Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Двуокись углерода применение

    Кроме перечисленных, есть много других веществ, в той или иной степени пригодных для применения в качестве теплоносителей в установках химической промышленности. Например дифенил, дифенилоксид, нафталин, хлорированный нафталин, тетра-хлордифенил, глицерин, водород, двуокись углерода (для высокого давления) и др. [c.331]

    Обезвоживание продувкой инертных газов. Инертные газы, под которыми в данной связи понимают азот и двуокись углерода, используют для продувки в процессах, когда пар жидкости, находящейся в порах осадка, образует с воздухом взрывоопасную смесь. Закономерности обезвоживания при продувке осадка воздухом при обычной температуре и инертными газами в основном аналогичны. Очевидно, что применение инертных газов приводит к повышению затрат по сравнению с затратами при использовании воздуха. [c.282]


    Двуокись углерода уже достаточно давно нашла широкое применение в производстве карбамида, а также в различных процессах карбонизации. В нефтехимической промышленности ее роль до последнего времени ограничивалась лишь применением в качестве окислителя в различных процессах конверсии. Однако доступность этого вида сырья вызвала многочисленные попытки применить его для синтеза кислородсодержащих органических соединений. [c.117]

    В процессе гидроочистки необходимо применение отпарной колонны для удаления следов легкокипящих углеводородов и гетеросоединений. Для удаления запаха предложено применять азот, двуокись углерода и др. [c.212]

    Двуокись углерода безвредна, при ее применении требуется наименьший объем цилиндра машины. Недостатком Oj является высокое рабочее давление конденсации. Вследствие малых габаритов углекислотные машины используются в судовых установках, [c.539]

    Высокотемпературная паровая конверсия СО, превращающая окись углерода и пар в двуокись углерода и водород, увеличивает эффективность использования водорода и вследствие этого применяется на большинстве аммиачных установок. Низкотемпературная конверсия СО — относительно новый процесс, который требует применения чистого газа и пара, а также современной технологии производства катализаторов. В процессе происходит небольшое увеличение концентрации водорода, но главное его преимущество заключается в снижении содержания окиси углерода до такого уровня, который позволяет исключить применение дорогостоящего абсорбционного оборудования. Метанирование (получение метана в реакции СО и СОа с водородом) не является новым процессом, но его применение в производстве синтез-газа для аммиака стало возможным после разработки низкотемпературных катализаторов паровой конверсии СО. [c.117]

    Еще легче протекает образование метана из углерода (сажи) и водорода при нагревании этих элементов в присутствии мелкораздробленного никеля. Никель действует как катализатор, как активатор водорода. Сабатье и Сандеран показали что при применении никелевого (или кобальтового) катализатора окись и двуокись углерода такл<е. могут быть уже при 250—400° восстановлены водородом до метана  [c.31]

    Двуокись углерода характеризуется весьма высокой объемной холодопроизводительностью (отнесенной к 1 засасываемых паров холодильного агента), что обеспечивает высокую компактность цилиндра компрессора. Однако двуокись углерода имеет очень низкую критическую температуру и высокое давление конденсации, что ограничивает возможности ее применения как хладоагента. [c.660]


    Абсолютным методом анализа для определения состава подобного рода стандартной газовой смеси, т. е. методом, не требующим применения индивидуальных стандартных веществ, хорошо себя зарекомендовал объемно-хроматографический метод газового анализа, предложенный одновременно в 1953 г. Д. А. Вяхиревым в СССР и Я. Янаком в Чехословакии. Аппаратура метода очень проста. Не менее проста и техника анализа. Принципиально важной особенностью метода, делающего его абсолютным, является отсутствие необходимости в калибровке. В качестве детектора используется специальная бюретка, в которой непосредственно измеряется объем каждого компонента анализируемой газовой смеси в течение времени выделения его из колонки. В качестве газа-носителя применяется двуокись углерода высокой чистоты (не ниже 99,95%), которая по выходе из колонки полностью поглощается концентри- [c.29]

