароматической (сажа), на физическую упаковку (структуру) этой бинарной смеси — заменителя асфальтенов. Смесь сажа—полиэтилен составлялась постепенным добавлением сажи к полиэтилену под гидравлическим резиновым прессом. Образец этой смеси проводился 15 раз через пресс. Рентгеновские измерения производились при интенсивности в интервале 20=8н-100°. Были получены записи рентгеновской дифракции для различных асфальтенов и нефтяных смол (рис. 46). Путем нормализации этих кривых и сравнения их с независимой кривой распределения углерода в интервале (sin 0)Д=0,08-н0,5 были получены кривые рентгеновской дифракции (рис. 47) для исследованных природных образцов, которые сопоставлялись с кривыми для образцов кристаллического полиэтилена, сажи и их смесей (рис. 48). Такой прием нормализации был применен с целью разрешения 7- и (002)-полос, которые в дальнейшем служили для количест- [c.232]


    Радиационная деструкция происходит под влиянием нейтронов, а также а-, р-, у-излучения. В результате разрываются химические связи (С—С, С—Н) с образованием низкомолекулярных продуктов и макрорадикалов, участвующих в дальнейших реакциях. Облучение полимеров изменяет их свойства с образованием двойных связей или пространственных структур (трехмерной сетки) или приводит к деструкции. Но иногда происходит и улучшение качеств облучаемого полимера. Например, полиэтилен после радиационной обработки приобретает высокую термо- и химическую стойкость. Радиоактивное излучение, ионизируя полимерные материалы, способно вызывать в них и ионные реакции. [c.411]

    Характер надмолекулярных структур, их размеры н взаиморасположение, плотность упаковки молекул в первичных элементах структуры и, наконец, морфология сложных кристаллических образований должны оказывать влияние на величину и характер диффузии и растворимости низкомолекулярных веществ в полимерах. В пачке, являющейся основным элементом надмолекулярной структуры аморфного полимера, обеспечивается более или менее полная параллелизация участков цепных молекул, поэтому можно предположить, что в самой пачке более плотная упаковка молекул, чем в промежутках, отделяющих пачки друг от друга. По аналогии с переносом газов и паров через кристаллические полимеры можно считать, что перенос низкомолекулярных веществ в аморфных полимерах будет происходить преимущественно по границам раздела пачек. В результате огибания пачек молекулами диффундирующего низкомолекулярного вещества путь молекул в полимере будет возрастать и, следовательно, значение эффективного коэффициента диффузии уменьшается. Диффузия по межпачечным пространствам должна характеризоваться также и меньшей энергией активации, так как в областях между пачками должно наблюдаться уменьшение межмолекулярных сил и плотности энергии когезии, а также повышение конфигурационного набора цепных молекул. Различие в размерах и формах кристаллических образований сказывается на изменении ряда физических свойств полимеров, в том числе и на процессах переноса низкомолекулярных веществ в полимерах. Так, было показано, что на коэффициенты диффузии низкомолекулярных углеводородов и некоторых постоянных газов в полиэтилене влияют термическая обработка и предыстория образцов полиэтилена, что связано с изменением их кристаллической структуры 2. [c.155]

    Свойства полиэтилена определяются структурой его макромолекул, которая может быть линейной и разветвленной. Разделение полиэтилена на продукты низкого и высокого давления является в настоящее время неточным, так как было показано [32], что и при высоком давлении (порядка 7000 ат) можно получить полиэтилен линейной структуры, свойства которого подобны свойствам полиэтилена низкого давления. [c.14]

    Влияние молекулярной структуры на относительное удлинение при разрыве и истинную прочность исследовалось в работе [153]. Авторы сравнивали образцы ПЭВД, имеющего большое число коротких ветвей при наличии длинных, с образцами промышленного ПЭНД, представляющего собой линейный полимер с незначительным числом коротких ветвей, и сополимера этилена с пропиленом (СЭП), моделирующего линейный полиэтилен, близкий по содержанию коротких ветвей к ПЭВД. ММР образцов сравнительно близки. Это позволило проследить влияние разветвленности на механические свойства. [c.151]

    Разделение полиэтилена па продукты низкого и высокого давления является в настоящее время неточным, так как было показано [31], что и при высоком давлении (порядка 7000 ат) можно получить полиэтилен линейной структуры, свойства которого подобны свойствам полиэтилена низкого давления. [c.15]

