Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Медь, определение в сульфате меди, колориметрическое

    Определение соотношения количеств аминокислот основано на измерении оптической плотности растворов медного производного, полученных при обработке отдельных участков электрофореграмм спиртовым раствором сульфата меди. Измерения следует проводить в достаточно разбавленных растворах, чтобы соблюдалась линейная зависимость между содержанием аминокислоты и оптической плотностью раствора. Оптимальные для колориметрических определений концентрации аминокислоты находятся в пределах 0,05— [c.149]


    Существует много хороших методов прямого отделения мышьяка. Метод, имеющий наибольшую применимость, состоит в отгонке хлорида мышьяка (III) из солянокислого раствора. Для восстановления пятивалентного мышьяка до трехвалентного применяют такие восстановители, как сульфат гидразина, хлорид меди (I) или сульфат железа (II). Присутствие бромидов способствует восстановлению. Азотная кислота и другие сильные окислители должны отсутствовать. Присутствие серной кислоты не мешает. Германий при отгонке сопутствует мышьяку сурьма может частично перегоняться, если температура отгонки поднимается выше 107°. Ни один из этих элементов не мешает последующему колориметрическому определению мышьяка. Если фосфатов много, то отгонку повторяют при тех же условиях, как и в первый раз, чтобы устранить ошибку, которая может возникнуть при механическом увлечении фосфора в первый дестиллат. Пропускание углекислоты или азота через раствор во время дестилляции облегчает улетучивание мышьяка. Дестиллат можно собрать в холодную воду. Указания для выполнения отгонки с применением сульфата гидразина в качестве восстановителя даны на стр. 341. [c.336]

    Для разделения смесей этиленгликоля и диэтиленгликоля используют щелочной раствор сульфата меди. С сульфатом меди реагирует только этиленгликоль, образуя комплекс, окрашенный в голубой цвет. По интенсивности окраски колориметрически определяют количество этиленгликоля . Другой компонент определяют по разности между суммарным содержанием обоих компонентов, определенным окислением перманганатом калия в щелочной среде, и содержанием этиленгликоля. Если анализируют смесь из диэтиленгликоля с этилен- и пропиленгликолями, то последние определяют окислением йодной кислотой, а диэтиленгликоль после отделения этилен- и пропиленгликолей определяют окислением бихроматом калия . Пропиленгликоль в присутствии больших количеств этиленгликоля можно количественно определить колориметрически . Пентаэритрит в смеси с глицерином сначала окисляют перманганатом калия в щелочной среде, определяя сумму этих спиртов. Затем в отдельной пробе определяют глицерин окислением йодной кислотой. По разности находят содержание пентаэритрита . В такой смеси пентаэритрит можно также определить весовым методом . [c.193]

    На основе реакции гидролиза карбида кальция разработано несколько методик определения воды. В большинстве из них измеряется количество ацетилена манометрическим [106, 133, 163] или волюмоыетрическим методами [43, 71, 133, 209]. Другие методы, нашедшие ограниченное применение, основаны на сжигании ацетилена, в ходе которого из.меряют интенсивность пламени [36] или расход кислорода [132]. Ацетилен можно измерять и другими способами хроматографически гравиметрически в виде оксида меди(П) после сжигания ацетиленида меди титриметрически с перманганатом после восстановления сульфата железа(1Н) до сульфата железа(П) колориметрически. Эти способы описаны в других главах книги. Удобный, быстрый метод, основанный на измерении потери массы смеси карбида с образцом, описан в гл. 3. [c.565]


    При действии смеси концентрированной серной кислоты, сульфата меди и молочной кислоты на растворы, содержащие тиофен, при соблюдении определенных условий возникает темно-красная окраска Метод применялся для колориметрического определения 0,1—5 мг тиофена, например, в моче соба к, [c.623]

    Можно также провести сравнение окраски раствора в приемнике с окрасками искусственной шкалы стандартов, приготовляемых смешением растворов сульфата меди и бихромата (см. Колориметрическое определение свободного хлора , стр. 1110). [c.1120]

    Сульфат меди, ч. д. а. требуется при определении меди колориметрическим способом. [c.20]