    Твердая прессованная двуокись углерода называется сухим льдом. Главное применение сухого льда — хранение скоропортящихся продуктов на складах, при их транспортировке. Ценность сухого льда для пищевой промышленности не только в том, что он позволяет под- [c.90]

    Заменяя [ Oj] ее давлением (Рсо,), можно уравнение константы записать так Рсог = Из уравнения следует, что каждой температуре отвечает определенное давление двуокиси углерода. Это давление называют давлением диссоциации (разложения). Процесс разложения карбоната кальция начинает протекать интенсивно при той температуре, при которой давление диссоциации достигает 760 мм рт. ст. Эта температура составляет 880° С. Для смещения равновесия в указанной системе слева направо следует уменьшать концентрацию СО2, что достигается при обжиге известняка применением вентиляторов, выводящих двуокись углерода из обжиговых печей. [c.163]

    Молекула 0 = С = 0 линейна. Двуокись углерода представляет собой бесцветный газ со слегка кисловатым запахом и вкусом. Под давлением около 60 ат она уже при обычных температурах сгущается в бесцветную жидкость (которую хранят и перевозят в стальных баллонах). При сильном охлаждении СО2 застывает в белую снегообразную массу, под обычным давлением возгоняющуюся при —78°С. Предварительно спрессованная твердая двуокись углерода испаряется довольно медленно, причем окружающее пространство сильно охлаждается. На этом основано ее применение в качестве сухого льда .  [c.493]

    Питьевая сода применяется в кондитерском деле, хлебопечении и в огнетушителях как источник двуокиси углерода. Она входит в состав хлебопекарных порошков, добавляемых к тесту. Такое тесто всходит без применения дрожжей и заквасок, наполняясь пузырьками двуокиси углерода, и выпеченный из него продукт получается пористым, мягким, вкусным и легче переваривается. Двуокись углерода образуется за счет реакции  [c.99]

    Краткая характеристика элементов подгруппы углерода. Углерод. Аллотропные видоизменения углерода. Древесный уголь. Поглотительная способность угля. Активированный уголь и его применение. Двуокись углерода, получение, свойства и применение. Угольная кислота и ее соли. Окись углерода. Твердое, жидкое и газообразное топливо. [c.198]

    Для конденсации газов в процессе их очистки методами фракционированной дистилляции и ректификации, а также для хранения газов и для вспомогательных физико-химических исследований (определение степени чистоты газов по температуре кипения и плавления, плотности в сжиженной состоянии и т. п.) требуется применение низких температур. Для получения низких температур в лаборатории обычно используют жидкие газы, твердую двуокись углерода (сухой лед) и смеси льда с различными солями. [c.58]

    И полное сгорание гарантируется тем, что вещества сначала смешивают с перманганатом серебра, а затем для более полного сгорания пропускают через трубку, заполненную окисью меди. После реакции воды с карбидом кальция двуокись углерода, азот и ацетилен разделяют на колонке с силикагелем без применения системы ловушек и определяют при помощи катарометра. [c.253]

    Наряду с водой чаш е всего в технологических потоках и товарных продуктах содержатся сернистые соединения и двуокись углерода. Эти нежелательные примеси, как и вода, энергично адсорбируются молекулярными ситами, в связи с чем неуклонно растет применение молекулярных сит для очистки от них технологических потоков. [c.82]

    Очистка азота, применяемого в качестве защитной атмосферы. Инертный газ Д.Т1Я создания защитной атмосферы можно получать, связывая кислород воздуха сжиганием углеводородного топлива в этом воздухе. При процессе сгорания неизбежно образуется значительное количество двуокиси углерода и воды. Для многих областей применения, когда требуется практически чистый азот, эти компоненты необходимо удалить. Так, чистый азот может использоваться как инертный газ в химической и нефтеперерабатывающей промышленности для создания защитной подушки или для операции продувки. Чтобы удалить двуокись углерода и воду из такого генераторного азота, можно применить промывку моноэтаноламином с последующей осушкой твердыми осушителями.- Но предпочтительно удалять обе примеси одновременно адсорбцией на молекулярных ситах типа 5А. [c.88]


