Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цитохром свойства

    На основании некоторых явлений, не находящихся в непосредственной связи с катализом, известно, что в результате связывания с белком свойства вещества могут подвергаться глубокому изменению. Так, гем представляет собой нерастворимое в воде и нез стойчивое вещество, быстро превращающееся при соприкосновении с воздухом в гематин вследствие окисления Ре " в Ке " . Наоборот, гемоглобин, образующийся в результате связывания гема с белком — глобином, является растворимым в воде веществом, образующим обратимое соединение с молекулами кислорода — оксигемоглобин, в котором железо сохраняет двухвалентное состояние. Известны и другие протеиды, содержащие связанный гем, но с другими белками, чем с глобином, например пероксидаза, каталаза, цитохром и дыхательный фермент Варбурга. Ни один из этих протеидов не связывается обратимо с кислородом, но некоторые из них обратимо окисляются в формы с трехвалентным железом. Естественно, что эти различия в поведении обусловлены характером соответствующих белков, так как простетическая группа — гем — одна и та же во всех случаях. [c.799]


    Миоглобин, гемоглобин, пероксидаза и цитохром с содержат одинаковые порфириновые кольца, в каждом из которых атом железа связан четырьмя ненасыщенными координационными связями с атомами азота, играющего роль донора. Тем не менее эти белки обладают различными свойствами и выполняют разные функции. Различие свойств и функций обеспечивается различием конформации белков, а также природой групп, расположенных по обе стороны от плоскостей порфириновых колец и образующих дополнительные координационные связи с железом. Восстановительный фермент каталаза представляет собой высокоспиновый комплекс ферри-иона, который, как следует из спектральных данных, образует координационные связи с двумя карбоксильными группами, расположенными по обе стороны [c.420]

    Для освобождения смеси от небольших молекул и ионов проводят диализ или электродиализ. Последний представляет собой довольно опасную операцию, при которой фермент может быть в значительной мере инактивирован вследствие местного нагрева или сдвига pH среды. Поэтому при электродиализе необходимо тщательно выбирать условия, которые соответствовали бы свойствам каждого отдельного фермента. Простой диализ обычно осуществляют с помощью мембран из коллодия, пергамента или целлофана. Чаще других применяют целлофан, но скорость диализа через целлофановые мембраны сравнительно мала. Чтобы увеличить размер пор, их обрабатывают водными растворами хлористого цинка. В литературе есть указания, что низкомолекулярные белки, например цитохром (М=—13 000) проходят [c.144]

    По спектральным свойствам очень близок к цитохрому с цитохром Сь В отличие от цитохрома с он чувствителен к температуре (разрушается за 5 мш при 50°С), имеет значи- тельно больший молекулярный вес (около 380 000) и содержит 4 группы ге.ма на молекулу. Цитохром С окисляется ци- [c.268]

    Очищенный цитохром с не разрушается, не теряет каталитических свойств при действии на него разбавленных кислот или щелочей в пределах pH 4—11,5, не изменяется при кипячении. В нейтральной среде восстановленный цитохром с не окисляется молекулярным кислородом, но окисляется перекисью водорода, феррицианидом и солями меди. Окисленный цитохром с восстанавливается такими восстановителями, как гидросульфит, цистеин, полифенолы и аскорбиновая кислота, а также цитохромами 5 и С1 и рядом ферментов. [c.158]

    Несомненный интерес представляет также сравнение строения белков, выделенных из далеко отстоящих видов, например млекопитающих и пресмыкающихся. Определение структуры цитохрома с из сердечной мышцы гремучей змеи показало, что он состоит из 104 аминокислотных остатков, имеет N-концевой ацетилированный глицин, гем, присоединенный к остатку цистеина в положениях 14 и 17, и отличается от белка человека только 14 аминокислотными остатками 11 из них приходятся на 24 остатка с С-конца это может свидетельствовать о несущественной роли значительного отрезка полипептидной цепи у С-конца в определении функциональных свойств молекулы. Таким образом, даже у столь отдаленных видов, как человек и гремучая змея, структура цитохромов с оказывается сходной. В то же время цитохром с, выделенный из дрожжей, несколько отличается от цитохромов позвоночных. К остатку глицина, который в белках позвоночных является N-конце-вым, вместо ацетильной группы у него присоединена дополнительная последовательность из четырех аминокислот остатки в С-концевой последовательности также отличаются. [c.162]


