Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пластмассы на основе полиэтилена

    К важнейшим синтетическим полимерным материалам относят пластмассы, эластомеры, химические волокна и полимерные покрытия. В отличие от металлических материалов они имеют высокую устойчивость в агрессивных средах, низкую плотность, высокую стойкость к истиранию, хорошие диэлектрические и теплоизоляционные свойства. Из них несложно изготовить детали и аппараты сложной конструкции. Недостатком многих полимерных материалов является их склонность к старению и невысокая термическая стабильность (до 250 °С). Наиболее известны материалы на основе фенол-формальдегидных смол (с. 192), поливинилхлорида, полиэтиленов (с. 192) и фторопластов. [c.176]


    Антифрикционные свойства тефлона изучены достаточно хорошо, тогда как антифрикционные свойства пластмасс на основе полиамидов и полиэтиленов, применяемых в качестве подшипниковых материалов для некоторых легко нагруженных сопряженных деталей машин, изучены мало. В связи с этим Матвеевским были исследованы полиамиды различных марок, полиэтилен низкого и высокого давления и тефлон. Часть испытаний длительностью 60 мин велась при температуре 20 С, а испытания при повышенных температурах длились 1 мин. Температура изменялась от 20 до 350° С. Для всех полиамидов при сухом трении по стали наблюдалось прерывистое скольжение, сопровождающееся значительными скачками коэффициента трения. Наибольшее значение коэффициента трения и его скачка были получены для полиамидов. [c.364]

    Наконец, расширение рынка сбыта для пластификаторов, получаемых на основе оксо-процесса, зависит от влияния, оказываемого на сбыт поливинилхлорида конкурирующими пластмассами. Большое значение в вопросе сбыта имеет полиэтилен но другие пластмассы и продукты (например, изделия из стеклянного волокна) также являются сильными конкурентами поливинилхлорида. [c.422]

    Из полимеризационных смол наиболее широкое применение получили полиэтилен, полистирол, полимеры и сополимеры хлористого винила, полимеры фторпроизводных этилена, полиакрилаты, полипропилен, поливинилацетат, полиизобутилен, полиформальдегид и некоторые другие. Пластмассы на основе перечисленных смол термопластичны, выпускаются без наполнителя, обладают хорошими диэлектрическими свойст- вами, высокой ударной вязко- 1 стью (за исключением поли- стирола), но у большинства S из них низкая теплостойкость. [c.571]

    В значительном количестве в производстве РЭА используют прессовочные и литьевые пластмассы для изготовления установочных деталей, изоляторов, механизмов управления, корпусов приборов, а также для опрессовки элементов схем (конденсаторов, сопротивлений и др.). Основные критерии при выборе этих материалов — нагревостойкость и частота электромагнитного поля, в к-ром они должны эксплуатироваться. В высокочастотных цепях применяют преимущественно термопласты с пониженными диэлектрич. потерями (полистирол, полиэтилен, полипропилен, фторопласты), а также кремнийорганич. полимеры в низкочастотных — гл. обр. пластмассы на основе термореактивных смол (полиэфирных, эпоксидных, феноло-формальдегидных и др.). [c.472]

    Энергия, рассеиваемая излучением с поверхности, значительно различается для разных полимерных материалов. Это показано на рис. 3, на котором представлены данные о температуре поверхности, излучательной способности и интенсивности излучения для различных абляционных пластмасс при интенсивном нагреве. Показано, что излучательная способность поверхности не сильно различается для разных абляционных пластмасс и таким образом оказывает незначительное влияние на интенсивность излучения. Однако для различных абляционных материалов температура поверхности изменяется в очень широких пределах. Отчасти она определяется свойствами остаточного материала поверхности и склонна увеличиваться с возрастанием скорости теплопередачи. Некоксующиеся пластмассы, подобные тефлону, полиэтилену и найлону, подвергаются абляции при относительно невысоких температурах поверхности, которые обычно не превышают 870 °С. Следовательно, такие пластмассы способны отдавать излучением только незначительную часть поступающего тепла. Существенно более высокие температуры поверхности наблюдаются для композиций на основе пластмасс, в состав которых входят наполнители неорганического происхождения, например стекло, кварц, асбест и другие волокнистые и неволокнистые наполнители. Для этих материалов температура поверхности определяется главным образом плавлением материала на поверхности, а не компонентами органического связующего. [c.411]


