Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Частоты колебаний октаэдрических

    Частоты колебаний октаэдрических молекул ХУд см ) [c.166]

    Анализ модели гармонического осциллятора, проведённый в работе [9] показал, что наиболее резкая температурная зависимость наблюдается у металлов и ИМС, имеющих частоту колебаний атомов водорода более 150 мэВ, что, как правило, соответствует локализации атомов водорода в тетраэдрических междоузлиях, а менее выраженная температурная зависимость наблюдается, если ООН < 75 мэВ. Эта область соответствует локализации атомов водорода в октаэдрических междоузлиях. В переходной области от 90 до 130 мэВ наблюдается более сложная картина. Согласно рассматриваемой модели при низких температурах зависимость от Т может быть аномальной, т. е. с ростом температуры а возрастает. [c.262]


    Здесь Р — число эквивалентных путей перемещения атома в решетке (для объемноцентрированных кубических металлов р = 4) а — геометрический фактор, равный для объемноцентрированных кубических металлов /34 V — частота колебаний атома в плоскости 100 Д5 — энтропия активации диффузии Q — энергия активации диффузии Р — температурный коэффициент изменения модуля сдвига . N — число Авогадро А — тепловой эквивалент работы а — период решетки й — диаметр внедренного атома к — расстояние между атомами металла по ребру куба в объемно-центрированной кубической решетке (диаметр октаэдрической поры). [c.56]

    Следует отметить, что квантовохимическое рассмотрение [84] образования октаэдрического комплекса Мп(СО)5Х допускает более сильное я-взаимодействие между атомом металла и аксиальной карбонильной группой по сравнению с экваториальными, степень которого зависит от электронных свойств лиганда X в транс-положении к этой группе. Одним из экспериментальных доказательств такого эффекта служит уменьшение частоты колебания аксиальной карбонильной группы по сравнению с экваториальными в ИК-спектрах комплексов Мп(С0)5Х (см., например, [85]). [c.181]

    Нормальные колебания, входящие в одну группу, т. е. относящиеся к одному и тому же НП, имеют одинаковые частоты, а следовательно, и энергии. Таким образом, колебание октаэдрической молекулы можно представить состоящим из 15 нормальных колебаний, дающих шесть различных частот, которые можно наблюдать экспериментально. [c.80]

    Удлинение связи М—X отражается на целом ряде характеристик соединения, в том числе на ИК-спектрах уменьшается частота ее валентных колебаний Так, при изучении октаэдрических комплексов и 1г + найдено, что м-с1 изменяется при изме- [c.392]

    В то же время увеличение координационного числа атома А1 (31) при переходе от тетраэдрической к октаэдрической группировке должно привести к ослаблению АЮ-связи и понижению частоты ее колебания [11, 89, 396]. Одновременно должна уменьшиться и силовая постоянная угла АЮН, а следовательно, и частота его деформационного колебания. Предварительный анализ спектров алюмосиликатных кристаллов показал, что частота плоского деформационного колебания ОН-группы, находящейся в вершине тетраэдра, 1450 см , в то время как та же группа, расположенная в вершине октаэдра, имеет валентную частоту 980 смГ [8]. [c.163]

    В общем случае, выполняющемся для всех нелинейных молекул, не имеющих осей симметрии выше второго порядка, значения частот всех нормальных колебаний о различны по величине, если не имеет место их случайное совпадение. Однако у молекул, обладающих более высокой симметрией, частоты различных нормальных колебаний оказываются, как это отмечалось выше, вырожденными благодаря симметрии молекулы. Так, у всех линейных молекул и молекул, имеющих одну ось симметрии третьего или более высокого порядка, одна или несколько пар нормальных колебаний имеют одинаковые частоты. Молекулы, имеющие несколько осей симметрии третьего или более высокого порядка, т. е. принадлежащие к тетраэдрическим и октаэдрическим точечным группам, помимо дважды вырожденных колебаний, обладают трижды вырожденными колебаниями. Если молекула имеет I вырожденных колебаний, число нормальных колебаний, имеющих различные частоты n v, равно [c.60]


