Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Осмий как катализатор

    Затруднений, связанных с отложениями парафина, не наблюдалось. Значительно меньшая чувствительность катализатора к изменению режимных условий следует из того факта, что добавка щелочи илн фосфорной кислоты не оказывает вредного действия, а состав продуктов остается неизменным. При работе под давлением над родием и осмием также получают жидкие и твердые продукты, однако выход их значительно меньше, чем над рутениевым катализатором в тех же условиях. [c.132]


    Метод каталитического обезвреживания газообразных отходов заключается в проведении окислительно-восстановительных процессов при температуре 75—500°С на поверхности катализаторов. В качестве носителей металлов, используемых как катализаторы (платина, палладий, осмий, медь, никель, кобальт, цинк, хром, ванадий, марганец), применяются асбест, керамика, силикагель, пемза, оксид алюминия и др. На эффективность процесса оказывает влияние начальная концентрация обезвреживаемого соединения, степень запыленности газов, температура, время контакта и качество катализатора. Наиболее целесообразное использование метода— при обезвреживании газов с концентрацией соединений не более 10—50 г/м . На низкотемпературных катализаторах при избытке кислорода и температуре 200—300°С окисление ряда низко-кипящих органических соединений (метан, этан, пропилен, этилен, ацетилен, бутан и др.) протекает нацело до СО2, N2 и Н2О. В то же время обезвреживание высококипящих или высокомолекулярных органических соединений данным методом осуществить невозможно из-за неполного окисления и забивки этими соединениями поверхности катализатора. Так же невозможно применение катализаторов для обезвреживания элементорганических соединений из-за отравления катализатора НС1, НР, 502 и др. Метод используется для очистки газов от N0 -f N02 с применением в качестве восстановителей метана, водорода, аммиака, угарного газа. Срок службы катализаторов 1—3 года. Несмотря на большие преимущества перед другими способами очистки газов метод каталитического обезвреживания имеет ограниченное применение [5.52, 5 54 5.62] [c.500]

    В нефтехимических производствах в качестве исходного сырья и полупродуктов широко применяются непредельные углеводороды. В присутствии катализаторов они полимеризуются, образуя полимеры. Однако частичные полимеризация и поликонденсация углеводородов могут протекать и без катализаторов под воздействием температуры и других факторов. При осуществлении некоторых процессов образуются высококипящие продукты, которые при дальнейшей переработке осмо-ляются. [c.121]

    Первый патент по каталитической гидрогенизации ацетилена в этилен появился в 1912 г. [68]. В этом патенте сообщалось, что катализатором гидрогенизации является любая смесь, содержащая один или несколько элементов из группы железо, никель, кобальт, медь, серебро, магний, цинк, кадмий, алюминий с одним или несколькими представителями группы платина, осмий, иридий, палладий, родий, рутений. [c.240]


    Хлораты. Соли хлорноватой кислоты более стабильны, чем гипохлориты, и выделяют кислород только в расплавленном состоянии или в водных растворах (подкисленных или в присутствии катализатора — четырехокиси осмия). Молекула хлората калия выделяет три атома кислорода  [c.138]

    На поверхности катализатора бензол может адсорбироваться либо всей плоскостью, либо одним из ребер. По А. А. Баландину это будут соответственно секстетная и дублетная модели. В случае плоскостной хемосорбции (секстетная модель) размеры молекулы бензола и расстояния между атомами металла должны соответствовать друг другу. Мультиплетная теория А. А. Баландина по параметрам решеток металлов постулирует, что катализаторами гидрирования и дегидрирования могут быть только металлы никель, кобальт, медь, рутений, иридий, палладий, платина, родий, осмий,. рений. Это подтверждено экспериментально, за исключением меди, на которой гидрирование бензола часто не наблюдалось. Однако считают что это исключение кажущееся и незначительная активность меди объясняется энергетическими факторами. [c.131]