    Рост производства пластмасс требует расширения сырьевой базы. Мощным источником сырья для производства синтетических материалов становятся нефтепродукты и природные газы. При переработке нефти методами термического и каталитического крекинга получается значительное количество жидких и газообразных веществ, например этилена и пропилена, на основе которых производят полиэтилен и полипропилен. Основную часть природных газов составляет метан, из которого получают ацетилен — сырье для синтеза ацетальдегида, уксусной кислоты, уксусного ангидрида и виниловых мономеров. [c.12]

    Наиболее перспективными для нужд химического машиностроения из ныне известных пластических масс являются винипласт, полиэтилен, фторопласт, стеклопластики и эпокси-смолы. Большое применение получат также лаки и клеи на основе многих из упомянутых смол, а также пластические массы, имеющие пористую структуру, состоящую из многих ячеек. Таким пластмассам присвоены наименования при удельном весе от 0,03 до 0,3 — пенопласт и при удельном весе выше 0,3 — поропласт. [c.64]

    Пластические массы (пластмассы) — конструкционные материалы на основе природных или синтетических полимеров. Действием давления или нагревания их формуют в изделия заданной формы. В состав пластмассы кроме полимера могут входить наполнители, пластификаторы, стабилизаторы, красители и другие добавки. Разделяют на термопласты, способные размягчаться при нагревании и затвердевать при охлаждении (полиэтилен, полипропилен, полистирол, поливинилхлорид, полиамиды, поликарбонаты) и реактопласты, неспособные размягчаться после отверждения (фенопласты, аминопласты). [c.23]

    Пластические массы — материалы, полученные на основе искусственных и естественных смол. Пластмассы способны формоваться и сохранять приданную им форму. Для изготовления трубопроводов применяют винипласт, фаолит, текстолит, полиэтилен и т. д. Все эти материалы имеют небольшой удельный вес, хорошо поддаются механической обработке и обладают высокой химической стойкостью к активным химическим средам. Недостаток таких труб — невозможность транспортировать по ним продукты с высокими температурами. [c.7]

    Для изготовления листов наиболее широко применяется ударопрочный полистирол, а также полиэтилен высокой плотности, сополимер стирола, акрилонитрила и бутадиена, твердый поливинилхлорид и пластмассы на основе эфиров целлюлозы. В будущем предполагается производство листов из полипропилена и поликарбонатов. [c.73]

    Минимальной толщиной листа принято считать 0,25 мм, более тонкие листы относят к пленкам. Однако часто основой для разделения служит не толщина изделия, а применяемое оборудование. Так, например, изделие из ударопрочного полистирола и пластмасс на основе эфиров целлюлозы толщиной 0,125 и 0,25 мм относят к листам , так как они изготовляются на агрегатах для листов. А к пленкам относят полиэтилен толщиной 0,375 лж, так как получают его методом раздувания на оборудовании для изготовления пленки. [c.73]

    Работы последних десяти лет в области влияния структуры на эксплуатационные свойства полимеров показали, что в процессе переработки полимеров даже чисто физическое или физико-химическое воздействие на полимерные материалы позволяет существенно изменять их свойства. Этот путь модификации полимеров открывает широкие перспективы разработки научно обоснованной технологии получения и переработки полимерных материалов. В основе этой технологии лежит формирование соответствующих надмолекулярных образований в результате воздействия тепловых, магнитных, электрических и механических полей. Так, воздействием теплового поля и давления (поле механических сил) из одного и того же химически идентифицированного полипропилена удалось получить разные материалы, отличающиеся структурой на надмолекулярном уровне и механическими свойствами [15, 16]. Воздействием магнитного поля на полиэтилен или эпоксидную смолу, наполненные ча-. стицами никеля, удается повысить их прочность в два раза и одновременно сделать эти пластмассы электропроводящими (р ) изменяется от 10 до 10 Ом-см у полипропилена [15] и от 10 до 10 Ом-см у эпоксидной смолы [16]). [c.14]

    Пластмассы широко применяются для изготовления деталей и узлов сушилок различных конструкций (ленточных, вальцовых и др.). Например, корпус, загрузочный бункер, кожух, вытяжной зонт изготовляют из стеклотекстолита панели управления, рукоятки — из текстолита и винипласта прокладки — из полиэтилена и композиции на основе полиэтилена (полиэтилен с полиизобутиленом). Для фильтров (барабанных, дисковых, фильтрпрессов) изготовляют корпус распределительной головки, корыто, лопасти мешалки — из полиэтилена высокой плотности, винипласта, стеклотекстолита и фаолита шестерни — из текстолита и полиамидов подшипники скольжения — из текстолита, текстолитовой крошки лотки, форсунки, натяжные валки, трубы — из винипласта шайбы, масленки и другие соединительные детали — из полиэтилена высокой плотности, винипласта плиты и рамы фильтрпресса — из стеклотекстолита. [c.4]