    Изменение заряда аминокислотных заместителей в полипептидной цепи относится к числу сильных воздействий на белковую молекулу, поэтому изменение pH раствора приводит к существенному изменению почти всех физико-химических свойств и третичной структуры фермента вплоть до необратимых изменений конформации белковой глобулы при крайних значениях pH. Обычно существенные конформационные сдвиги заметны уже при изменении pH на несколько единиц, а такие белки, как цитохром с, не денатурирующие при значениях pH от 2 до 12, встречаются крайне редко. [c.73]

    К и Н+, а также некоторые маркерные ферменты, например малатдегидрогеназа, цитохром с, т, е. мембрана полностью теряет свои барьерные свойства. [c.29]

    Подробнее остановимся на свойствах цитохрома Р-450 (цитохром типа Ь). Он выделяется в лаборатории из клеток печени, коры надпочечников, бактерий и др. Ферментная система цитохрома Р-450, гидроксилирующая связи С-Н субстратов, содержит три компоненты. Первая - это ассоциат из НАДФ (см. XVI), из цитохрома Р-450 вторая - цитохром Р-450 и третья - это фосфолипиды. Исследователи наиболее глубоко проникли в структуру, функции и механизм действия этой ферментной системы. Однако вопросы механизма активации молекулы О2 этим ферментом не решены. Известно, что при функционировании Р-450 происходит экстракоординация фазу двух лигандов -атома S цистеинового остатка белка и О2. Следует учесть то, что атом серы в тиоспиртах и тиоэфирах является слабым экстралигандом даже для атома железа, имеющего достаточное сродство к S и образующего сульфиды с низким значением произведения растворимости. В отличие от имидазола, атом S, подобно гемоглобину, не обеспечивает прочного связывания О2. Поэтому механизм окислительного воздействия О2 должен быть связан с изменением окислительного состояния железа в цитохроме. На рис. 5.4 приведен каталитический цикл цитохрома Р-450. Координационные взаимодействия на атоме железа (экстракоординация) выступают здесь также четко, как в фотосинтезе и фиксации-переносе О2. [c.290]

    Большинству требований филогенетических исследований соответствует цитохром с. в принципе для таких исследований можно использовать многие белки, однако наиболее удобным в этом аспекте оказался митохондриальный цитохром с (рис. 7.8), что было впервые продемонстрировано работами Смита, Марголиаша и Фича [502— 506). Критерии таких исследований и свойства цитохрома с, определившие выбор именно этого белка, перечислены ниже в пунктах а —д. [c.208]

    Поразительные изменения свойств могут проистекать в результате замены всего лишь одной аминокислоты на другую в молекуле белка. Так, замена остатка глутаминовой кислоты на валин в одной из четырех полипептидных цепей гемоглобина резко изменяет его свойства и приводит к болезни — серповидной анемии. Изменение других аминокислотных остатков может, однако, давать незначительный эффект или вовсе не влиять на биологическую активность. Интересный пример такого рода эффектов можно наблюдать среди различных молекул цитохрома с, выделенных из организмов, которые находятся на очень различных стадиях эволюционного статуса [12]. Цитохромы действуют при биологическом окислении как переносчики электронов и один из них, цитохром с, может быть легко растворен и выделен. Полная аминокислотная последовательность цитохрома с была определена для белков из примерно 40 видов проведено сопоставление между различными последовательностями, а также с трехмерной (по данным рентгенографии) моделью цитохрома с сердца лошади. По-видимому, цитохром с не подвержен радикальным эволюционным изменениям, однако отдельные участки (особенно положения 70— 80 в последовательности из 104 аминокислот) совершенно неизменны, тогда как другие допускают изменения в довольно широких пределах. Важно, что участок аминокислотной последовательности, ответственный за перенос электронов, содержит шесть или более остатков различных аминокислот в различных видах. [c.223]