    При сравнении таких катализаторов гидрокрекинга, как иридий, осмий, платина, рутений и родий на кислотных носителях было показано, что при содержании металлов в катализаторе в количестве 0,5% высшей активностью обладал родиевый катализатор, однако наибольший выход углеводородов С5 получен на платиновом катализаторе. [c.320]

    Роль модификаторов (родан-а-нафтол, металлический осмий или рутений, ацетаты свинца или меди и т. д.) заключается в резком снижении скорости реакции полного гидрирования с получением насыщенного изоамилового спирта. Высокий выход (практически полное превращение исходного реагента при селективности 99%) достигается также при электрохимическом гидрировании ацетиленового спирта в присутствии никелевого катализатора. [c.381]

    Примечательно, что железо остается неизменно главным компонентом катализатора с тех пор, как он был создан. Катализатор подвергался значительному количеству исследований, и все они подтверждают, что железо является наилучшим материалом для этой цели и, конечно, самым дешевым. В наиболее ранних исследованиях Хабера и Митташа было найдено, что другие металлы, такие как осмий и уран, эффективнее железа, но они более дорогие и опасны для здоровья человека. Чистое железо — эффективный катализатор, но оно быстро теряет свою активность, если, как нашел Митташ, в катализаторе нет промотирующих окислов. Установлено, что активность железного катализатора повышается при добавлении калия. Эти ранние исследования обнаружили вредное влияние на активность катализатора таких газообразных ядов, как кислород и соединения серы, которого можно избежать, используя тщательно очищенные газы. [c.157]

    Как мы уже видели, для реакции синтеза благоприятны низкая температура и высокое давление. Однако реакция практически не протекает без катализатора вследствие очень большой стабильности молекулы азота, что обусловлено высокой энергией разрыва связи N—N. Функции катализатора заключаются в образовании на каталитической поверхности нитридного соединения, которое затем гидрируется в аммиак. Связь азота с металлом достаточно слаба, тем не менее она дает возможность адсорбироваться молекулам синтезируемого аммиака. Связь азота с металлом слишком сильна для таких элементов, как литий, кальций и алюминий, которые образуют с азотом нитриды непосредственно в массе вещества. В первой серии переходных металлов оптимум между образованием поверхностного нитрида и десорбцией аммиака с поверхности получён для железа, которое, не образует нитрида непосредственно из азота, исключая случай очень высоких давлений (на порядок выше давлений синтеза), но легко образует его в реакции с аммиаком. Тем не менее железо быстро хемосорбирует азот и это и есть та адсорбция, которую обычно считают стадией, лимитирующей скорость всего процесса синтеза. Рутений и осмий, находящиеся в более высоких сериях переходных элементов, не образуют нитридов в массе и являются эффективными катализаторами синтеза. [c.158]

    Реакция синтеза аммиака катализируется металлами, имеющими не полностью застроенные d- и /- электронные уровни. К ним относятся железо, родий, вольфрам, рений, осмий, платина, уран и некоторые другие металлы. В промышленности используются контактные массы на основе железа, например, катализатор ГИАП состава  [c.198]

    Следует отметить, что не все металлы, активные в реакциях гидрирования, одинаково эффективно осуществляют миграцию двойной связи. В ряду металлов железо, никель и палладий можно оценить как хорошие катализаторы, платину и иридий - как плохие, рутений, родий и осмий занимают промежуточное положение /9/. [c.36]

    В процессах обезвреживания и уничтожения ОСМ необходимо исследование биологической активности промежуточных и конечных продуктов. Например, высокоскоростное сжигание в газовой фазе отходов, содержащих ПХД, диоксины и фураны, может (при содержании кислорода в смеси 4,5 % об.) приводить к повторному образованию фуранов и диоксинов. В связи с этим необходим контроль содержания кислорода в смеси и применение катализаторов — солей меди [202]. [c.371]