    Пластические массы в последнее время находят все более широкое распространение при изготовлении технологических трубопроводов в химической и других отраслях промышленности. Пластическими массами называют материалы, получаемые на основе искусственных и естественных смол и их смесей с другими веществами, способные формоваться (прессованием, литьем под давлением) и сохранять приданную им форму. Наиболее распространенными пластическими массами являются винипласт, фаолит ц текстолит. Помимо этих пластмасс, применяются асбовинил, полиизобутилен, полиэтилен. К положительным свойствам пластмасс, обеспечившим их широкое применение, относятся сравнительно небольшой удель- [c.24]

    К ним относятся пластмассы на основе поливинилхлорида (винипласт, пла-стикаты), полиэтилен, полипропилен, полиизобутилен, полистирол, полимеры и сополимеры фторпроизводных этилена (фторопласты) и другие полимерные материалы. [c.187]

    Пластмассами называют вещества, обладающие на известной стадии производства пластичностью и способностью затвердевать после придания им требуемой формы. Основой пластмасс являются высокомолекулярные соединения (синтетические смолы). Многие из них (например, полиэтилен, полипропилен, полистирол, капрон и др.) используют в чистом виде для изготовления пластмассовых изделий. Синтетические смолы представляют собой высокомолекулярные соединения (полимеры), получаемые путем осуществления реакций полимеризации или поликонденсации соответствующих мономеров. Полученный полимер после выделения его в чистом виде направляется для изготовления пластмассовых изделий. [c.6]

    Соляная кислота быстро разрушает болылинство металлов, поэтому выбору материалов для изготовления аппаратуры должно уделяться большое внимание. Для работы с соляной кислотой пригодны специальные сплавы, такие как дюрихлор, хлориметы и хастеллои. Чистый тантал не корродирует под действием соляной кислоты при любых ее концентрациях и температуре примерно до 177 С. Из неметаллических материалов можно применять кислотоупорные кирпич, керамику и фарфор, стекло, эмалированную сталь, каучук (нат ральный н синтетический для работы в условиях низких температур), пластмассы (полихлорвинил, полиэтилен, полистирол, фенопласты с наполнителем и фтороуглеводороды), а также различные графиты и угли. Уголь и графит широко применяются в производстве труб для влажного и сухого НС1 при температурах до 400° С. Карбейт — материал на основе угля или графита, пропитанных смолой, — широко используется для изготовления тсплообл1еп1[ого оборудования. [c.137]

    На заводах пластмасс производятся полиэтилен, полистиролы, винилацетат и его производные по-ливинилацетатная дисперсия пластификаторы и ионообменные смолы. В данную отрасль промышленности включены производства клея на фенольной основе, смоляного клея и искусственных смол в ГДР, а также фенольных и эпоксидных смол в ЧССР. [c.186]

    Отходы пластмасс подразделяют на производственные и потребления. Направления утилизации технол. отходов (глыбы, слитки, обрезки и др.) мех. переработка с целью приготовления той же продукции, при получении к-рой они образовались, и менее ответств. изделий (напр., с.-х. пленка и мешки для минер, удобрений, тара для упаковки хим. реактивов и товаров бытовой химии, детские игрушки) хим. переработка с получением чистых полимеров, пластификаторов, мономеров и их производных термич. переработка, напр, пиролиз с образованием сырья для орг. синтеза и углеродсодержащего остатка (основа активных углей, используемых в системах очистки отходящих газов и сточных вод). Загрязненные пром. и бытовые отходы применяют для строит, нужд (наполнители разл. изделия-плиты, блоки, трубы, кровля и др.) переработка таких отходов наиб, трудоемка, поскольку связана с их сбором, сортировкой, очисткой от посторонних примесей, уплотнением и гранулированием. Нек-рые виды пластмасс (полиэтилен, полипропилен, поливинилхлорид) способны к биодеструкции, т. е. могут разлагаться под действием бактерий, плесени и грибков для интенсификации процесса добавляют крахмал и Ре Оз, к-рые служат центрами биораспада. Разрушение пластмасс возможно под действием УФ излучения однако продукты распада отходов загрязняют окружающую среду. Осн. направления переработки пиролиз, деполимеризация с получением нсходных продуктов вторичная переработка. [c.436]