    На основе всех этих соединений, включенных в сложные биологические структуры за счет взаимодействий различной природы, возникают взаимообусловленные и многообразные свойства, называемые функциями. Так, гемоглобин выполняет функции фиксации, переноса и хранения кислорода, цитохром Р-460 отвечает за окислительно-восстановительные функции дыхательных биосистем на уровне клетки растений и животных, хлорофиллобелковый комплекс выполняет функции фотосинтеза в зеленых растениях и т. д. [c.317]

    Важным свойством липидных мицелл является их способность солюбилизировать, т. е. растворять в себе, те вещества, которые в отсутствие мицелл в среде нерастворимы. Так, обращенные мицеллы могут включать значительное количество воды во внутренний объем, ограниченный полярными головками липидных молекул. Вместе с водой внутрь обращенных мицелл захватываются раст> ворениые в ней неорганические солн, свободные сахара и даже молекулы биополимеров (рис. 288). Например, а обращенные мицеллы фосфолипидов в углеводородных растворителях легко включаются такне белкн, как цитохром с, фосфолипаза А,, родопсин и реакционные центры Rhodopseudomonassphaeroides, которые в этих условиях сохраняют свою пространственную структуру и функциональную [c.557]

    Соответственно с биологических систем, приведенных в табл. 8 (см. прилои еиие), объясните, какими свойствами обладают системы аскорбиновой кислоты и цитохром С по отношению к системе пируват/лактат  [c.70]


    Цитохромы 6б и f локализованы в хлоропластах они могут играть определенную роль в фотосинтезе. Цитохром не выделен в очищенном состоянии. Цитохром экстрагирован из листьев бузины Sambu as niger) и петрушки. Он получен в высокоочищенном виде и обладает свойствами, подобными свойствам цитохрома с. [c.217]

    Принцип этого метода в основном тот же, что и принцип метода, примененного Сенгером для определения последовательности аминокислот в молекуле инсулина. Вначале дыхательную цепь разделяют на фрагменты или механически (методом ультразвука), или путем разрушения липидного цемента детергентами, спиртами или дезоксихолевой кислотой. Затем фрагменты разделяют с помощью ультрацентрифугирования. Определяя химические и ферментные свойства этих фрагментов, можно реконструировать последовательность реакций интактной дыхательной цепи. Этот метод был впервые чрезвычайно успешно применен Грином и его сотрудниками. В целях удобства работу проводили почти исключительно на митохондриях животных. Дыхательная цепь особенно легко поддается расщеплению в некоторых точках, указанных на фиг. 62 буквами. При расщеплении в точке А из дыхательной цепи высвобождаются пиридинпротеиды, образуя фрагмент ( переносящую электрон частицу ), уже не способный окислять промежуточные продукты цикла Кребса, но получивший теперь способность окислять НАД-На (в отличие от интактных митохондрий). Таким образом, при расщеплении в точке А удаляются пиридин-протеиды, необходимые для дегидрирования кислот цикла Кребса, но в то же время открываются участки, пригодные для окисления НАД-Нг. Многочисленные исследования были проведены с так называемой переносящей электрон частицей . Расщепление в точках В Л О приводит к образованию фрагмента, обладающего сукци-нат-цитохром-с-редуктазной активностью, но не активного по отношению к связанным с пиридиннуклеотидами субстратам. Обычно наблюдается хорошее соответствие между ферментативной актив- [c.225]