    Многие химические реакции протекают при приготовлении пищи. Если бисквит делают с применением кислого молока и питьевой соды, то между молоком и содой происходит химическая реакция, при которой содержащееся в кислом молоке вещество — молочная кислота взаимодействует с содой, в результате чего образуется газ — двуокись углерода, который выделяется в виде мелких пузырьков и поднимает тесто. И, конечно же, огромное число химических реакций протекает в человеческом организме. Пища, которую ест человек, переваривается в желудке и в кишечнике. Кислород, содержащийся во вдыхаемом воздухе, соединяется с веществом — гемоглобином, входящим в состав эритроцитов, а затем освобождается в тканях, где происходит множество разных реакций. Биохимики и физиологи заняты изучением химических реакций, происходящих в человеческом организме. [c.20]

    Как получают двуокись углерода (угольный ангидрид) в лабораториях ив технике Из каких природных веществ он может быть получен Укажите физические свойства двуокиси углерода, ее отношение к воде и щелочам и области ее практического применения. [c.231]

    Коновалов [28] применял также двуокись углерода, сероводород и борную кислоту для регенерации первичных и вторичных нитропара-финов из их щелочных солей. Примерно в это Hie время Неф [44] показал, что применение сильных минеральных кислот приводит к гидролизу до кетонов или альдегидов. [c.79]

    Совершенно новым направлением применения рассматриваемога процесса является получение водородсодержащего газа из бензина-при низких температурах. Понижение температуры до 260° С, снижение давления до близкого к атмосферному и уменьшение степени газификации жидкого сырья приводят к тому, что процесс низкотемпературной конверсии бензина оказывается ориентированным, в основном, на получение водорода. Побочно получающая-ся двуокись углерода может быть легко удалена обычными способами. Повышение температуры процесса приводит к увеличению содержания окиси углерода в газе конверсии бензина. При пониженных температурах этим способом можно получить газ, практически не содержащий окиси углерода (см. табл. 25). [c.41]

    Данквертс и др. , абсорбируя двуокись углерода щелочными растворами в насадочной колонне диаметром 10 см, установили, что результаты, полученные ими, согласуются с данными моделей Хигби и Данквертса. Результаты Ричардса и др. по абсорбции СОа буферными растворами в присутствии катализаторов в колонне того же диаметра согласуются с моделью Данквертса. Данные Таварес да Силва и Данквертса по абсорбции сероводорода растворами аминов в такой же колонне более согласуются с моделью обновления, чем с пленочной моделью (в этом случае между предсказаниями обеих моделей имеются существенные различия). Данквертс и Гиллхэм показали, что модель поверхностного обновления Хигби могла быть успешно использована для определения скорости абсорбции двуокиси углерода раствором NaOH в колонне диаметром 50 см. Все это говорит в пользу надежности применения моделей поверхностного обновления и свидетельствует о том, что методы, рассмотренные в этой главе,могут успешно применяться для установления влияния химической реакции на скорость абсорбции. Следует, однако, подчеркнуть, что в большинстве случаев данные для пленочной модели были бы почти такими же, что и для моделей обновления поверхности. [c.108]

    Основной метод борьбы с коррозией нефтепромыслового оборудования и труб при использовании СО2 — применение ингибиторов. Так, на месторождении Лик Крик (США), разрабатываемом с применением двуокиси углерода, на забой добывающих скважин и в воду, закачиваемую в нагнетательные скважины вслед за углекислым газом, добавляют ингибитор коррозии KW8-12 дизельным топливом в пропорции 1 3 и реагент 666 MAGNA. За два года, в течение которых закачивали попеременно двуокись углерода и воду, существенной коррозии оборудования и трубопроводов не было. [c.164]