    Согласно этой теории, катализ происходит только при структурном и энергетическом соответствии катализируемых молекул данному катализатору. Теорией Баландина было предсказано, что реакции каталитического гидрирования бензола и дегидрирования циклогексана могут идти только на переходных металлах, имеющих гранецентрированную кубическую структуру или гексагональную структуру и притом атомные радиусы строго определенных размеров. При этих условиях шестичленные циклы образуют на октаэдрических гранях кристаллов металла шесть связей М— — С — С, валентный угол которых близок тетраэдрическому углу. Данным условиям удовлетворяют палладий, платина, иридий, родий, осмий и все они являются активными катализаторами гидрирования бензола и дегидрирования циклогексана. В то же время металлы, обладающие объемноцентрированной структурой, например тантал, вольфрам, даже при почти таких же размерах их атомных радиусов, как у платиновых металлов, а также металлы, имеющие такую же кристаллическую структуру, как платина, но иные размеры атомных радиусов, в частности серебро, золото, или не относящиеся к переходным элементам — медь, цинк,—все эти металлы не проявляют каталитической активности в вышеуказанных реакциях. Таким образом, структура поверхностных соединений бензола и циклогексана с платиновыми металлами была описана и доказана. Мало того, было, в сущности, установлено, что в условиях катализа подобные соединения легко и притом в точности воспроизводятся. Иначе катализ был бы невозможен. [c.59]

    Благодаря высокой твердости и высокой коррозионной устойчивости осмий п его сплавы с рутением (и иридием) применяются для изготовления ответственных деталей точных измерительных приборов, а также наконечников перьев авторучек. Осмий и рутений — высокоэффективные катализаторы процессов гидрогенизации. Особо высокоэффективен осмий как катализатор синтеза аммиака, а рутений — синтеза углеводородов с длинными цепями. [c.620]

    Молибден, ванадий, марганец и осмий являются специальными катализаторами сложного и еще малоизученного процесса фиксации азота воздуха микроорганизмами почвы. [c.423]

    На рис. 1 приведены кинетические и потенциометричоские кривые гидрир01вания циклогексена па некоторых образцах исследуемых катализаторов. Как видно из рисунка, кинетика процесса описывается резким понижением скорости рса1кции в начале опыта. Затем циклогексен гидрируется с почти постоянной скоростью и в конце реакции наблюдается ее естественное понижение. Отметим, что резкое понижение скорости в 6—9 раз (табл. 1, рнс. 1) имеет место на богатых как платиной, так и осмием катализаторах. В области оптимального состава это понижение всего в 1,5—2 раза. [c.49]

    После первой публикации о конфигурационной изомеризации стереоизомерных триметилциклопентанов лишь в начале бО-х годов после работы Го, Руни и Кемболла [4] и первых наших публикаций [5, 6] конфигурационная изомеризация гомологов циклопентана стала предметом широкого обсуждения. Мы показали [5], что в присутствии платинированного угля в широком интервале температур (150—280 °С) стереоизомерные 1,2-ди-метилциклопентаны легко переходят друг в друга. При этом конфигурационная изомеризация проходит с гораздо большей скоростью, чем сопутствующая ей реакция гидрогенолиза пятичленного цикла. Далее нами было показано [6], что активными катализаторами, способствующими протеканию конфигурационной изомеризации, наряду с платиной являются родий, осмий, иридий и палладий, а также рутений [1] и кобальт [7]. [c.65]

    Исследования в области каталитического гидрирования окиси углерода в течение первой половины XX в. развивались все более и более быстрыми темпами. Первыми вехами на пути этих исследований двились работы Сабатье и Сандерана [24] по синтезу метана на никелевых катализаторах и открытие Баденской анилиновой и содовой фабрикой [4] реакции между водородом и окисью углерода. В результате этой реакции образовывался жидкий продукт, содержавший спирты, альдегиды, кстоны, жирные кислоты и некоторое количество насыш енных и ненасыщенных алифатических углеводородов. Она протекала при давлениях 100—200 ат и температурах 300—400° в присутствии окисей кобальта и осмия, активированных щелочью и нанесенных на асбест . Последующие исследования привели к разработке в 1923—1925 гг. промышленного синтеза метанола. Начиная с 1923 г. и до настоящего времени, проводятся обширные работы по изучению процесса Фишера-Тропша в лабораторном и полузаводском масштабах. [c.519]

