Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки волокнистые

    Кроме растворимых, существуют нерастворимые белки волокнистого строения. Два таких белковых вещества — шерсть и шелк — применяются человечеством с древнейших времен для изготовления одежды. Шерсть состоит из волокнистого белка кератина, содержащего большое количество цистиновых сшивок, вследствие чего кератин нерастворим в воде и почти не набухает. Натуральный шелк, производимый гусеницей шелкопряда, состоит из белка фиброина сравнительно примитивной структуры. Фиброин нерастворим в воде, но может быть растворен в концентрированных солевых растворах. [c.38]


    Продолжая изучение полимеров, Карозерс попытался полимери-зовать смесь диаминов и дикарбоновых кислот и получил волокнистый полимер. Длинные молекулы этого полимера содержат комбинации атомов, подобные пептидным связям (см. разд. Белки ) в белке шелка. Вытягивая эти волокна, получают то, что мы сегодня называем найлоном. Карозерс завершил эту работу буквально накануне преждевременной смерти. Разразившаяся вторая мировая война заставила химиков на время забыть об открытии Карозерса. Однако после окончания войны найлон начал вытеснять шелк и вскоре пришел ему на смену (в частности, в производстве чулочного трикотажа). [c.135]

    Искусственные волокнистые материалы, получаемые химической переработкой природного сырья (растительного или животного) с выделением и очисткой соответствующего полимера (целлюлозы, белков). [c.13]

    Первое связано с тем, что белковые системы в отсутствие воды не функционируют. Безводные белки - хрупкие, непригодные для использования в виде материалов вещества. Вода, таким образом, является важнейшим компонентом, обеспечивающим целевое применение этих полимеров, в том числе в виде волокнистых материалов. [c.336]

    Эта группа реакций относится в основном к превращениям связей Н8- и -8-8- в полимерном субстрате при воздействии на белки различных восстановителей. Они используются для увеличения растворимости полипептида, а также как промежуточный этап в процессах регулирования формоустойчивости белковых волокнистых материалов. [c.361]

    По форме молекул все белки делят на две большие группы волокнистые, или фибриллярные, и глобу-л я р н ы е. [c.360]

    По форме молекул все белки делят на две большие группы волокнистые (или фибриллярные) и глобулярные. Первые представляют собой нерастворимые в воде длинные нитевидные молекулы, полипептидные цепи которых не имеют глобулярной формы, а вытянуты вдоль одной оси. Большинство фибриллярных белков выполняет структурные или защитные функции. [c.425]

    Белковые вещества классифицируют также по форме их молекул, подразделяя на две группы а) фибриллярные (волокнистые) белки, молекулы которых имеют нитевидную форму к ним относят фиброин шелка, кератин шерсти б) глобулярные белки, молекулы которых имеют округлую форму к ним относятся, например, альбумины, глобулины и ряд других, в том числе и сложные белки. [c.298]

    Волокнистые (фибриллярные) белки —единственные из всех, которые уже в организме находятся в частично кристаллическом состоянии цепи из молекул ориентированы вдоль длинной оси волокна в волосе, мышцах или сухожилиях и либо параллельны друг другу, либо закручены одна вокруг другой, что хорошо согласуется с их волокнистым характером и с теми функциями, которые они выполняют в живых организмах. [c.67]


    Синтетическое волокно. Полиамидные смолы. Волокнистые материалы животного происхождения (шелк, шерсть и др.) являются белковыми веществами. Их молекулы построены из длинных цепей аминокислот, связанных между собой по типу амидов. Из растворимых белков можно приготовить искусственные волокна, пропуская под давлением растворы белков (например, казеин) через фильеры. Получаемые нити последующей обработкой формальдегидом переводят в нерастворимое в воде состояние. [c.397]