    Основы формальной теории смешения и диспергирования развиты с использованием теории вероятности и статистики [15, 16 применительно к изготовлению порошкообразных минеральных композиций или малонаполненных химически насыщенных пластмасс (полиэтилен, поливинилхлорид и др.) - Многие из полученных результатов можно, однако, использовать и для построения теории резиносмешения. [c.107]

    Применение. Двухшнековые машпны тппа DSM применяют ючтд исключительно для подготовки композиций на основе термопластов. В качестве типичных примеров следует упомянуть процессы "омогенизации и окрашивания полиэтиленов высокого и низкого давления (соответственно низкой и высокой плотности) или полипро-зилена, гранулирования пластифицированного ПВХ, загрузки каландров пластифицированным или жестким ПВХ, сплавления ( легирования ) различных термопластов друг с другом и регенерации (вторичной переработки) отходов пластмасс. В табл. 22 приведены данные по производительности двух моделей машин DSM для различных термопластов и технологических процессов [66]. [c.124]

    Применение. Типичными областями применения описываемых машин являются процессы смешения и гомогенизации полиэтиленов высокого и низкого давления, полипропилена, жесткого и пластифицированного ПВХ, приготовление композиций дяя линолеумов л покрытий на основе ПВХ, полистирола и АБС. Особенно следует упомянуть гомогенизацию материала в процессе получения пленочных изделий из полиэтилена высокого давления, окрашивание названных выше полимеров и получение концентратов ( выпускных форм ) пигментов для пластмасс. Другие области применения — предварительный подогрев резиновых смесей для шприц-машин В питания каландров, приготовление резиновых смесей для шинной промышленности, получение твердого ракетного топлива и угольных впектродных масс. [c.127]

    Для металлизации горячим тиснением Московский завод полиграфической фольги выпускает более десятка различных марок фольги на тонкой (до 5 мкм) пленке полиэтилен-терефталата. Фольга имеет довольно сложное строение. На полиэтилентерефталатную основу наносят разделительный воскосмоляной слой, затем защитный слой лака. Подготовленную таким образом пленку покрывают в вакууме тонким, до 0,01 мкм, слоем металла, а после этого грунтовочным лаковым покрытием, обеспечивающим прочную связь с металлизируемым изделием при горячем тиснении. Для металлизации различных пластмасс фольгу покрывают различными грунтовочными лаками, что отмечается в ее технической характеристике. [c.11]

    Электропроводящие наполнители могут применяться в качестве одного из компонентов электропроводящих покрытий. Другими компонентами являются связующее (например, поливинилхлорид, полиэтилен, полиизобутилен, поливинилацетат и др.) и растворитель или диспергирующий агент. При различных способах нанесения покрытия (окраска, разбрызгивание, окунание, пульверизация и др.) электропроводящий наполнитель должен распределяться по поверхности так, чтобы между его отдельными частицами сохранялся устойчивый контакт. Лаки на основе чистого серебра имеют самую высокую электропроводность. Электропроводность лаков на основе сажи несколько ниже, но может быть повышена подбором соответствующего связующего. В этом отношении хорошие результаты показали полимерные связующие — полиэтилен и полиизобутилен. Высокую проводимость имеют покрытия, содержащие мелкодисперсную сажу. Например, электропроводящая краска, состоящая из 100 вес, ч. поливинилхлорида и 20 вес. ч. диоктилфталата, растворенных в 400 вес, ч. метилэтилкетона, 25 вес, ч, газовой сажи и 10 вес, ч, метилового спирта, образует покрытие с р = 20 Ом. Электропроводящее покрытие, состоящее из 60—70% фурфуролацетонового полимера, 15—20% ацетиленовой сажи, 4—5% ацетона, 5—7% фурфурола и 10—20% отвердителя (от массы фурфурола), после нанесения на поверхность полимера и отверждения образует слой с pv от 10 до 100 Ом-см. Для покрытия пластмасс нашли применение пленки на основе окиси олова. В качестве покрытий могут быть использованы также некоторые пленкообразующие полимеры с хорошими антистатическими свойствами (например, полидиметилакриламид, поливинилпентаметилфосфорамид, полиакриламид и др.). [c.442]