    Наиболее типичным способом приготовления таких катализаторов является нанесение иа поверхность носителя какого-либо соединения каталитически активного металла, с последующим его восстановлением илн термическим разложением. Этим достигается резкое увеличение удельной активности металла и экономия его, что особенно важно, когда катализаторами являются такие дорогие металлы, как платина, палладий, осмий, иридий и др. Носитель не только способен в небольших пределах изменять активность катализатора ои является одновременно промотором, а иногда влияет и на избирательность нанесенных катализаторов (М, Е, Ададуров) и термическую сто11кость их. [c.351]

    Каталитическое гидродеалкилирование может быгь осуществлено в широком интервале температур (300—680 °С) в зависимости от применяемых катализаторов. По активности катализаторы могут быть классифицированы на малоактивные — кокс, активный уголь, окислы цинка, ванадия, магния и др. умеренно активные — алюмо-молибденовый, алюмо-кобальт-молибдеповый, алюмо-хромовый, хром и молибден на угле, платина на носителях высокоактивные — никель на носителях (окислы алюминия, хрома, алюмосиликаты, силикагель), родий, иридий, осмий на окиси алюминия. [c.110]

    Впервые реакция гидроформилирования была осуществлена в присутствии кобальтового катализатора процесса Фишера—Тропша. Впоследствии были исследованы и запатентованы в качестве катализатора многие другие металлы. В литературе сообщается о каталитической активности родия, кобальта, хрома, иридия, железа, марганца, натрия, магния, кальция, платины, рения, осмия и рутения. Однако в промышленности до настоящего времени преимущественно используются кобальтовые катализаторы. [c.255]

    Для приготовления катализаторов гидрокрекинга используют а) нейтральные носители — различные пористые инертные материалы б) аморфные носители, обладающие кислотной природой активированные кислотами глины фторированную окись алюминия синтетические алюмосиликаты магнийсиликаты, цирконийсили-каты и др. [131 —158] в)- синтетические кристаллические алюмосиликаты — цеолиты, преимущественно высококремнеземистые цеолиты типа Y [159—168]. В качестве гидрирующих компонентов применяют окислы молибдена, вольфрама, молибдаты кобальта и никеля, вольфраматы никеля, хроматы никеля и др., их сульфидные производные, а также элементы платиновой группы (платина, палладий, осмий и др.) в виде металлов. [c.79]

    Отнюдь не умоляя заслуги П. Сабатье и В.Н. Ипатьева в развитии катализа, нельзя не отметить, что значительно больший вклад в разработку каталитических превращений углеводородов и создание новых эффективных катализаторов внес Н.Д. Зелинский им открыты и изучены дегидрогениза-ционный катализ шестичленных цикланов, явления необратимого катализа (диспропорционирования) он был одним из пионеров разработки дегидрогенизации парафиновых углеводородов в олефины и последних - в диолефины, а также алкиларомати-ческих углеводородов в гомологии стирола. Именно Н.Д. Зелинский широко использовал платину и палладий, а также и остальные благородные металлы, включая осмий, для каталитических превращений углеводородов и изучил их специфические особенности. [c.66]

    Во всех гетерогенных окислительпо-носстановительных процессах катализаторами служат производные /-элементов. Так, ]]рн синте с аммиака наибольшую каталитическую активность проявляют простые вещества, образованные элементами под-групны железа (рис. 89). В промьппленпости п[)именяют железный катализатор (с добавками активаторов). Применение в промышленных масштабах рутения и осмия ограничивает их высокая стоимость. [c.157]