    Структурообразующие белки тела человека называют фибриллярными белками (или волокнистыми, они имеют вытянутую, нитеобразную форму). Важнейшие фибриллярные белки животных — это кератин и коллаген белок кератин входит в состав волос, ногтей, мышц, рогов, игл и перьев коллаген — структурный компонент сухожилий, кожи, костей, соединительной ткани. При кипячении коллаген гидролизуется и образует растворимый в воде белок, называемый желатиной. В теле человека имеются растворимые белки, именуемые глобулярными белками. Альбумины, такие, как сывороточный альбумин, получаемый из крови животных, овальбумин яичного белка, лактальбумин молока, растворяются в холодной воде и слабом растворе соли. Глобулины, например глобулины плазмы крови, фибриноген, глобулин яичного белка, глобулин молока, растворяются в разбавленных растворах солей, но не в холодной воде. [c.384]

    Фибриллярные белки практически нерастворимы в воде и солевых растворах, обладают волокнистой структурой. Полипептидные цепи, расположенные параллельно одна другой в форме длинных волокон, образуют структурные элементы соединительных тканей. Важнейшие представители этой группы структурных белков — коллагены, кератины и эластины (разд. 3.8.3). [c.345]

    Белки в природе представлены очень большим разнообразием структур в зависимости от организации молекулярных цепей на четырех уровнях. Линейная последовательность аминокислот, составляющая полипептидную цепь, образует первичную структуру. Аминокислотный состав, число и последовательность аминокислот, а также молекулярная масса цепи характеризуют эту первичную структуру и обусловливают не только другие степени организации, но физико-химические свойства белка. Образование водородных связей между кислородом карбонильной группы и водородом МН-группы в различных пептидных связях предопределяет вторичную структуру. Установление этих внутри- или межмолекулярных водородных связей приводит к возникновению трех типов вторичной структуры а-спираль, Р-структура в виде складчатого листка или тройная спираль типа коллагена. В зависимости от характера белков в основном образуются вторичные структуры одного или другого вида. Однако некоторые белки могут переходить из одной структуры в другую в зависимости от условий, в которых они оказываются, либо образовывать смесь частей в виде упорядоченных а- и Р-структур и неорганизованных частей, называемых статистическими клубками. Между боковыми цепями аминокислот, составляющими полипептидную цепь, устанавливаются взаимодействия ковалентного характера (дисульфидные связи) или нековалентные (водородные связи, электростатические или гидрофобные взаимодействия). Они придают белковым молекулам трехмерную организацию, называемую третичной структурой. Наконец, высшая степень организации может быть достигнута нековалентным связыванием нескольких полипептидных цепей, что приводит к образованию структуры, называемой четвертичной. Многие белки имеют пространственную конфигурацию сферического типа и называются глобулярными. В противоположность этому некоторые белки обладают продольно-ориентированной структурой и называются фибриллярными. Натуральные волокнистые [c.531]

    Приемы текстурирования имеют целью придать волокнистую структуру глобулярным или волокнистым белкам, не имеющим желаемой естественной структуры. Пищевая промышленность располагает ограниченными средствами модификации белковых молекул, поскольку использование химических процессов очень ограничено по причинам правовой регламентации. Однако можно воздействовать на нековалентные связи, предопределяющие вторичные и третичные структуры (водородные связи, электростатические и гидрофобные взаимодействия), а в некоторых случаях — на специфическую ковалентную связь (дисульфидный мостик) с целью изменения структуры белков для изготовления текстурированных продуктов питания. [c.532]

    Функциональные свойства. Для улучшения одного из функциональных свойств пищевого продукта относительно несложно ввести в него в небольшом количестве белковую фракцию с заранее определенными специфическими качествами. Сложнее ситуация в случае использования источника белка в качестве преобладающего компонента, поскольку функциональные свойства данного источника придают пищевому продукту определенные качества, которые могут быть несовместимы с заданной характеристикой продукта. Например, может быть очень желательна хорошая способность к эмульгированию, но пониженная пенистость или полное ее отсутствие либо более или менее выраженная склонность к образованию желе. Такие противоречивые требования вынуждают к сложному подбору сырья. Кроме того, изолят или концентрат с сильно изменившимися в результате текстурирующей обработки функциональными свойствами могут оказаться непригодными для данного вида использования, хотя исходное сырье было вполне приемлемо. В качестве примера можно указать на волокнистые белки гороха или конских бобов, которые обладают превосходной водоудерживающей способностью при pH, соответствующих пищевому назначению продукта, тогда как у волокнистых белков подсолнечника при тех же условиях эта способность существенно понижена. [c.630]