    Стереорегулярные полимеры обычно получают методом ионной полимеризации с использованием комплексных катализаторов. Стереорегулярной структурой обладают натуральный каучук, а также некоторые синтетические полимеры, например полиизобутилен, полиэтилен, полипропилен. Стереорегулярность структуры изменяет тепловые и механические свойства полимеров. [c.358]

    Фотохимическая деструкция зависит от продолжительности и интенсивности освещения. Так, полиэтилен разрушается при освещении в течение 2—3 лет (в темноте, при обычной температуре за этот срок не наблюдается никаких изменений в структуре полимера). Жесткость пленок из бутадиенстирольного каучука после 20 дней естественного облучения в марте увеличивается на 870%, а в мае — на 1700% (в темноте за 3 года свойства этого материала изменяются только на 200 /u). [c.411]

    Высокомолекулярные цепи содержатся в структурах многих органических природных или синтетических веществ, которые часто обладают весьма ценными свойствами (например, в целлюлозе, белках, каучуке, полиэтилене и перлоне). Параллельно расположенные или скрученные цепи образуют гибкую нить. Эластичность резиноподобных веществ обусловлена нерегулярным сшиванием макромолекул между собой. [c.359]


    Диэлектрические свойства, влагостойкость и инертность по отношению к агрессивным реагентам у полиэтилена не связаны с его структурой, а обусловлены химическим строением макромолекулы, являющейся по существу предельным углеводородом. Поэтому полиэтилен низкого давления, если он хорошо очищен от следов катализатора и других примесей (зольность 0,04—0,07%), по этим свойствам равноценен полиэтилену высокого давления. Если повысить зольность до 0,6%, то тангенс угла диэлектрических потерь при 10 гц может возрасти до 0,0010—0,0015. Загрязнения также отрицательно сказываются на водопоглощаемости и химической стойкости. [c.99]

    При небольшом числе пропиленовых звеньев (т до 20%), продукт сохраняет кристаллическую структуру, но по сравнению с полиэтиленом, полученным тем же методом, более эластичен, менее тверд и по этим свойствам приближается к полиэтилену высокого давления. Сополимеры этилена и пропилена имеют марку СЭП. При числе звеньев пропилена более 20% продукт полностью аморфный, обладает свойствами, характерными для каучуков. Наиболее ценные технические свойства достигаются, когда п1т равно 1,5—2. [c.108]

    Химические свойства полимеров определяются их непредельностью. На присоединение мономеров при образовании линейных цепей затрачивается одна двойная связь, а другая остается в структуре основной цепи или в боковых группах макромолекулы. Рассмотренные ранее полимеры, в частности полимерные углеводороды (полиэтилен, полиизобутилен и др.), — предельные соединения. Одна двойная связь, приходящаяся на очень больщое число атомов, не оказывает какого-либо влияния на свойства. [c.177]

    Для молекулы полиэтилена характерна линейная не-разветвленная структура с наличием редких боковых метальных групп. Свойства полиэтилена зависят от длины полимерной цепи, ее строения, а также от механизма протекания реакции полимеризации этилена. При получении полиэтилена низкой плотности (ПНП) полимеризация происходит при высоком давлении (ГОСТ 16337—77 Е), а при получении полиэтилена высокой плотности (ПВП) — при низком давлении (ГОСТ 16338—70) [59, с. 4—8, 12]. Полиэтилен низкой плотности получают полимеризацией этилена при 200 С и давлении выше 100 МПа в присутствии в качестве инициатора небольшого количества кислорода. Молекулярная масса полимера 18 000—25 000. Полимер состоит из линейных молекул, в которых на каждые 1000 атомов приходится 20—50 метильных групп содержание кристаллической фазы составляет 60%. [c.84]

    Полиэтилен, выпускаемый по ТУ 6-05-05-29—77, также несколько отличается от полиэтилена, выпускаемого по ГОСТ 16338—77, ио Структуре и свойствам. Он содержит небольшое количество боковых ответвлений и характеризуется узким и средним ММР. Это приводит к повышению механических свойств и ударной вязкости, но к снижению стойкости к растрескиванию. Путем сополимеризации получают марки 40107—ООО, 40208—003, 40308—005 с высокой стойкостью к растрескиванию при сохранении хороших механических свойств. [c.222]

    Полиэтилен высокого давления имеет не чисто цепочечную, но также и разветвленную структуру скелета, что ухудшает потребительские свойства такого полиэтилена. [c.87]