    В ранней литературе по катализу имеется много указаний на повышение активности катализаторов от различных добавок. Так, отмечено было повышение активности иридия следами осмия, повышение обесцвечивающей силы угля от добавок солей имеется также указание, что достаточно загрязнить золото одной пылинкой платины, чтобы оно раскалилось в токе водорода установлено повышение активности Си504 (при получении хлора из НС1) примесями Ма2804 или Кз504. Оказалось, что окисление нафталина концентрированной серной кислотой сильно ускоряется от прибавления Н , Зе или НзВОд. Очень изящным опытом является ускорение окисления анилина бертолетовой солью при добавлении меди. Добавление 0,5% СеОа к никелевому катализатору повышает скорость реакции в 10 раз, хотя в катализаторе на ИЗО атомов N1 приходится лишь 1 молекула СеОа. Разложение НоОз в присутствии солей закиси железа резко ускоряется от добавки 1 миллимоля медной соли на 1. ] реагента. В биохимических процессах роль активаторов играют ко-ферменты. [c.62]

    Важное место занимает так называемое промышленное использование ОСМ. Из отработанного рапсового масла или продуктов распада жирных кислот и глицерина можно получать ПАВ, присадки, улучшающие смазочную способность, сырье для производства моюших средств. По методу [311] ОСМ, состояшие из смеси нефтяных и растительных масел, подвергаются термическому обезвоживанию и удалению газойля при последующей переэтерификации под действием одноатомных спиртов и катализатора образуются низкомолекулярные эфиры жирных кислот и глицерин. Нефтяные масла отделяют термическим путем, оставшуюся смесь подвергают обработке в испарителе и в вакуумной ректификационной колонне с разделением эфиров, глицерина, избытка спиртов. [c.332]

    Представляется, что квалифицированная вторичная переработка ОСМ позволит эффективно решить проблему обезвреживания высокотоксичных отходов, содержащих ПХД, диоксины, ПА и др. Однако современные процессы, как правило, этого не обеспечивают. Адсорбционная очистка активированными глинами не всегда удаляет из ОСМ токсичные соединения типа ПХД. Утилизация такого отработанного сорбента, кроме того, сама представляет существенную проблему. Вопрос может быть решен путем комбинирования адсорбционной очистки и модифицированной гидроочистки. Такой процесс позволяет удалять из отработанных нефтяных масел галогенпроизводные различного строения. На первой стадии осуществляют адсорбционную очистку активированным углем или оксидом алюминия. На второй стадии при 260— 290°С и давлении 4,2 — 5,2 МПа ведут гидроочистку на алюмони-кельмолибденовом катализаторе, способствующем дегалогениро-ванию дифенилов. Содержание ПХД в масле при этом снижается до I млн . Отличием данного процесса от традиционного является разделение продуктов гидрогенизации в атмосфере азота на фракции очищенного масла, полимерных ароматических соединений, легких углеводородов и соляной кислоты. Масляную фракцию за- [c.360]

    Весьма важно удаление ПХД при переработке отработанных нефтяных масел в топлива. В этом случае рассматриваются возможности использования гидрирования, экстракции газами в сверхкритическом состоянии, обработки сырья металлическим или жидким натрием или его алкоголятами. Для уничтожения токсичности ОСМ без предварительной переработки наиболее целесообразно высокотемпературное сжигание (выше 1200°С) в присутствии катализатора с утилизацией тепловой энергии. Этот метод, однако, дорогостояш, и, кроме того, он не дает гарантии полного уничтожения ПХД. Установлено, что полное разрушение ПХД при сжигании можно обеспечить в присутствии тетраоксида рутения при относительно невысоких температурах. [c.371]

    Тетраоксиды осмия и рутения ядовиты. 0з04 по запаху напоминает хлор, а Ки04 — озон. 0з04 — наиболее часто применяемое соединение осмия. Его используют как мягкий окислитель и катализатор в органическом синтезе (например, кортизона) и для подкрашивания животных тканей при их микроскопическом исследовании. [c.632]