    Поскольку при элюировании фронт растворителя неразличим, скорость движения растворителя определяют и регулируют с помощью соединений-маркеров. Для этой цели служат окрашенные белки природного происхождения, например гемоглобин и цитохром с [9] или же белки с флуоресцентной меткой, присоединенной, например, с помощью флуоресцеинизотиоцианата [8]. Однако наиболее подходящими и хорошо различимыми маркерами являются, по-видимому, бычий сывороточный альбумин и альбумин человека, окрашенные амидо-черным В [14]. Декстра-новый синий, применяемый в гель-фильтрации на колонках для определения свободного объема, является плохим маркером, поскольку при фракционировании он имеет обыкновение давать хвосты . В зависимости от скорости движения маркеров регулируют угол наклона пластинки, задавая тем самым скорость движения элюента. При работе на сефадексе 0-200 скорость веществ, мигрирующих со свободным объемом (т. е. не проникающих в гранулы геля), не должна превышать 2 см/ч на гелях сефадекса с более высокой степенью сшивки скорость может быть несколько больше. Указать заранее оптимальный угол наклона для данного типа геля невозможно, поскольку он зависит от многих факторов, например от свойств партии геля и консистенции суспензии. Пробег для веществ, мигрирующих со свободным объемом, должен составлять не менее 15 см. При большем пробеге (до 30—40 см) наблюдается лучшее разрешение и вместе с тем не происходит заметного размывания зон. [c.260]

    Табл. 47 иллюстрирует многообразие свойств известных в настоящее время цитохромов. Будущее сулит еще большие осложнения. Так, цитохром с дрожжей существует по крайней мере в двух различных изофер-ментных формах, и такое положение, по-видимому, справедливо также в отношении других клеток. Что касается простетической группы и ее связи с белком, то здесь как будто существует почти безусловное единообразие. В самом деле, за исключением цитохромов типа а (класс А), все остальные представляют собой производные гема. Основная структура простетиче- [c.386]

    Хотя цитохром 2 катализирует разложение и других субстратов (а-окси-н-бутиратов, а-окси-н-капроатов, а-оксиизокапроатов), их концентрация в биогологических средах на несколько порядков ниже, чем концентрация молочной кислоты, поэтому мешающее влияние пренебрежимо мало. Ингибиторы ферментативной активности цитохрома 2. находятся в биологических средах также в очень низкой концентрации [485, 486] и мало влияют на нее. Большое число метаболитов с восстановительными свойствами, напримф мочевая кислота, глутатион, цистеин, адреналин, аскорбиновая кислота, р-аланин, окисляются или [Fe( N)g] , или на платиновом электроде, и их ток окисления складывается с током, соответствующим окислению молочной кислоты. Поэтому в присутствии этих метаболитов проводить определение молочной кислоты нежелательно. [c.169]

    Комплексоны снижают активность алкогольдегидроге-назы (цинк), цитохром-с-редуктазы (железо), аскорбино ксидазы растений (медь) и др. Изучение свойств некоторых комплексных соединений металлов (Л. А. Николаев)) показало, что и относительно простые и довольно лабильные комплексы,способны проявлять высокую каталитическую активность и являются хорошими моделями активных групп металлсодержащих ферментов. Вместе с тем большое число этих комплексов и их высокая чувстви тельность к изменению природы лиганда делают понятным, почему соединения этого класса обязательно должны быть вовлечены в жизненный круговорот. Порфири-новые комплексы играют в поддержании процессов жизни важную роль не только потому, что магниевый комплекс такого типа хлорофилл осуществляет управление потоками солнечной энергии, направляя их на работу синтеза в фотосинтезирующих организмах, а гемоглобин и ряд ферментов выполняют важные функции, но еще и потому, что образование ДНК — основного кодирующего вещества — протекает по всем данным с участием порфи-ринового комплекса кобальта (витамина В12)  [c.182]