    Для октаэдрической молекулы М(СО)е теория предсказывает одну основную частоту, активную в инфракрасном спектре (/ 1и) и две — в спектре комбинационного рассеяния A g и Eg), как для СО, так и для М—С валентных колебаний. Поскольку в спектрах Сг(СО)б и Мо(СО)б наблюдаются только эти частоты, то молекулы должны быть октаэдрическими. [c.244]

    Число нормальных колебаний и соответствующих им частот равно числу колебательных степеней свободы системы ЗЫ — 6. Для колебаний вырожденных типов симметрии частоты совпадают. В этом случае отдельные колебания вырожденной совокупности остаются неопределенными — любая их линейная комбинация есть нормальное колебание. В частности, приведенные в табл. VI. 1 и на рис. VI. 1 и VI. 2 формы двукратно вырожденных колебаний типа е (Q2 и Qз) и трехкратно вырожденных типа HQ6) произвольны (с точностью до их любой комбинации внутри вырожденной пары е или тройки t). При наличии двух или нескольких нормальных колебаний одинакового типа симметрии (например, /г и й в случае тетраэдра, табл. VI.]) они взаимодействуют между собой (подобно тому, как взаимодействуют между собой электронные термы одинаковой симметрии) и их частоты уже не независимы. Для октаэдрической системы -колебания называются иногда тетрагональными, а — тригональными — по виду искажения, к которому приводят соответствующие ядерные смещения (рис. VI. 1). [c.198]

    Сравнение [237] частот валентных колебаний металл—азот и прочности связей октаэдрических комплексов Мп(П) и 2п(И), в которых эффекты стабилизации полем лигандов отсутствуют, указывает, что наблюдаются близкие частоты колебаний вдоль связи металл—лиганд. Более того, судя по величине частот валентных колебаний металл—лиганд, прочность связи 2п—N в тетраэдрическом комплексе выше, чем в октаэдрическом. Это увеличение прочности связи происходит в результате перераспределения связывающей способности иона металла при координации шести или четырех лигандов. Следовательно, можно ожидать, что прочность связей 2п—лиганд в тетраэдрическом комплексе превышает прочность связей Мп—лиганд в пента- или гексакоординационных комплексах. Точно так же в тетраэдрических комплексах прочность связей Со—N возрастает вследствие перераспределения связывающей способности при переходе от октаэдрической к тетраэдрической структуре и превышает прочность связей октаэдрических комплексов N (11) [237] и, вероятно, пентакоординационных комплексов N (11). Это рассмотрение позволяет видоизменить приведенный выше ряд прочности связей металл—лиганд на основании величин частот колебаний связей металл—лиганд в дальней инфракрасной области, табулированных Нэйгом с сотр. [237]  [c.94]

    На рис. 36 показаны формы шести нормальных колебаний октаэдрической молекулы ХУв. Колебания VI, Уг и V5 активны в спектре комбинационного рассеяния, а в инфракрасном спектре активны только колебания Уз и 4. В табл. 41 приведены фундаментальные частоты колебаний молекул этого типа. Данные для [А1Рб] , [10б] и [ТеОб] " имеются соответственно в работах [514—516]. Анализ нормальных колебаний октаэдриче- [c.164]

    Кроме полос валентных колебаний С=Ы, в области более низких частот циано-комплексы дают полосы М—С валентных, М—С=Ы и С—М—С деформационных колебаний. На рис. 50 показаны инфракрасные спектры Кз[Со(СЫ)б] и К2[Р1(СЫ)4] ЗНзО. С целью отнесения полосы в этой низкочастотной области был проведен расчет нормальных колебаний для циано-комплексов различного строения. Как видно из табл. 55, результаты эти.х вычислений показывают, что валентное колебание М—С II деформационные колебания М—С=Ы и С—М—С появляются прн 500—350, 370—250 и около 100 ог соответственно. В этой таблице приведены также силовые постоянные растяжения связей М—С, ис-иользованные в расчетах. Относительно валентных колебаний М—С в других циано-комплексах приведены следующие данные для [Ре(СК)с] 505 слг [Мп(СЫ)( ] 614 сл- [Ре(СК )б] - 584 слг [Сг(СЫ)е] - 462 слг и для [Со(СМ)в] - 564 СЛ [84]. О проведенном недавно анализе нормальных колебаний октаэдрических циано-комилексов см. в работах [84а] и [846]. [c.232]