    Европейский рынок волокнистых белков, который уже в [c.664]

    К. Мейер предпринял совместное исследование механических свойств мышечных белков с дифракцией рентгеновских лучей. Было показано, что в расслабленном мускуле цепи главных валентностей ориентированы параллельно друг другу, а в сокращенном - каким-то иным способом. У высушенного в растянутом состоянии мускула Мейер наблюдал дифракционную картину, типичную для волокнистой структуры диаграмма высушенного сокращенного образца отвечала аморфному состоянию. Прямо связывая макроскопические механические изменения белкового вещества с его молекулярным химическим и пространственным строением, автор предположил, что источником мускульной энергии является экзотермическая химическая реакция, что позднее было подтверждено экспериментально В.А. Энгельгардтом и М.Н. Любимовой (1942 г.). [c.68]

    Полипептиды, отиосительияя молекулярная масса которых превышает 10 000, называют протеинами (белками). По форме макромолекул различают фибриллярные белки (волокнистые белки) и глобулярные белки (шарообразно построенные белки) [3.3.5]. [c.656]

    Синдром Элерса-Данло — типичный пример разнолокусной гетерогенности. Все локусы, мутации в которых вызывают синдром, имеют отнощение к синтезу белков волокнистых элементов соединительной ткани (главным образом коллагена). Коллаге-новые волокна имеют неправильную форму и расположены неупорядоченно (рис. 4.22). [c.136]

    Высокомолекулярные соединения подразделяют на природные и синтетические. К важнейшим природным полимерам относятся белки и полисахариды. Белки являются основой всего живого, они составляют существенную часть живой клетки и обеспечивают ее жизнедеятельность. Белки входят в состав кожи, мышц, сухожилий, нервов и крови, а также ферментов и гормонов, содержатся. во многих растительных и животных продуктах молоке, яйцах, зернах пшеницы, бобах и др. К белкам относятся широко применяемые в технике желатина, козеии, яичный альбумин. Из нерастворимых белков наиболее известны шерсть и шелк, отличающиеся волокнистым строением. [c.307]

    Фкбрнллярные белки представляют собой волокнистые вещества, большей частью нерастворимые в воде и солевых растворах. Полипептидные цепи в них образуют пучки, будучи ориентированы параллельно друг другу в направле[пти волокна. Пол[нтептидиые цепи таких белков рассматриваются как отдельные химические образования. К этог группе относятся кератин, миозин, фибриноген, коллаген и др. Рентгенографические исследования привели к выводу, что во многих из i rx полипептидные цепи закручены в спираль таким образом, что внугры [c.396]

    Кроме очистки стоков от загрязняющих веществ, немаловажное значение имеет извлечение ценных компонентов из растворов. Сорбционное концентрирование широко применяется в аналитической химии белков, так как позволяет избирательно выделять эти вещества из биологических сложных систем. Изучена адсорбция бычьего сывороточного альбумина (БСА) на незаряженной и поляризованной поверхности исходного и модифицированного гидроксидом титана углеродного волокна. Подобраны оптимальные условия иммобилизации белков на тонкослойных сорбентах. Показано, что для тонкослойных покрытий гидроксидом титана степень обратимости адсорбции белка зависит от текстуры исходной матриш.1. Изменение заряда повфхности волокна оказывает значительное влияние на адсорбируемость БСА модифицированным сорбентом, что обусловлено различными поверхностными свойствами исходного и титансодержащего волокна. Подобраны условия электродесорбции БСА с поверхности волокнистых материалов. [c.208]