    Раствор сульфата меди(П) окрашен в слабо-голубой цвет, интенсивность которого недостаточна для колориметрических определений. При действии аммиака ионы меди (И) образуют интенсивно окрашенные комплексные ионы синего цвета  [c.212]

    Если анализируемый раствор содержит медь, тогда в качестве реагента можно пользоваться дитизонатом меди [345а]. Раствор дитизона (0,001%-ный) в СС14 встряхивают с небольшим избытком разбавленного раствора сернокислой меди в 0,05 N НгЗО в течение 1—2 мин. Органический слой промывают 0,01 N Н ЗО для удаления взвешенных капель водного раствора сульфата меди. 5—20 мл анализируемого раствора, подкисленного серной кислотой до 0,5 ЛГ концентрации, переносят в плоскодонную колбу со стеклянной пробкой. Прибавляют 2 мл раствора дитизоната меди на каждые 0,5—5 мкг серебра и встряхивают 2 мин. Сравнивают окраску органической фазы с аналогично приготовленными стандартами. При фотометрическом определении подходящий объем подкисленного раствора серебра, содержащего 2—10 мкг металла, встряхивают в делительной воронке в течение 2 мин. с 5 мл раствора дитизоната меди в СС14. Измеряют оптическую плотность органического слоя с желтым светофильтром. Содержание серебра находят по калибровочному графику, построенному в аналогичных условиях. Сравнение окрасок в двухцветном методе можно проводить также колориметрическим титрованием. [c.110]

    Концентрация ртути в аргоне была проверена колориметрическим методом с помощью индикаторных трубок. Индикаторным порошком служил силикагель, пропитанный растворами сульфата меди и иодида калия. Чувствительность метода (по литературным данным ) 1 10 " г/сж . Определенная этим ме- [c.57]

    Иногда для анализа твердых и газообразных топлив применяют метод, основанный на колориметрическом определении карбида меди. Так, Боллер [12] для извлечения воды из твердых веществ использовал инертные газы, например азот или водород. Поток такого газа, содержащего пары воды, пропускали через трубку с карбидом кальция при 180—200 °С. Выделяющийся при этом ацетилен проходил через аммиачный раствор сульфата или хлорида меди, что приводило к образованию красного карбида меди. Для повышения степени дисперсности образующегося карбида меди в раствор соли меди добавляли желатину или спирт [34]. Цвет раствора сравнивали либо с цветом стандартного красителя, либо с цветом рубинового стекла. [c.355]

    Раствор сульфата меди (II) окрашен в слабо-голубой цвет, интенсивность которого недостаточна для колориметрического определения. При взаимодействии иона Сц2+ с аммиаком образуется комплексный ион [Си(ЫНз)4Р+ интенсивно-синего цвета. [c.329]

    Ход анализа. Анализируемый раствор, содержащий не более 20 мг меди, лучше всего в виде сульфата, помещают в стакан емкостью 400 мл, подкисляют 4 мл разбавленной (1 1) Н. ЗО. или 5—10 мл концентрированной уксусной кислоты и разбавляют водой до 200 мл. В нагретый до 85—95° раствор опускают соединенную пару электродов. Платиновый катод предварительно высушивают при 100—110° и взвешивают. Электролиз ведут 40 мин., нагревая раствор на электрической плитке или на небольшом пламени горелки, чтобы сохранить его первоначальную температуру. По окончании электролиза вынимают электроды и обмывают их водой. Отделяют катод и промывают его сначала водой, затем спиртом, высушивают при 100—110° и взвешивают. Увеличение в весе катода показывает содержание меди. Если привес катода не превышает 2 мг, определение лучше закончить колориметрическим методом, после растворения Осадка меди в азотной кислоте. [c.157]