    Процесс метанизации получаемого на пер вой стадии городского газа с целью получения ЗПГ осуществляется, как правило, при весьма высоком содержании окислов углерода, преимущественно двуокиси углерода. В результате метанизации такого газа в нем наблюдается остаточная двуокись углерода, которая а дальнейшем должиа быть удалена или содержание которой должно быть снижено промывкой в щелочном скруббере, что в свою очередь неизбежно ведет к применению такого катализатора, который бы обеспечивал преимущественную гидрогенизацию окиси углерода. Катализатор также должен быть стойким по отношению к влаге, поскольку в качестве разбавителя обычно подается влажный рециркулирующий газ. [c.177]

    В промышленном масштабе реализованы синтезы алкиленкарбонатов на основе окисей этилена, пропилена и СОг. Синтез-газ с высоким содержанием СО применяют л новейших системах синтеза метанола. Двуокись углерода нашла также применение при синтезе этиленгликоля через этиленкарбонат. Проводимые в настоящее времй широкие исследования в области каталитической фиксации малых молекул позволяют ожидать появления новых синтезов на основе СОа. [c.117]

    Полученный газ на 90—95% (в пересчете на сухой газ) состоит из окиси углерода и водорода. В пед1 содержатся также двуокись углерода, метан, азот, сероводород, сероокись углерода и органические сернистые соединения серы, а также остается непрореагировавший водяной пар. Необходимая глубина превращения без применения катализатора достигается за счет проведения процесса при высокой температуре. Процесс ведется в автотермичных условиях тепло получается за счет экзотермических реакций газификации с образованием окиси и двуокиси углерода. [c.100]

    Жирботол-процесс . Если в кислых СНГ количество HjS относительно велико, то удобнее и экономичнее применять экстракцию моно- или диэтаноламином, которые регенерируются в специальном резервуаре в процессе паровой десорбции при нагреве до 95 °С и возвращаются для повторного использования. Извлечение H2S осуществляется при температуре 40—60 °С и давлении, соответствующем упругости паров, противотоком в колонке с насадкой. Этот метод позволяет отказаться от применения водных растворов щелочей, эффективно удаляет двуокись углерода и элементарную серу, но недостаточно результативен в отноще-нии извлечения меркаптанов. Иногда встречаются схемы демеркаптанизации СНГ, состоящие из двух последовательных операций аминовой экстракции и отделочной стадии, щелочной отмывки или Мерокс-экстракции (последняя для извлечения меркаптанов).  [c.23]

    Выбор пропеллента зависит от назначения аэрозоля и прочности баллона. Там, где объем газа незначителен (например, в упаковках для крема, пены) или где давление газа в баллонах будет очень высоким даже при низких температурах, наиболее предпочтительно давление газа 200—500 кПа. Испаряющиеся жидкости или сжиженные газы могут быть использованы в качестве пропеллента, когда достаточно большой объем газов должен обеспечить максимальную степень распыления. Таким образом, применение газов ограничивается следующими областями применения зубная паста (азот), пищевые продукты (двуокись углерода или окислы азота), антиобледенители ветровых стекол автомобилей (требуется высокое давление при температуре ниже 0°С), распыление крахмала, очистителей стекол и мебельной политуры. Испаряющиеся жидкости и сжиженные газы, расширение которых происходит лишь при уменьшении внутреннего давления за счет открытия клапана при нажатии на него, применяют во всех других случаях. [c.353]

    Для очистки выбросов с концентрациями вредных веществ ниже 5 г/м наиболее перспективными являются термические методы, основанные на окислении (дожигании) вредных веществ до безвредных соединений (двуокись углерода). Обезвреживание осуществляется в термокатолитических и термических нейтрализаторах или в топках котельных. Метод нашел широкое применение на предприятиях Кузнецкого, Канско-Ачинского, Донецкого угольных бассейнов, в районах месторождений Дальнего Востока. [c.149]

    В процессе усовершенствования водородных электродов представляет интерес применение тонких фольговых электродов. При повышении температуры водород сравнительно легко диффундирует сквозь такие электроды. Двуокись углерода и другие примеси, наоборот, не могут проникнуть к электролиту. Для изготовления фольгоЕ ых электродов рекомендуется сплав, содержащий 75% Pd и 25% Ag. [c.56]