    Такие восстановители, как 1 , Ре2+, ЫгН4, в присутствии катализаторов— шестивалентного молибдена или носьмивалент-ного осмия отдают электроны иону 02 . Два образовавшихся оксид-иона О мгновенно реагируют с водой, давая гидроксид-ионы, которые в случае кислой среды реагируют дальше с образованием воды. В щелочных растворах пероксид водорода окисляет Мп(0Н)2 и СгОг" до МпОг и СГО42- соответственно. [c.482]

    МПа. Во всех опытах возрастание давления способствовало взаимодействию угольной массы с водородом и наблюдалось увеличение содержания жидких углеводородов по сравнению с газообразными. Эти опыты опять-таки подтверждают преимущестенное протекание реакций гидрирования и алкилирования под давлением. Большая концентрация водорода (высокое давление) препятствует параллельно протекающей полимеризации олефинов и загрязнению твердого катализатора продуктами осмо-ления, о чем уже упоминалось. [c.205]

    Вопрос о природе (строении) актиЕлых центров находится в стадии изучения и является предметом научных дискуссий. Вследствие этого единой теории действия, а поэтому и подбора катализаторов не существует. Можно лишь говорить об общих соображениях. Таковыми являются 1) катализатор должен быть способен к химическому взаимодействию хотя бы с одним реагентом 2) изменение энергии Гиббса взаимодействия катализатора с реагентами должно быть менее отрицательным, чем его изменение в катализируемой реакции. Однако в последние годы достигнуты большие успехи в представлениях о механизме катализа, позволившие выдвинуть некоторые общие принцигй, выбора катализаторов для различных типов реакций. Так, во многих случаях определяющим фактором в подборе катализаторов является положение элементов в периодической системе Д. И. Менделеева. На рис. 45 представлены результаты изучения каталитической активности металлов V и VI периодов в реакции разложения аммиака. Налицо периодичность изменения каталитических свойств с максимумами активности у железа и его ан алогов — рутения и осмия. [c.137]

    НОЙ теории катализа, а поэтому и критерия подбора гетерогенных катализаторов, еще не разрабога-но. Все же в представлениях о механизме катализа достигнуты большие успехи, позволивщие выдвинуть некоторые общие принципы выбора катализаторов для различных типов реакций. Так, во многих случаях определяющим фактором в подборе катализаторов является положение элементов в периодической системе Д. И. Менделеева. На рис. 2.17 представлены результаты изучения относительной каталитической активности металлов четвертого - шестого периодов в реакции разложения аммиака. Представленный график показывает периодичность изменения каталитических свойств с максимумами активности у железа и его аналогов у рутения и осмия. [c.243]

    В растворе существуют катионы Се(ОН) +, [СеОСеОН] +. 0,1 н. раствор e(IV) веерной кислоте 0,5—1,0н. устойчив до 6 лет. Титр раствора церия (IV) устанавливают по оксалату натрия при 70— 75° С или при комнатной температуре в присутствии катализатора — хлористого иода. Устанавливать титр можно по мышьяковистому ангидриду в присутствии хлорида иода I 1 или тетрахлорида осмия Os li. [c.419]

    Катализаторы обычно действуют весьма специфично, т. е. определенную реакцию ускоряют только некоторые вещества, не способные, в свою очередь, ускорить другие реакции. Так, например, окисление иодид-ионов пероксидом водорода каталитически ускоряют молнбдат-ионы. Реакции с участием церия (IV) ускоряют тетроксид осмия OSO4, реацию между арсенит- и перманганат-ионами—такие вещества, как OsO , KI, 1 .  [c.105]


Смотреть страницы где упоминается термин Осмий как катализатор: [c.134]    [c.365]    [c.369]    [c.369]    [c.371]    [c.264]    [c.297]    [c.406]    [c.227]    [c.431]    [c.57]    [c.183]   
Методы восстановления органических соединений (1960) -- [ c.308 ]

Учебник общей химии 1963 (0) -- [ c.417 ]




ПОИСК





Смотрите так же термины и статьи:

Осмий

Осмий осмий



© 2025 chem21.info Реклама на сайте