    Фибриллярные, или волокнистые, белки (от латинского с гова ЬгШа — волокно) состоят из макромолекул в виде тонких вытянутых нитей, обычно соединенных между собой. В эту группу входят белки, являющиеся составными частями кожи и сухожилий (коллаген, желатин), волоса и рога (кератин), мышц (миозины) и др. В организме они выполняют в основном механические функция, хотя некоторые из фибриллярных белков обладают и биологической активностью. Так, названный выше миозип является ферментом он расщепляет аденазинтрифосфорную кислоту (АТФ), которая обладает большим количеством энергии, выделяемой при ее расщеплении. [c.338]

    Хотя одна водородная связь понижает энергию системы на несколько кДж/моль, коллективное действие огромного числа водородных связей между молекулами полиамидов, полипептидов и других синтетических полимеров обусловливает прочность волокон и другие ценные свойства. Волокнистые белки живых тканей также обязаны своей структурой водородным связям между молекулами полипептидов. Водородные связи между молекулами органических веществ, содержащих ОН-, КН- и СО-группы, играют большую роль в жизни растений и животных. Небольшая энергия Н-связей приводит к тому, что в живом организме они легко возникают и разрушаются, давая начало образованию множества биологически активных к<5мпонентов важных биохимических процессов. [c.275]

    По форме молекул белки можно приблизительно делить на две группы — склеропротеины и сферопротеины. Первые имеют волокнистую структуру и служат строительным материалом тканей. К ним относится коллаген, содержащийся в коже, сухожилиях, хрящах и костях. Коллаген построен в основном из глицина, пролина и оксипролина. При частичном гидролизе он превращается в желатину. Коллаген составляет почти одну треть всех животных белков. Другие склеропротеины — кератин, содержащийся в волосах, ногтях, перьях и шерсти, и фиброин из натурального шелка. В мышечных волокнах присутствуют главным образом белки миозин и актин. Они не растворяются в воде и активно участвуют в механохимических процессах, обусловливающих работу мышц. Поскольку тела млекопитающих примерно на 40% состоят из мышц, оба этих белка относятся к наиболее распространенным органическим соединениям в организмах млекопитающих. [c.194]

    Волокнистые целлюлозы поставляются в сухом виде. Степень набухания — 7 мл/г. Марки DE-22 и DE-23 — слабые анионообменники (DEAE). DE-23 освобожден от мелких частиц. Емкость обоих марок составляет 0,15 мэкв/мл (по белку — примерно вдвое ниже, чем у DE-52). Изменение объема при нейтрализации — до 15%. Марки СМ-22 и СМ-23 — слабые катионообменники (СМ). СМ-23 освобожден от мелких частиц. Емкость обоих марок — 0,09 мэкв/мл. Изменение объема при нейтрализации еще более значительно — до 30%. [c.271]

    У ионообменных сефадексов типов А-50 и С-50 емкость по низкомолекулярным ионам примерно такая же, как у целлюлоз, а емкость по белку в 2—4 раза выше, чем у микрокристаллических целлюлоз, и в 4—7 раз выше, чем у волокнистых набухают они тоже примерно в три раза сильнее. Зато зависимости объемов этих сефадексов от pH и пониой си.лы элюента вт.гражены очень сильно (рис. 114). Обращает [c.273]

    Волокнистые целлюлозы с их лучшими гидродпиамичоскнми характеристиками более удобны на этих ранних этапах, когда экстракты вязки, объем их достаточно велик, а качество разделения фракций может быть еш е не очень высоким. Микрогранулированные целлюлозы, дающ ие примерно вдвое лучшие разрешения, чем волокнистые, следует предпочесть на более поздних этапах очистки белка. [c.288]