    Газо-адсорбционная хроматография начала развиваться значительно ранее газо-жидкостной. Так, некоторые вопросы по динамике сорбции в противогазах, опубликованные в 1929 г. Н. А. Шиловым и его сотрудниками, близки к фронтальной газо-адсорбционной хроматографии. В 1931 г. Шуфтан применил газо-адсорбционный проявительный метод для разделения газообразных углеводородов, используя в качестве сорбента силикагель, а в качестве аза-носителя — двуокись углерода. В качестве детектора применялся газовый интерферометр. Разделяемые компоненты собирались в отдельные сборники и анализировались обычными классическими методами газового анализа. Позднее этот метод разделения углеводородов был усовершенствован в ЧССР Янаком и в СССР Д. А. Вяхиревым (независимо друг от друга). Метод был назван объемнохроматографическим. Он нашел применение в анализе смесей углеводородных газов. [c.83]

    Необходимость применения свежеприготовленных растворов (ЫН4)з5 и NH4OH объясняется тем, что при стоянии они поглощают из воздуха двуокись углерода, обра зуя (NH4)2 Oa, примесь которого совершенно недопустима, так как одновременно с сульфидами и гидроокисями катионов 111 аналитической группы в осадок выпадут карбонаты катионов И группы. Во избежание этого также рекомендуется добавлять к анализируемой смеси рас- [c.245]

    Кроме того, в нефтегазодобыче находит широкое применение большая группа различных соединений оксиэтил-целлюлоза, формалин, уротропин, ацетоновые растворы кремнийорганических соединений, карбоксиметилцеллюло-за (КМЦ), метилцеллюлоза, смолы, хлорамин Б, двуокись углерода и т. д. [c.16]

    Несмотря на все большее расширение применения алюминиевых сплавов для морских сооружений, все же остается актуальной проблема изыскания конструкционных материалов, физико-химические свойства которых отвечали бы требованиям, предъявляемым нефтегазопромысловым сооружениям при эксплуатации в открытом море. Наиболее перспективный материал для этой цели — титан. Исследования некоторых титановых сплавов в Черном море на различных глубинах (7, 27, 42, 80 м) показали высокую стойкость исследованньгх сплавов на всех глубинах, и их скорость коррозии не превышала 0,01 г/(м2 ч), в то время как нержавеющие стали типа 18-9 были подвержены питтингу глубиной 2,5 мм после экспозиции в течение 21 мес. С увеличением глубины погружения образцов коррозионная стойкость повьииалась, что объясняется понижением температуры и более низкой концентрацией кислорода. Титан обладает очень высокой стойкостью не только в обычных морских средах, но также в загрязненных водах, в морской воде, содержащей хлор, аммиак, сероводород, двуокись углерода, в горячей морской воде. Титан выдерживает очень высокие скорости потока морской воды После 30-суточных испытаний при скорости потока 36,Ь. i, с бьип лолч чены следующие результаты  [c.25]

    При углекислотной коррозии считается наиболее целесообразным применять стали с 5,8—9%-ным содержанием хрома (см. табл. 74). Для изготовления труб рекомендуются стали марок Х8Ш, Х9М ограничения по механическим свойствам для них не оговариваются. Для более ответственных деталей оборудования добычи газа возможно применение сталей марок 20X13 и 30X13 с повышенной по сравнению со сталями марок Х8Ш и ХЭМ коррозионной стойкостью в газе, содержащем двуокись углерода. [c.142]

    В основе повышения коррозионной стойкости шлейфовых труб и конден-сатопроводов для газа и углеводородного конденсата, содержащих двуокись углерода, лежит применение хромсодержащих сталей. Механические свойства и методы сварки не являются в данном случае определяющими. [c.181]