    В то Время как апоферменты могут соединяться только с одним каким-нибудь определенным коферментом, один и тот же кофермент обладает способностью соединяться с различными апоферментами. Так, например, такие резко отличающиеся по каталитическим свойствам вещества, как гемоглобин, каталаза, пероксидаза и цитохром с, содержат в качестве простетической группы один и тот же протогем и отличаются друг от друга лишь белковыми компонентами. Сходным образом некоторые де-гидразы, например дегидраза молочной кислоты и дегидраза фосфоглицеринового альдегида, имеют одну и ту же простетическую группу — пиридиннуклеотид, но различные апоферменты [18]. [c.277]

    Весьма заманчивым является использование спектроэлектрохимической методики для контроля кулонометрического титрования, в котором электрод, генерирующий титрант, является оптически прозрачным. Для построения кривой титрования измеряют интенсивность поглощения как функцию пропущенного через ячейку количества электричества, которое пропорционально концентрации генерированного титранта. Форма кривой титрования определяется оптическими свойствами системы, величинами нормальных окислительно-восстановительных потенциалов реагирующих веществ, а также числом электронов, участвующих в аналитической реакции. Расчет окислительно-восстановительного потенциала исследуемой титруемой системы производят исходя из формы кривой титрования. Примером удачного сочетания кулонометрического титрования со спектроэлектрохимическим контролем за его ходом служит реакция катион-радикала метилвиологена (MV ) с цитохром-С-оксидазой. Катион-радикал метилвиологена как титрант был электрогенерирован из метилвиологена в спектроэлектрохимической ячейке с прозрачным электродом из двуокиси олова по схеме [c.60]

    Цитохромы группы С — хромопротеиды, у которых простетической группой является замещенный мезоген IX, соединенный с апоферментом тиоэфирными связями. Цитохромы группы С функционируют в дыхательной цепи, осуществляя перенос электронов. Цитохром с получают высокоочищенным, изучены его физико-химические, молекулярные и каталитические свойства. Свойства цитохромов с из различных природных источников являются весьма сходными мол. масса 12000—13000, окислительно-восстановительный потенциал - -0,250 В. [c.31]

    Многие окислительно-восстановительные процессы в живых системах связаны с передачей электрона по цепи последовательных ферментативных реакций. В подобных системах перенос электрона осуществляют специализированные субстраты переноса, важнейшим из которых является цитохром с. Структура и свойства последнего разобраны достаточно подробно в гл. П1, 3. Здесь рассмотрим только те его свойства, которые связаны с переносом электрона. Механизм передачи электрона к цитохрому с пока неясен, но наиболее интересные данные в этой области получены методами ЭПР [92, 93], мессбау-эровской спектроскопии [94] и ЯМР [95, 96]. В [92] показано, что фер- [c.141]

    Каталитические и химические свойства простетических групп в растворе и в составе ферментных глобул существенно различны. Флавины в растворах образуют малоактивные окислительно-восстановительные системы. Например, растворы тиазиновых красителей в этом отношении гораздо более активны, но окисление NADH эффективно проводится флавопротеидами, и очень медленно идет в гомогенных системах. Точно так же гематин — простетическая группа каталазы, пероксидаз и цитохромов, в гомогенных растворах обладает лишь подобием своих свойств в ферментах — их активность в реакции разложения Н О в 10 раз меньше активности каталазы, а на ( юне каталазной активности почти не удается выделить пероксидазную активность свободного гема. Гематин и гематиновые комплексы не связывают молекулярный кислород, но эффективно образуют комплексы с Og в гемоглобине и миоглобине (см. гл. HI). В миоглобине и гемоглобине присоединение и отщепление кислорода не сопровождается изменением валентности железа (П), а цитохром с переносит электрон путем изменения валентности геминового железа. И, наконец, в 5 предыдущей главы подробно рассматривались различные превращения, осуществляемые пиридоксалем и кислотно-основными катализаторами над а-аминокислотами. Напомним только, что в гомогенных системах скорости этих процессов, в тех случаях, когда их удавалось моделировать, оказались меньше, причем различия очень велики — от тысячи до миллиона раз. S [c.263]