    Определение меди осаждением в виде сульфида и прокаливанием осадка до окиси меди требует предварительного удаления большого числа элементов, причем метод этот неприменим для определения меди в коли-. чествах, превышаюш,их 0,01 г, так как трудно разрушить сульфат меди, образуюш ийся при прокаливании. Колориметрические методы удобны для быстрых массовых определений меди или для определения малых ее количеств. Цианидный метод неточен и пригоден только для быстрых контрольных определений. Взвешивание меди в виде окиси меди после осаждения ее щелочью и прокаливания осадка дает совершенно неудовлетворительные результаты вследствие невозможности избежать загрязнения окиси меди щелочью. Представляют интерес, несмотря на их редкое применение, методы, в которых медь осаждается купфероном , ацетиленом и сероводородом с превращением полученного осадка сульфида меди (П) в сульфид меди (I). [c.260]


    Метод определения ксантогенатов предложен Ю. Ю. Лурье и 3. В. Николаевой [И] и основан на образовании окрашенного раствора ксантогената никеля, который экстрагируется четыреххлористым углеродом или толуолом и окрашивает слой растворителя в желто-зеленый цвет при соблюдении определенной реакции среды (pH в пределах 4,8—5,2), что достигается добавкой ацетатного буферного раствора. Колориметрическое определение проводится путем сравнения со стандартной шкалой визуально или с помощью фотоколориметра с синими светофильтрами. Выявлено, что в присутствии меди получаются результаты, пониженные прямо пропорционально количеству меди (1 мг меди соответствует 5,9 мг ксантогената). Поэтому, зная содержание меди в испытуемой пробе, вводят соответствующую поправку. Так же поступают в присутствии комплексных цианидов меди. Определению не мешают тиофос-фаты даже в количестве 1 г/л, цинк, простые цианиды (в 40-кратном избытке), комплексные цианиды цинка. Присутствие цианидов в очень большом количестве может связать в комплекс добавляемый сульфат никеля в этих случаях количество прибавленной соли никеля увеличивают. Свинец образует с ксантогена-том бесцветное соединение и в его присутствии результаты определения получаются пониженные. Чтобы избежать этого, свинец предварительно связывают добавлением небольшого количества карбоната кальция. После добавления карбоната кальция жидкость фильтруют и в фильтрате определяют ксантогенат. Результа- [c.281]

    Колориметрическое определение. Основной метод колориметрического определения молочной кислоты в крови [99] подвергался некоторым изменениям [100]. Исследуемую кровь освобождают от белков, действуя метафосфорной кислотой, и от углеводов, действуя сульфатом меди остаток медных солей осаждают окисью кальция. Полученный раствор молочной кислоты обрабатывают чистой концентрированной серной кислотой и по охлаждении приливают к нему 0,125-процентный раствор вератрола в абсолютном спирте. Появляющаяся в присутствии молочной кислоты красная окраска колориметрируется через 20 мин. Требуется строгое соблюдение разработанных условий особенно приходится заботиться о тщательной очистке всех применяемых пипеток и стаканчиков (очистка серной кислотой), так как в загрязненной посуде вместо прозрачного светлокрасного раствора можно получить грязносерый или зеленый раствор, см. также [101, 102]. [c.250]

    Для определения урана и его соединений в воздухе применяются несколько методов колориметрический, различные варианты люминесцентного и радиохимический. Все эти методы не являются избирательными для урана определению мешают ряд катионов и анионов (железо, медь, бром, кремний, алюминий, фосфаты, хлориды, сульфаты), которые могут сопутствовать урану в пробе. Вследствие этого необходимо часто проводить предварительное отделение урана от мешающих примесей. [c.119]

    По предложенному Хегглундом [111] методу требуется образец в 1 г и только трехминутное. кипячение, в то время как по другому методу [112] при окончательном титровании вместо перманганата используется стандартный сульфат церия. Основательно изученный [113] метод Швальбе-Бреди удобен для определения медных чисел порядка 0,05 и менее, характерных для немодифицированной или очень незначительно модифицированной целлюлозы [13]. Медное число для глюкозы равно 300 [1], кипячение длится три часа раствор содержит сульфат меди, карбонат и бикарбонат натрия. Этот метод был применен при исследовании бумаги [114] с применением полумикро- [115 и микрошкал [116], причем при микрошкале используется колориметрическое определение двухвалентного железа, полученного повторным окислением осажденной закиси меди с а-а -дипи-ридилом или о-фенантролнном. Когда все детали эксперимента строго стандартизируются, каждая модификация метода дает почти точно воспроизводимые результаты. Исключением являются некоторые гидроцеллюлозы, которые восстанавливаются очень сильно, что исключает возможность применения данного метода [И7 . Различная техника определения дает медные числа, которые не только в некоторой степени отличаются друг от друга, но и не строго пропорциональны числу присутствующих редуцирующих групп [118]. Поэтому всегда должен быть точно указан тот или иной индивидуальный метод, который следует применять в данном случае для определения медных чисел. [c.153]