    Использование этих ПБР предполагается из-за наличия в них белков или посредством введения в классические продукты питания, или созданием новых продуктов (обычно им придают волокнистую структуру, имитирующую текстуру мясных продуктов). Из-за функциональных свойств их вводят в пищевые полуфабрикаты, требующие дополнительных ингредиентов при изготовлении. Интерес агропищевых отраслей производства к таким промежуточным продуктам, обладающим специфическими свойствами в отношении белков животного происхождения (молочные продукты, яйца, мясо или кровь), сам по себе обеспечивает расширение сбыта в развитых странах и приведет к появлению продуктов, видоизмененных химической или физической обработкой, или даже хорошо очищенных белковых фракций. [c.360]

    Эдвардс с соавторами [34] подвергали обработке отруби, содержащие 20 % белков (Ы X 5,7), 5 % липидов, 9 % волокон, 5 % зольного остатка и 26—33 % крахмала, посредством растворения при pH 9. Сепарирование производится в два яруса оно позволяет в первую очередь разделить посредством непрерывного воздействия давлением волокнистый осадок и жидкость, содержащую крахмал и белки. Далее эту жидкость фракционируют с помощью вибрирующих сит и центрифуг. Белки осаждаются в очищенном экстракте при pH 5 (20 °С) или при pH 6, но с подогревом среды (80 °С). В зависимости от того, удаляется крахмал или нет, а также от способа осаждения белков получаемые продукты можно рассматривать как изоляты или белковокрахмальные концентраты (табл. 9.27). Изоляты содержат повышенное количество жировых веществ и не освобождены полностью от крахмала. Их выход по отношению к массе перерабатываемого сырья очень низок. Фракции, богатые крахмалом, очищаются недостаточно. [c.465]

    Однако интерес к природным полимерам как сырью для выработки текстиля резко снизился в связи с быстрым развитием органического синтеза. Так, в 1935 г. Каротерс [18] получил первое полностью синтетическое промышленное волокно из полиамида— нейлон. Лишь спустя 20 лет Бойер [14] вновь предпринял попытки филирования белков с целью изготовления белковых пищевых продуктов. Суть работы заключалась в приготовлении волокнистой массы, способной заменить мясо в рационах питания. Метод влажного филирования белков, разработанный Бойером, лежит в основе современных технологий влажного прядения белковых волокон. Однако известен ряд модификаций, которые относятся к составу обрабатываемых продуктов или к совершенствованию некоторых этапов технологического процесса. В первую очередь Вестин и Курамото [94] отработали систему непрерывного производства растворов филирования. [c.533]

    Полученным таким способом волокнам можно придать разную организацию, например, расположить их параллельными пучками, чтобы имитировать волокнистую структуру мышечной ткани. Однако необходимо соединить волокна между собой для получения продуктов с приемлемой текстурой. Когезии можно добиться термообработкой сырых волокон под давлением [32 , но чаще всего она достигается введением связующего вещества. Нередко для этого служит овальбумин, поскольку он коагулирует под действием тепла, но в состав связующих веществ могут входить и другие белки, такие, как желатин, казеин, белки сыворотки молока, клейковина, белки сои. Используются также крахмал и полисахариды типа альгината и каррагинана благодаря их загущающим и желирующим свойствам. Связующие вещества, помимо их склеивающей, когезионной роли, могут служить основой для введения пигментов, ароматизирующих добавок и липидов. Пропитку волокон можно проводить в ванне с раствором, содержащим связующее вещество. Закрепление связующего вещества происходит затем под действием прогрева, а более равномерное распределение в массе можно улучшить разделением волокон вибрацией [29] или заставив их циркулировать в противотоке связующего вещества в извилистом контуре [71]. Некоторые авторы [64] предложили технологический процесс, в котором связующее вещество не распределяется равномерно, [c.536]

    Так, в прядильные растворы вводили различные добавки клейковину и белки молока [35], крахмал в нативном состоянии, желатинированные или химически модифицированные крахмалы [73, 75, 80] липиды, красители и ароматизаторы [15], пигменты, такие, как нитрозилгемоглобин [23]. Коагулирующие растворы также подвергались многочисленным исследованиям. Для улучшения цвета и вкуса волокнистого продукта добавляли сульфит натрия в разные кислоты (молочную, уксусную, лимонную, фосфорную) и соли, входящие в состав обрабатывающих растворов. Было показано, что коагуляция белков в присутствии солей алю- [c.542]