    Появился и ультравысокомолекулярный полиэтилен. Уже есть универсальные установки, которые могут выпускать полиэтилены с самой разной структурой. Будущее готовит нам новые сюрпризы, и все большее значение в нашей жизни будут иметь полимеры. Биохимия изучает химический состав веществ, содержащихся в живых организмах, их структуру, свойства, места локализации, пути образования и превращения. Основные задачи биохимии — исследования обмена веществ (метаболизма) и регуляции энергетических процессов в клетке (биоэнергетика), изучение природы действия ферментов (энзимология), анализ биохимических закономерностей в ходе эволюции живых организмов. [c.35]

    Исключительно большое значение в последние годы приобрела радиационно-химическая технология, изучающая и разрабатывающая методы и устройства для наиболее экономичного осуществления с помощью ионизирующих излучений физико-химических процессов с целью получения новых материалов, а также придания материалам и готовым изделиям улучшенных (или новых) эксплуатационных свойств. Наибольшего успеха радиационно-химическая технология (РХТ) достигла в связи с разработкой процессов радиационной модификации полимеров (особенно полиэтилена и поливинилхлорида). Радиационная модификация (т. е. изменение свойств под действием излучения) позволяет создать, например, в полиолефинах более жесткую структуру, повысить термостойкость, что дает возможность изготовленные из них конструкционные материалы эксплуатировать при высоких температурах вплоть до температуры термолиза. Наряду с этим улучшаются и электрофизические свойства. Облученный полиэтилен используют для изоляции высокочастотных кабелей вместо дорогого тефлона. Такая замена позволяет сэкономить до 200 руб. на 1 км кабеля. В нашей стране осуществлен процесс радиационной вулканизации изделий на основе силоксановых каучуков с помощью у-излучения. Облучая пропитанную мономером древесину низкого качества (оси.пу, березу), получают древесио-пластические компо- [c.93]

    Можно работать нри значительно более низких давлениях, если использовать в качестве катализатора алкилалюминий в смеси с тетрахлорэтаном [266, 267], окисью хрома на носителе [268— 270], никелем или кобальтом на древесном угле [271] или промо-тированным молибдатом алюминия [272]. При этом полимеры имеют более линейную структуру. Подобным образом может быть получен и полипропилен. Из этилено-нропиленовых и этилено-бутеновых смесей можно получить высокомолекулярные сополимеры с хорошей эластичностью. Полиэтилен представляет интерес прежде всего с точки зрения его отличных электроизоляционных свойств его химическая стойкость, легкость обработки, легкий вес и большая упругость дают возможность его применения для многих других целей. [c.581]

    В 1953 г. Карл Циглер в Гермашш и Джулио Натта (Милан) создали катализатор, позволяющий проводить полимеризацию даже при атмосферном давлении. Это позволило снять сразу несколько проблем. Во-первых, избежать высокого давления и температуры (при этом полиэтилен и другие полимеры при каталитической или ионной полимеризации получаются неразветвленные). Это резко улучшает свойства полимера - более высокая температура плавления, хорошие механические свойства. Во-вторых, достаточно просто регулировать длину цепи образующегося полимера (грубо говоря, количеством катализатора). В третьих, появилась возможность регулировать структуру полимеров. [c.88]

    ВИИ высоких температур. Показано, что в зависимости от природы модифицирующих компонентов, возможно формирование регулярных структур, обеспечивающих получение покрытий с заданными характеристиками (твёрдость, влагопоглощение, вязкость и другие свойства).Оптимизированы составы композиционных материалов на основе аминоформальдегидных олигомеров и хлорированных полимеров модифицированных четвертичными аммониевыми основаниями, алкилсульфонатами, карбоксиметилцел-люлозой и фосфатами аммония. Исследованы процессы межфазного взаимодействия на границе раздела модифицированное связующее - наполнитель. Показано, что введение в состав композиции модифицирующих добавок приводит к увеличению адсорбционного взаимодействия и смачивания и улучшает комплекс технологических и эксплуатационных характеристик. Исследовано влияние высоких температур на огнезащитные свойства разработанных материалов. Установлено, что наибольший коэффициент вспучивания и наилучшие огнезащитные свойства имеют композиционные материалы, содержащие в качестве основных компонентов - аминоальдегидный олигомер и поливи-нилацетат, а в качестве вспучивающих систем - фосфаты аммония и уротропин - хлор-сульфированный полиэтилен, модифицированный хлорпарафинами, а в качестве вспучивающих компонентов - полифосфат аммония и пентаэритрид. Разработаны технологические процессы получения огнезащитных материалов. Получены покрытия на субстратах различной природы (дерево, металл, кабельные покрытия) и разработана технология их нанесения. Проведен комплекс натурных испытаний при действии открытого пламени. Установлено, что огнезащитные материаты на основе реакционноспособных олигомеров могут быть успешно использованы для защиты металлов, при этом коэффициент вспучивания достигает 10-20 кратного увеличения толщины покрытия при эффективности огнезащиты - 0,5 часа. Состав на основе хлорсульфированного полиэтилена успешно прошёл испытания в качестве огнезащитного покрытия кабельных изделий. [c.91]