    В нейтральных или слабокислых средах ферроцианид-ион образует слаборастворимое, окрашенное в бурый цвет соединение — ферроцианид уранила, коллоидный раствор которого можно использовать для колориметрического определения урана. Интенсивность окраски определяется кислотностью, концентрацией ферроцианида и временем выдерживания. Метод описан в применении к разбавленным растворам минеральных кислот и буферным кислым растворам В качестве буферных растворов применяют растворы солей муравьиной кислоты. Ацетаты, тартраты, цитраты и др. обесцвечивают раствор. Для буферных систем с муравьиной кислотой окраска устойчива в течение 24 час при содержании урана меньше 5 ч. на млн. при содержании до 11 ч. на млн. окраска мало меняется в течение 15 мин. Интенсивность окраски пропорциональна концентрации урана. Металлы, которые дают окрашенные или нерастворимые ферроцианиды, должны отсутствовать (в частности, железо, медь и никель). Сульфаты не мешают, если молярное отношение 50 1) не превышает 100 1. Единственное достоинство ферроцианидного метода — удовлетворительная чувствительность. [c.823]

    Стандартный раствор соли меди. Раствор необходим, если будет применяться колориметрический метод определения меди по автору (стр. 134). Раствор содержит 0,00001 г меди в 1 мл. Его приготовляют растворением 0,3928 г сульфата меди ( USO4  [c.25]

    Кричфилд и Джонсон [41] использовали для анализа реакцию первичных и вторичных аминов с сероуглеродом с последующим титрованием образующихся дитиокарбаминовых кислот. Третичные амины не вступают в эту реакцию. Влияние первичных аминов можно устранить путем введения их в реакцию с 2-этилкапроновым альдегидом (образование иминов). Таким образом, метод, основанный на реакциях с сероуглеродом, является специфическим по отношению ко вторичным аминам. Кат-чер и Ворошилова [42] определяли диметиламин, титруя дитио-карбамат раствором сульфата меди. Некоторые исследователи 43—45] проводили колориметрическое определение медного комплекса дрпиокарбамата, но они ограничились лишь определением диметиламина в различных системах. [c.467]

    Известно два варианта этого метода с использованием диэтил-дитиофосфата натрия или дибутилдитиофосфата калия [17]. Метод основан на том, что медь дает с обоими реактивами нерастворимый в воде, но растворимый в органических растворителях комплекс. Ионы цинка не осаждаются реагентом и остаются в водной фазе. Для определения меди рекомендуется иодометрический метод или колориметрический по окраске бензольного слоя, который позволяет сократить навеску и время определения. Однако после извлечения дибутилдитиофосфата меди из водного раствора бензолом окраска полученного экстракта отличается от окраски стандартного раствора меди в бензоле. Поэтому готовят шкалу стандартных растворов меди, извлекая ее таким же способом из руд, содержание сульфата меди в которых определено иодометрическим методом. Размер зерен руды не должен превышать 4 мкм (—200 меш). [c.51]

    Кроме того, при работе с сернисто-серябряным фотоэлементом иногда имеет место наложение поглощения в инфракрасной области, которое сильно искажает ожидаемые результаты. Так, например, хорошо известно, что прибавление аммиака к растворам сульфата меди вызывает сильное увеличение интенсивности синей окраски это используется для колориметрического определения меди. Однако при измерении посредством сернистосеребряного фотоэлемента от прибавления аммиака к раствору Си304 изменения поглощения почти не наблюдается. Это объясняется тем, что соли меди сильно поглощают в инфракрасной области спектра, а образование аммиаката меди, сильно изменяя поглощение в видимой части, почти не влияет на поглощение в инфракрасной области спектра. [c.139]