    Первое место по валовому выпуску среди пластмасс занимают полиолефины полиэтилен, полипропилен, поливинилхлорид. Их отличает химическая стойкость но отношению к неорганическим кислотам и щелочам, механическая прочность, хорошие диэлектрические показатели. Однако температура эксплуатации защитных покрытий на их основе не превышает 60—70°С, адгезия недостаточно высокая. Покрытия из иолиолефинов не стойки к органически г растворителям. [c.66]

    I.— один из основных способов создания пластмасс, резин, лакокрасочных. материалов, клеев сиптет.иче-ских и др. полимерных материалов с заданными техно-логич. и эксплуатационными свойств-ами. Особенно важное значение Н. имеет при получении резни на основе большинства синтетич. каучуков, характеризующихся иизки.м межмолекулярным взаимодействием, а также композиций из термореактивных смол (феноло-, мочевино-, меламино-формальдегидных, полиэфирных, эпоксидных и др.), отверждение к-рых сопровождается значительной усадкой и приводит к образованию тре с-мерных полимеров с большой частотой сетки. На])яду с этими материалами широко используют также наполненные термопласты конструкционного назначения — иолиамиды, полиэтилен, нолииронилен, ноли-карбонаты, политетрафторэтилен и др. [c.163]

    Производные меркаптанов, такие как Ы-(трихлорметилтио)-фтали-мид, применяют в поливинилхлоридных покрытиях (подкладка для обуви, обивка стен, тентов) и пленках, идущих на изготовление занавесей для дуща, обивки сидений и т. д. Соединения четвертичных аммониевых оснований в концентрации 2—4% от веса пластификатора используют также для поливинилхлоридных пленок и покрытий. Типичными представителями ртутных соединений, применяемых в качестве фунгицидов, являются ацетат фенилртути, олеат фенилртути и др. Их используют в защитных покрытиях на основе акриловых и метакриловых смол. Соединения мышьяка являются отличными фунгицидами, однако они очень токсичны.. Их применяют в концентрации 3—5% от веса пленки, в основном поливинилхлоридной. При этом они одновременно служат стабилизаторами и пластификаторами. Соединения меди используют для предотвращения образования плесени в тканях, покрытых поливинилхлоридом, электроизоляции, трубопроводах и др. Так, пентахлорфено-лят меди применяют для защиты покрытой полиэтиленом бумаги, которая идет для упаковки. Основными направлениями научных исследований в этой области является разработка более эффективных и менее токсичных фунгицидов для пластмасс. [c.291]

    Развитие органического синтеза и успехи химии и физики высокомолекулярных соединений создали благоприятные условия для внедрения в промышленность пластмасс на основе продуктов полимеризации производных этилена. Большое развитие получили полквцниловые смолы, полистирол, полиакрилаты, полиэтилен (органические стекла, каучукоподобные массы для изоляции, заменители шеллака в производстве граммофонных пластинок и т. д.), а из новых продуктов — аллиловые эфиры дикарбоновых кислот (аллимеры).  [c.9]

    Бауере, Клинтон и Зисман показали, что метод обработки поверхности пластмасс может значительно изменять величину и )Иа. Фрикционные свойства поверхности, приготовленной путем прессования пластмассы на полированном никелевом диске, нагретом до температуры несколько выше точки плавления полимера, сравнивались с фрикционными свойствами поверхности, приготовленной путем обработки ее под струей воды шлифовальной бумагой (600 А) на основе карбида кремния. Трение изучалось при скольжении стали по полиэтилену, поливинилхлориду, поливинилиденхлориду и политетрафторэтилену, а также при скольжении полимера по такому же полимеру. На поверхностях, полученных тепловой полировкой, как так и [л имели значения приблизительно в 2 раза большие, чем на шлифованных поверхностях. Эти различия приписываются мягкости более аморфной поверхности образцов, полученных при тепловой обработке. Эти же авторы отмечают также, что после 100-кратных проходов стального ползуна по политетр афтор-этиленовой пленке, нанесенной на твердую металлическую подложку, коэффициент измеренный при скорости 0,1 см/сек и нагрузке 800 Г, увеличивается от 0,04 до 0,13 и л от 0,04 до 0,08. Однако осталось не вполне ясным, было ли это увеличение результатом структурных изменений поверхности или оно вызывалось протиранием пленки политетрафторэтилена и, следовательно, возникновением некоторого числа контактов металла с металлом. [c.317]