    Детали таких вычислений менее важны, чем общие выводы, а именно а) частоты колебаний комплексов с разными зарядами изменяются пропорционально изменению силовых постоянных, б) такие лиганды, как N0, СЗ и РРз, сильно воздействуют на силовую постоянную карбонильной группы и, следовательно, на частоту ее валентных колебаний, в) это сильное воздействие оказывают лиганды только в транс-положениях в октаэдрических комплексах. Соотношение между значениями для положенир цис- и транс- у сильно [c.300]

    Зависимость частоты активных в ИК-спектре и спектре комбинационного рассеяния основных колебаний октаэдрических комплексов [Р1С1б]2 от катиона (Адамс и Моррис, 1967а) [c.133]


    При исследовании колебаний октаэдрических слоев и атомов калия, находящихся между слоями, были рассчитаны спектры идеальных структур ди- и триоктаэдрического типа. В первом варианте расчета предполагалось, что слои 81205 имеют неискаженную структуру и не содержат атомов алюминия. Затем расчет был модифицирован с учетом деформации циклов 81205 и замещения атомами алюминия и произведено отнесение некоторых полос обсуждено совпадение наблюдаемых и рассчитанных частот. [c.178]

    В другом случае был предложен обш,ий метод оценки статического взаимного а-влияния лигандов на основе матричного элемента между локализованными эквивалентными орбиталями, описывающими связь лиганда с центральным атомом. Был сделан вывод, что для переходного центрального атома наиболее существенное значение имеет трансвлияние лигандов, а для непереходного — цисвлияние. Кроме того, показано, что замена связи М—менее ионной связью М—Ха приводит в случае соединений переходных металлов к росту межатомного расстояния и уменьшению частот колебаний связей М—Х , находящихся в т/5амс-положении к связи М—X в октаэдрических комплексах. Эффект тем больше, чем ковалентнее связь М—Хз- Эти выводы хорошо согласуются с имеющимися экспериментальными данными. [c.166]

    Ферро- и феррицианид-ионы. Октаэдрические ферроцианид-ион [Ре(СЫ)б] (гексацианоферрат(П)-1 он) и феррицианид-ион [Ре(СЫ)б] (гексацианоферрат(1П)-ион) имеют существенно различающиеся ИК-спектры поглощения, что позвол с идентифицировать эти комплексные ионы в ферри- и ферроцианидах различных металлов. Частоты валентных колебаний связей СН у феррицпанлдов у(СЫ) я 2110—2130 см всегда выше частот аналогичных колебангй ферроцнанидов, у которых (СК) 552 [c.552]

    Сг(СО)д], [Мо(ОО) ], [W( O)g]. Рассмотрим сперва характер колебаний, ожидаемых у таких молекул. Предполагается, что симметрия точно октаэдрическая (9,,, имеются коллинеарные связи М—С и О—О [13, 176]. На рисунке, названном Нормальные колебания молекулы типа [X(YZ)g] с симметрией 0 , Хокинс и сотрудники [83] дали схематическое изображение колебаний с соответствующими свойствами симметрии для 13 нормальных колебаний такой молекулы. Истинную форму нормальных колебаний можно определить только путем подробного расчета с точно известными частотами или силовыми постоянными, но все же схематические рисунки полезны для первой ориентации. В табл. 56 нере- [c.315]