    Как и парафины, полиэтилен при на1рева нии на воздухе подвергается медленному окислению (старению). Поглощение первых доз кислорода вызывает еиижеиие молекулярного веса полимера и температуры его размягчения. В макромолекулах появляются альдегидные и кетонные группы. При нагревании частично окисленного полиэтилена молекулярный вес ого увеличивается в результате соединения макромолекул кислородными мостиками. Таким образом, процесс старения полиэтилена сопровождается изменением не только химического состава макромолекул, ио и их структуры. В процессе старения полиэтилен приобретает сетчатую структуру и потому становится нерастворимым. При этом происходит также потеря эластических и пластических свойств полиэтилена. Пленка становится жесткой и хрупкой. Солнечный свет илп ультрафиолетовое облучение епо-еобствуют ускорению процесса окисления полиэтилена. [c.211]

    Для повышения прочности полимера и п )идания ему большей перастворимости, а также для более надежного сохранения формы изделия, находящегося под нагрузкой при повышенных температурах (формоустойчивость), с одновременным сохранением высокоэластических свойств хлорсульфонированному полиэтилену придают сетчатую структуру путем соединения макромолеку/  [c.223]

    Полимеры в чистом виде применяют в тех случаях, когда их свойства удовлетворяют необходимым требованиям без введения вспомогательных веществ. В основном это термопластичные материалы аморфной или кристаллической структуры. Упомянутый выше полистирол находит применение в виде прессованных изделий, нитей и пленок (стирофлекс), а полиметилметакрилат— в виде блоков и листов. Из чистого полиэтилентереф-талата состоит пленка лавсан, которая применяется в качестве пазовой изоляции и изоляции обмоточных проводов. К материалам этой группы относятся полиэтилен (не имеющий стабилизирующих добавок), большое число синтетических волокнистых материалов. [c.27]

    Углеводороды давно известны как хорошие диэлектрики. Например, у парафина высокое удельное объемное сопротивление— порядка 10 —10 ом-см и низкие диэлектрические потери. В качестве жидких диэлектриков широко применяются нефтяные масла (трансформаторное, конденсаторное и др.), представляющие собой смеси углеводородов различного строения. Как было показано выше (стр. 56), высокомолекулярные углеводороды, полученные синтетическим путем, должны такясе обладать хорошими электроизоляционными характеристиками ввиду отсутствия в структуре молекул полярных групп. Вместе с тем большие молекулярные веса синтетических полимеров и особенности их структуры обусловливают появленце свойств, которыми природные углеводороды не обладают. Например, полиэтилен, а также полученный за последнее время полипропилен по сравнению с парафином имеют значительно более высокую температуру плавления, большую твердость и обнаруживают такие новые свойства, как гибкость, прочность на разрыв, способность подвергаться экструзии и др. [c.92]

    Указанные особенности оказывают влияние на структуру и свойства полиэтилена, которые в зависимости от типа реактора несколько различаются. Полиэтилен, полученный в трубчатом реакторе, имеет большую разветвленность и меньшую полидисперсность, чем получеш1ый в автоклавном реакторе. Этот полиэтилен более пригоден для производства пленок, тогда как полиэтилен, полученный в автоклавном реакторе, находит широкое применение в производстве покрытий. Подробно зависимость структуры и свойств полиэтилена от параметров полимеризации рассмотрена в гл. 7. [c.30]