    В таких ферментах, как ксантиноксидаза молока, где металл или металлы сравнительно прочно связаны и не могут быть удалены без необратимой потери основных каталитических свойств, изучение их точной функции затруднено. Вместе с тем известно, что два других фермента, нитрат- и НАД-Н-цитохром-с-редуктаза, функционируют при активном участии в транспорте электронов молибдена и железа (М.о + Ц Мо +) и (Fe +Z Fe +). Это соответствует схемам, предложенным Малером, в основе которых лежит образование металлфлавиновых комплексов, близких по структуре комплексам рибофлавина Альберта (Albert, 1953). [c.192]

    По-другому складываются взаимоотношения между отдельными компонентами энзиматической единицы в Fe-катализаторах иной природы. Аконитаза, НАД-Н-цитохром-с-редуктаза и др. не обладают столь резко выраженными свойствами специфичности по отношению к субстрату и металлу-активатору связь металлического компонента с аддендами белка и простетической группы у них относительно рыхлая. Железо этой группы ферментов наиболее подвержено инактивирующему действию металла, находящемуся в избытке. [c.244]

    Мы не можем утверждать, что в клетке есть только те органеллы, которые идентифицированы, выделены или обогащены с помощью описанных выше методов. Более того, гомогенность некоторых препаратов органелл вызывает сомнения. Бюфоидр. [332] показали, что окислительные ферменты и белки эндоплазматического ретикулума (ЫАОРН-цитохром с-редуктаза, цитохромы Ьъ и Р-450) могут быть локализованы на мембранах, способных частично отделяться от мембран, несущих гидролитические ферменты (глюкозо-6-фосфатазу, эстеразу, р-глюку-ронидазу). Неоднократно сообщалось о гетерогенности митохондрий, выделенных с помощью центрифугирования в градиенте плотности и дифференциального центрифугирования. Гетерогенность может проявляться в неравномерном распределении ферментов в популяции частиц или в других свойствах, таких, как проницаемость для сахарозы [3710] или способность включать аминокислоты [4082]. Причиной гетерогенности митохондрий может явиться также различие в их возрасте различия в размерах этих органелл могут приводить к различиям в соотношениях между площадью мембраны и объемом матрикса, что может также проявиться в гетерогенности некоторых свойств. [c.89]

    Канцерогенными оказываются совершенно различные химические вещества, если их скармливать экспериментальным животным или многократно наносить им на кожу. Некоторые из них действуют на клетки-мишени в своей исходной форме, но многим для этого необходимо превратиться в более активную форму - чаще всего это происходит под действием внутриклеточной системы ферментов, известных как цитохром-Р-450-оксидазы. Эти ферменты в норме превращают попадающие в организм яды и жирорастворимые ксенобиотики в безвредные и легко экскретируемые соединения. Однако окисление этой системой определенных вешеств приводит к образованию продуктов, являюшихся прямыми канцерогенами (рис. 21-6). Хотя известные на сегодняшний день химические канцерогены весьма разнообразны, большинство из них имеет по крайней мере одно общее свойство - способность вызывать мутации. Мутагенность может быть продемонстрирована различными методами, один из наиболее общепринятых - это тест Эймса, при проведении которого канцероген смешивается с экстрактом клеток печени крысы (играющим активирующую роль) и добавляется к культуре, специально подобранных ( тестирующих ) бактерий. Частота мутаций в такой бактериальной культуре является мерой мутагенности исследуемого вешества Грис. 21-7). Большинство соединений, обнаружи- [c.450]


Смотреть страницы где упоминается термин Цитохром свойства: [c.374]    [c.515]    [c.507]    [c.309]    [c.538]    [c.573]    [c.590]    [c.197]    [c.266]    [c.183]    [c.100]    [c.60]    [c.61]    [c.30]    [c.309]    [c.377]    [c.165]    [c.131]    [c.40]   
Основы биологической химии (1970) -- [ c.387 ]




ПОИСК





Смотрите так же термины и статьи:

Цитохром



© 2025 chem21.info Реклама на сайте