    Единственными спектральными данными по замещенным карбонилам октаэдрической симметрии являются данные Бримма, Линча и Сесни [12] по [Мп(С0)5Л и [Ке(С0)5Л]. В области частот валентных колебаний карбонильной группы в этих спектрах для каждого соединения найдено по две интенсивные полосы. Кроме того, имеется еще одна более слабая полоса при несколько больших частотах. Эти наблюдения согласуются со структурами с ожидаемой симметрией в которых четыре эквивалентные группы СО находятся приблизительно в одной плоскости. Недавно были получены соединения тина [Мп(СНз) (00)5] [30], но спектральных данных для них нока нет (см., однако, работу [218]). [c.316]

    Рассмотрим сначала комплексы, содержащие только лиганды NHs или, кроме того, только одноатомные лиганды — ионы галогенов, которые, естественно, не вносят ничего в спектр, за исключением расположенных при низких частотах полос валентных колебаний и чрезвычайно низкочастотных полос деформационных колебаний. Общий подход к колебательному анализу этих молекул может быть описан на примере октаэдрического гексаммина тина [Go(NH3)g] . В этом случае должно быть всего 69 колебательных степеней свободы, но, если принять, что вращение лигандов NHg повышает эффективную симметрию до О , наличие ряда вырождений значительно уменьшает число различимых частот. Можно предположить также, что взаимодействие колебаний в одном лиганде NHg с колебаниями в другом лиганде невелико или пренебрежи- [c.334]

    На рис. 2-20 приведены данный об уменьшении интенсивности полос структурночувствительных колебаний или колебаний по внешним связям (табл. 2-5) для цеолита NaY в процессе термического разрушения структуры. Полезную ин-формагщю другого рода дает анализ положения полос колебаний связей внутри тетраэдров. Отсутствие заметных сдвигов частот таких колебаний показывает, что при аморфизации структуры не происходит существенного изменения среднего соотношения Si/Al показано также, что алюминий не занимает места с октаэдрической координа-1щей, для которых характерна полоса около 550 см Продукты рекристаллизации обнаруживаются по появлению характерных для них структурно-чувствительных полос. [c.138]

    Пауэлл и Шеппард [170] сравнили инфракрасные спектры ряда комплексов этилендиамина и нашли для них два типа спектров спектры типа А, наблюдаемые для октаэдрических комплексов Со(1П), Сг(1П) и Rh(III), а также квадратноплоскостных комплексов Pt(II) и Pd(H) и спектры типа В, полученные для октаэдрического комплекса Ni (И) и квадратноплоскостного комплекса Си (И). В обшем, спектр типа S несколько проще спектра типа Л. Этн исследователи пришли к выводу, что такую разницу можно отнести лишь за счет различия в конформации хелатного кольца. Поскольку в комплексе Со(И1) определенно имеется гош-форма [4], то спектр типа Л должен отвечать гош-конформации. Несмотря на то что Пауэлл и Шеппард объяснили спектр типа В наличием г с-конформации, методом рентгеноструктурного анализа было доказано, что хелатное кольцо в [ u(en)2] [171] и [Ы1(еп)з]2- [172] находится в гош-форме. В связи с этим им пришлось отказаться от своей первоначальной гипотезы [173]. В настоящее время причина различия между двумя типами спектров остается неизвестной. Пауэлл и Шеппард обнаружили, что частоты маятникового колебания NH2 и валентного колебания М—N ряда этилендиаминовых комплексов различных металлов можно коррелировать с константами устойчивости независимо от того, к какому из вышеупомянутых типов относятся их спектры. [c.258]

    Возможные частоты (и формы) колебаний, таким образом, связаны с симметрией системы, и это обстоятельство лежит в основе идентификации колебательных спектров инфракрасного поглощения и комбинационного рассеяния. Чем выше симметрия соединения, тем легче идентификация и анализ электронного строения на основе спектров. Например, для правильной октаэдрической системы из семи атомов возможны всего 3-7 — 6=15 колебаний, объединяемых в группы одно aig-, два eg-, три t2s-. Три t2a, три t ia- И три колебэний (табл. VI. 1 и VI. 2). Каждой из групп вырожденных колебаний соответствует одна и та же частота, так что всего следует ожидать шесть колебательных частот. Из них в инфракрасном поглощении проявляются только нечетные колебания, т. е. три частоты /зи, t u и t" u, а четные колебания a g, 6g и t2g проявляются только в комбинационном рассеянии [257, с. 277]. [c.199]