    Очистка редких газов от некоторых сопровождающих примесей (кислород, азот, двуокись углерода, водяные пары) может быть проведена химическими методами и не вызывает затруднений. Вазделеаие смеси редких газов друг от друга в оановном осуществляется с применением физических методов адсорбции и фракционированной конденсации и дистилляции. При этом а каждом отдельном случае необходимо учитывать относительные количества индивидуальных газов в смеси и другие условия. Вследств-ие этого существующие методы очистки и разделения редких газов в основном разработаны для частных случаев в других случая , требуется изменение методики работы.. [c.294]

    Во втором случае имеется возможность одновременного определения углерода. Содержание серы можно вычислить по площадям пиков сероводорода или двуокиси при использовании соответствующих калибровочных кривых или калибровочных факторов. При применении обоих методов необходимо, однако, выделение продуктов гидрирования или окисления при помощи охлаждаемых ловушек. Определение сероводорода производят на колонках с молекулярными ситами, причем получают результаты, хорошо совпадающие с результатами метода ASTM . Возникающие при гидрировании низшие углеводороды должны быть выделены при помощи включенной перед хроматографической колонкой охлаждаемой колонки с молекулярными сптами. При окислении, кроме двуокиси серы, возникают вода и двуокись углерода. Воду удаляют обработкой сульфатом кальция, а для разделения двуокиси углерода, кислорода и двуокиси серы хорошо подходит колонка, содержащая динонилфталат на хромосорбе. Метод окисления позволяет определять серу в сульфоксидах, сульфонах, сульфидах и дисульфидах но сульфаты не переводятся количественно в двуокись серы. Азот и галогены не оказывают в.лияния на результаты определения. Продолжительность анализа составляет только 20 мин. [c.253]

    Н—X—Н — бифункциональное соелиненне с активными атомами водорода (гликоль, диамин или вода). В случае применения воды выделяется двуокись углерода, и, как показано ниже, мочевина нв-пяется связующим мостиком в конечном продукте реакции  [c.168]

    Двуокись углерода находит применение как средство для тушения пожаров. Один из видов портативных огнетушителей представляет собой цилиндр с жидкой двуокисью углерода — этот газ можно превратить в жидкость при обычной температуре, если создать давление около 70 атм. Некоторое количество двуокиси углерода (главным образом в твердом сотоянии) в США получают из газовых источников, находящихся в западных районах страны, где СОг выделяется почти в чистом виде. Большую часть применяемой в промышленности двуокиси углерода получают в качестве побочного продукта производства цемента, извести, в доменных печах и на пивоваренных заводах. [c.234]

    Применение растворителя способствует лучшему осуществлению теплосъема, более равномерному распределению катализатора в реакционном объеме и защищает катализатор от ядов полимеризации. Ядами полимеризации являются ацетилен, кислород, вода, окись и двуокись углерода, сернистые соединения. Для удаления ацетилена из этилена применяют как метод селективного -гидрирования, так и извлечение органическими соединениями при низких температурах сернистые соединения и углекислый газ удаляют щелочной очисткой, метан, окись углерода — тонкой ректификацией, кислород— пропусканием этилена через слой горячей металлической меди, а воду — адсорбционными методами (осушкой на активированной окиси алюминия, силикагеле или цеолитах). [c.52]


Смотреть страницы где упоминается термин Двуокись углерода применение: [c.371]    [c.53]    [c.172]    [c.326]    [c.97]    [c.292]    [c.346]   
Лекции по общему курсу химии ( том 1 ) (1962) -- [ c.40 ]

Общая химическая технология неорганических веществ 1964 (1964) -- [ c.423 , c.431 , c.569 ]

Общая химическая технология неорганических веществ 1965 (1965) -- [ c.423 , c.431 , c.569 ]

Общая химическая технология Том 1 (1953) -- [ c.464 , c.514 , c.516 , c.523 ]

Основы общей химии Том 2 (1967) -- [ c.20 ]

Лекции по общему курсу химии Том 1 (1962) -- [ c.40 ]




ПОИСК





Смотрите так же термины и статьи:

Углерод применение



© 2025 chem21.info Реклама на сайте