    Филирование белков влажным способом по технологии Бойера связано с рядом неудобств. Этот способ пригоден для обработки только очищенных белков, а поэтому часто дорогостоящих, с выраженной пригодностью к филированию. Способ не дает возможности текстурировать белки, трудно поддающиеся очистке, независимо от того, находятся они в виде муки или концентратов, и белки, которые плохо филируются после таких видов технологической обработки, как химический или ферментативный гидролиз. Данный технологический процесс предполагает также денатурацию белков при высоких pH, что может приводить к изменению питательных свойств получаемого волокнистого продукта [20]. Этих затруднений можно избежать, вводя в прядильные растворы в качестве агента текстурирования полисахариды в количестве нескольких процентов. В этом случае белки входят в состав волокон просто как наполнитель. [c.543]

    Варка-экструзия — наиболее распространенный технологический процесс по выработке текстурированных растительных белков. Получаемые продукты не обладают строгой волокнистой структурой, как филированные пищевые продукты, а характеризуются губчатой структурой, или по Аткинсону [8], сетчато-пластинчатой. Таким образом, филированные белки называют аналогами мяса, тогда как продукты, вырабатываемые по технологии варка-экструзия, входят в категорию мясонаполнителей. Варка-экструзия — это непрерывный процесс, предусматривающий применение простого оборудования и несложной технологии, позволяющий получать текстурированные продукты, которые благодаря невысокой стоимости быстро вытеснили филированные белки (первое поколение текстурированных белков). По оценкам [c.546]

    Кроме того, из смесей клейковины и белков сои можно получить продукты повышенной плотности и с волокнистой структурой, используя термоэкструдер без сужения выхода. В этом случае преобладающую роль играет профиль винта, поскольку материал, хотя он и экструдируется при низком давлении (менее [c.555]

    В этих технологических процессах резка и ориентирование производятся беспорядочно и куски получаются в виде небольших лоскутов. Процесс Лиепы и Слоуна [59], наоборот, позволяет получать текстурированные продукты в виде более крупных кусков с более выраженной волокнистой структурой. Первый этап состоит в приготовлении однородной пасты из изолята растительных белков, термокоагулирующих белков, красителей и ароматизаторов, тщательно перемешиваемых с водой. Далее эту пасту прокатывают между вальцами, вращающимися с набором скорости, что приводит к образованию листков при необходимости вальцы могут подогреваться для коагуляции части белков в [c.559]

    Среди различных приемов текстурирования, которые были здесь описаны, варка-экструзия и влажное прядение волокон представляют наибольшую важность одновременно с исторической и экономической точек зрения. Эти технологии дают возможность получать продукты с очень разными структурой и текстурой. При влажном филировании волокнистые продукты, по структуре близки к вареному мясу (рис. 11.13). Благодаря этому такие продукты могут использоваться для изготовления особо сложных пищевых изделий (аналоги мяса, рыбы и новые продукты питания). Наоборот, варка-экструзия дает вздутые, вспученные продукты с более или менее пористой структурой, которые используются в основном как заменители традиционных белков. [c.560]

    Во Франции компания Рон-Пуленк в 1981 г. ликвидировала свое полупромышленное производство волокнистых белков ( Протедин ). И хотя речь идет ни о сое, ни о выработке волокон, можно указать на деятельность французской фирмы Гранд [c.664]


Смотреть страницы где упоминается термин Белки волокнистые: [c.532]    [c.319]    [c.140]    [c.336]    [c.140]    [c.303]    [c.270]    [c.272]    [c.464]    [c.302]    [c.117]    [c.70]   
Основы органической химии (1983) -- [ c.272 ]

Успехи спектроскопии (1963) -- [ c.319 ]

Курс органической и биологической химии (1952) -- [ c.324 ]




ПОИСК







© 2025 chem21.info Реклама на сайте