    Заметное изменение сорбции при ориентации кристаллических полимеров наблюдали также Каргин и ГатовскаяБыло показано, что сорбция н-пентана каароном и н-гексана найлоном при ориентации повышается, а сорбция н-гексана полиэтиленом уменьшается. Если повышение сорбции полиамидов обусловлено разрыхлением структуры, то в случае полиэтилена понижение плотности упаковки может перекрываться фактором обеднения конфигурационного набора при ориентации. На основании проделанных исследований Каргин и Гатовская пришли к выводу , что изменения сорбционных свойств кристаллических и жестких аморфных полимеров при ориентации определяются в основном изменением плотности упаковки цепных молекул. [c.148]

    Наибольшее влияние на свойства ХСПЭ (как и на свойства ХПЭ) оказывают молекулярная масса, разветвленность и степень кристалличности исходного ПЭ. Для получения ХСПЭ используется ПЭ различной структуры со средней молекулярной массой 20—30 тыс. С увеличением молекулярной массы (>30 тыс.) уве-.лшчивается жесткость полимера, уменьшается его термопластичность, ухудшаются технологические свойства получаемого ХСПЭ, повышаются остаточные деформации композиций на его основе.. С уменьшением средней молекулярной массы (<18 тыс.) ухудшаются физико-механические свойства вулканизатов. Наилучшими (свойствами обладают ХСПЭ, полученные из полиэтиленов, имеющих однородный состав по молекулярной массе, регулярную структуру, большую степень кристалличности. Такими свойствами обладает ПЭ высокой плотности, поэтому новые типы ХСПЭ выпускаются на его основе [57, 58]. [c.36]

    ФУ, когда фрагменты нли мономолекулы соединяются в це-Например, натуральный каучук имеет линейную структуру [вйекул. Цепи могут быть и более или менее разветвленными, пример природный амилопектин и синтетический полиэтилен. W вот для эпоксидных смол характерна структура трехмерных "14>0 транственных сеток. Естественно, что пространственное строение макромолекул имеет существенное, а иногда н решающее значение для свойств изготавливаемых из них материалов. Например, вдрбы превратить линейный полимер из растворимого в полностью нерастворимый, достаточно образовать в каждой огромной макромолекуле всего одну нли две поперечные связи. Открытия молекулярной биологии еще ярче подчеркивают значение структуры макромолекул, которая определяет их свойства. Например, топология ДНК существенна для наследственных факторов. [c.33]

    Среднего давления двойные связи в основном приходятся на концевые группы, причем у полиэтилена среднего давления их в 5 раз больше, чем у полиэтилена низкого давления. Полиэтилен обладает высокоорганизованной структурой, которая зависит от способа, получения и переработки 11 . В определенных условиях высокоорганизованная структура полиэтилена представляет собой сфероли-ты и даже одиночные кристаллы. Все эти особенности строения полиэтилена отражаются на свойствах вулканизатов, полученных на основе совмещения каучуков с полиэтиленом. [c.56]

    Кристаллический полипропилен наиболее легкий из всех известных жестких полимеров (пл. 0,9) он отличается высокой прочностью на разрыв, жесткостью и твердостью. Благодаря кристаллической структуре стереорегулярный полипропилен сохраняет форму и хорошие механические свойства вплоть до температуры размягчения и может поэтому подвергаться обычной стерилизации. По прочности на разрыв он превосходит полиэтилен, уступая ему по морозостойкости (Т р от —5 до —15°С) однако можно снизить хрупкость при низких температурах введением в макромолекулу изотактического полипропилена небольшого количества эгиленовых звеньев. [c.285]

    Рассмотрение повторяющегося звена является допущением, которое позволяет хорошо описать свойства полимеров, так как повторяющееся звено является той наипростейшей структурой базиса, к которой может быть сведен полимер (не по набору атомов, а по набору ван-дер-ваальсовых, химических, водородных и диполь-дипольных связей). На самом деле в структурный элемент входит больше одного повторяющегося звена. Так, б полиэтилене их два. Можно определить среднее число звеньев, входящих в структурный элемент (даже решить обратную задачу добиваясь совпадения критических температур, найти число звеньев, входящих в структурный элемент). [c.24]


Смотреть страницы где упоминается термин Полиэтилен структура и свойства: [c.2]    [c.23]    [c.573]    [c.9]    [c.126]    [c.33]    [c.146]    [c.61]    [c.727]    [c.33]    [c.93]   
Химия синтетических полимеров Издание 3 (1971) -- [ c.241 ]




ПОИСК





Смотрите так же термины и статьи:

Полиэтилен структура



© 2025 chem21.info Реклама на сайте