    Реакция свободной серы с медью и ртутью, наряду с другими методами, используется не только для качественного открытия, но и для количественного ее определения. Аналогичные методы применяются в резиновой промышленности при определении свободной серы в вулканизированном каучуке [294]. Так, Гарнер и Эванс [274] кипятили анализируемые образцы с порошком медной бронзы, образовавшийся сульфид меди окисляли в сульфат и заканчивали определение весовым методом. Диттрих [295] пользовался порошком меди и заканчивал определение колориметрически, после прибавления избытка соли меди. Левин и Стер [296] разлагали сульфид меди, осажденный на сетке, кислотой и выделившийся сероводород определяли иодометрически (сравни [294]). Некоторые авторы [275, 278] рекомендуют пользоваться эталонными шкалами в виде набора медных полосок, предварительно прокорродированных в растворах с известным содержанием серы. [c.32]

    Колориметрическое определение. Приготоиля-ют эталоны растворением в дистиллированной воде чистого, несколько раз перекристаллизованного сульфата меди uS04-5H. 0 растворы содержат доли миллиграмма меди, например в 10 миллилитрах их подкисляют равными количествами разведенной уксусной кислоты, прибавляют равное число капель разведенного раствора ферроцианида калия и сравнивают с таким же количеством испытуемого раствора, к которому прибавлены те же количества уксусной кислоты и ферроцианида калия. [c.338]

    Отделение кадмия от больших количеств цинка и одновременное его определение может быть проведено с большой точностью методом внутреннего электролиза 2. Для этой цели можно применять простейший прибор без диафрагмы (стр. 170). Кадмий выделяют из раствора, содержащего в объеме 250 мл 1,65 мл 80%-ной уксусной кислоты и 5,9 г ацетата натрия. pH такого раствора равен 5,2 (колебания в величине pH допустимы в пределах 4,6—5,6). Анодом служит пластинка цинка. Электролиз ведут i30—40 мин при 70—80° С. Выделившийся осадок промывают водой, подкисленной уксусной кислотой и содержащей небольшое количество электролита — сульфата аммоция. В промывной воде указанного состава электроды, соединенные друг с другом, оставляют на 20—30 мин при 70— 80° С (если в момент погружения электродов некоторое количество кадмия перейдет в раствор, то в течение этого времени оно снова выделится на катоде). Потом промывают 95%-ным этиловым спиртом (но не разбавленным спиртом). Вместе с кадмием выделяется медь, содержание которой можно потом определзиь колориметрическим методом после раство- [c.298]

    СЯ исключительно чувствительным колориметрическим методом [189]. Этот способ позволяет определить кислород при содержании его ниже 0,01%. Предложен другой способ, где кислород почти таким же путем превращается в окись углерода [55], а последняя окисляется до углекислоты с помощью нятиокиса иода и выделяющийся иод титруют гипосульфитом. Считают, что точность метода составляет 2% при содержании кислорода ниже 2%. Для определения углерода и водорода предложен исключительно точный макрометод [222], который был с успехом использован для анализа некоторых бутадиенстирольных полимеров с целью определения количества связанного стирола [137, 324]. В результате детального изучения метода определения азота по Кьельдалю дана модификация, комбинирующая приемы микро-и макроопределений и позволяющая с достаточной точностью определять количества азота меньше 0,05 мг, а обнаруживать еще-меньшие количества [70]. При разложении применён смешанный катализатор, составленный из сульфатов натрия, меди и селената натрия. [c.92]


Смотреть страницы где упоминается термин Медь, определение в сульфате меди, колориметрическое: [c.312]    [c.697]   
Количественный анализ (1963) -- [ c.487 ]

Количественный анализ (0) -- [ c.478 ]




ПОИСК





Смотрите так же термины и статьи:

Колориметрическое определение

Медь, определение

Определение меди колориметрически

Сульфат меди

Сульфаты, определение



© 2025 chem21.info Реклама на сайте