    К числу важнейших типов пластмасс, производящихся в ГДР, наряду с поливинилхлоридом, полиэтиленом, полиамидами и полистиролом относятся также фенопласты и аминопласты. Они принадлежат к группе реактоиластов, т. е. таких пластмасс, которые при нагревании не могут изменять свою форму. Фенопласты и аминопласты получаются в результате поликонденсации. Это такой процесс, при котором молекулы различных веществ соединяются друг с другом и образуют макромолекулы, причем одновременно возникают и другие, низкомолекулярные вещества — чаще всего вода. Хотя фенопласты — старейшая разновидность пластмасс, они до сих пор отнюдь не устарели. В технологию их получения все время вносятся отдельные усовершенствования, однако в своей основе она не изменилась. [c.201]

    Футеровка пластическими массами. Большинство химически стойких пластических масс получают на основе фенолоформаль-дегидных, виниловых и других смол. По поведению при нагревании они делятся на термопластичные и термореактивные. Первые не претерпевают заметных химических превращений, размягчаются и при остывании вновь приобретают прежние физико-механические свойства. Вторые в результате термического воздействия подвергаются химическим превращениям, что приводит к необра тимому изменению их физико-механических свойств. Из термо пластичных пластмасс в химическом аппаратостроении широк применяют винипласт, фторопласт, полиэтилен, из термореактин ных — фаолит. [c.128]

    Горение полирлеров и пластмасс на их основе протекает не одинаково и зависит, главным образом, от способа их получения и строения. Пластмассы на основе полимеров, полученных в результате реакции полимеризации (полиэтилен, полистирол, полихлорвинил и др.), под действием источника воспламенения нагреваются и плавятся. Так как полимеры не испаряются и не кипят, то при дальнейшем нагревании расплавленной массы на воздухе происходит термоокислительная деструкция с образованием различных горючих паров и газов (табл. 14). [c.150]

    Добавка неорганических веществ каолина, талька, диато-митовой земли, белой сажи — также понижает температуру разложения (228). Многовалентные спирты (этиленгликоль, диэти-лснгликоль или глицерин совместно с. меламино.м) активируют разложение при вопениванни бутадиенстирольного, хлор-1,3-бутадиенового каучуков или НК (27, 152). 5% глицерина резко увеличивают и ускоряют газообразование при вспенивании каучуков и пластмасс (82). Температуру максимального газообразования при получении пенопластов на основе поливинилхлорида можно снизить с 210 до 170°, применяя в качестве активатора фталамид (140). При получении ячеистого поливинилхлорида разложение активируется лимонной кислотой (146). Жесткие и эластичные пено.материалы (полиэтилен) получают с активатором некислотного характера, например, 1,2-гликолем, карбамидными производными или аминоспиртами (мочевина, биурет, азодикарбонамид, три(оксиметил)-аминометан) (218). [c.689]

    Для напыления могут использоваться многие пластмассы. Для порошкового напыления наиболее широко применяется низко-и высокомолекулярный полиэтилен, как в чистом виде, так и с примесью полиизобутилена для напыления пастами — поливинилхлорид. Для порошкового напыления также используют полиамиды на основе капролактама, полиметакрилаты, эпоксидные смолы (напряжения в пленках из них были измерены [6]), полиуретаны, нолистиролы, нолихлортрифторэтилен, полисульфидный каучук, полиакриловая кислота, сополимеры стирола и акрилонитрила, а также битумы. Рекомендуемая для них толщина покрытия 1—2 мм для битума [3] слой в 3 мм может быть отложен за одно напыление, необходимо лишь подогреть основной материал до 60 С. [c.650]


Смотреть страницы где упоминается термин Пластмассы на основе полиэтилена: [c.201]    [c.184]    [c.225]    [c.326]    [c.258]    [c.292]    [c.326]    [c.110]    [c.161]    [c.330]    [c.12]    [c.131]    [c.155]    [c.138]   
Технология синтетических пластических масс (1954) -- [ c.175 ]




ПОИСК





Смотрите так же термины и статьи:

ПЛАСТИЧЕСКИЕ МАССЫ НА ОСНОВЕ ПОЛИМЕРОВ, ПОЛУЧАЕМЫХ ПО РЕАКЦИЯМ ЦЕПНОЙ ПОЛИМЕРИЗАЦИИ Полиэтилен и пластмассы на его основе

Пластмассы на основе хлорполиэтилена и хлорсульфированного полиэтилена

Полимеризационные смолы и пластмассы на их основе. Полиэтилен и полипропилен



© 2025 chem21.info Реклама на сайте