    Возможные частоты (и формы) колебаний, таким образом, свлзаны с симметрией системы, и это обстоятельство лежит в основе идентификации колебательных спектров инфракрасного поглощения и комбинационного рассеяния. Чем выше симметрия соединения, тем легче идентификация и анализ электронного строения на основе спектров. Так, например, для правильной октаэдрической системы из семи атомов возможны всего [c.97]

    Наоборот, в октаэдрическом [Со(ЫНз)5(ЫО)]С12 [514, 515] заполнение всех неовязывающих и связывающих молекулярных орбит центрального узла достигается при использовании только одного электрона нитрозогруппы. С этим отличием, по-видимому, связаны уникально низкая частота валентных колебаний N0 (1170 г вместо обычной —1900 см ) в этом комплексе и увеличенное расстояние N—О =1,26 и 1,41 А (по данным [514] и [515] соответственно) вместо обычного —1,11 А (см. табл. 5). [c.68]

    Молекулярная структура. Атомы N1 в центрах инверсии их координация гранс-октаэдрическая. Группы ЫСЗе связаны с N1 атомами Ы, расположение связей N1—N—С—5е почти линейное. Молекулы ДМФ связаны с N1 атомами О. Координирование молекулы ДМФ атомом О приводит к заметному ослаблению связи 0 = СН и незначительному — связей N—СН3. Ослабление связи 0 = СН сказывается в понижении частоты валентных колебаний. [c.177]

    Достаточно убедительные сведения о строении первой координационной сферы металла в тио- и селеноцианатах можно получить также из совокупности косвенных физико-химических данных из спектральных и магнитных характеристик из особенностей химического поведения, из величины электропроводности и др. Такие характеристики в особенности полезны в тех случаях, когда сопоставляются аналогичные или близкие по составу соединения, для одного или нескольких из которых уже имеются структурные данные. Главную роль здесь играют электронные спектры, характер которых различен в зависимости от симметрии поля лигандов. Иногда удается убедительно интерпретировать спектр, даже не имея эталонной модели (структурно-изученного соединения). Дополнительным критерием правильности расшифровки спектра в таких случаях служит сравнение величины расщепления А для соединений с предположительно тетраэдрической и октаэдрической конфигурацией комплексов (близость Атетр/Аокт к значению 0,44). ИК-спектры в той их части, которая относится к основным колебаниям групп ХСМ (Х = 5, 5е), малочувствительны к координационному числу металла. Однако при сопоставлении близких по составу соединений различие в координационном числе металла удается все же проследить оно сказывается на частотах валентных колебаний связей X—С и С—N достаточно закономерно. Такой способ определения строения координационного полиэдра использовали, например, Нельсон и Шеперд при анализе соединений типа МА2(ЫС8)2, где А —амин, М = Со, N1, 2п [6], и Форстер и Гудгейм при анализе соединений типа М2 [М(МС5)4], где М=Мп, Ре, Со, N1 [7].  [c.170]

    Об октаэдрической форме полиэдров N1 в соединениях N A2(N X)2 свидетельствуют и спектральные данные. В табл. 3 приведены частоты валентных колебаний связи 5—С ряда близких по составу соединений N1 и Со. Для некоторых из них конфигурация полиэдра металла известна из структурных данных. Различие в частотах (около 780—800 см для октаэдрических комплексов и 840—860 сл1 для тетраэдрических) не оставляет сомнения в том, что не только в NiPy2(N S)2, но и в Ni(Y-Pi )2(N S)2 и Ni(Iq)2(N S)2 координация октаэдрическая. [c.176]

    Недавно Кларк и Вильямс [136] применили ИК-спектраль-ный критерий координации металла к широкому кругу соединений состава MA2(N S)2 и MA4(N S)2, а Бёланд и Малац-ки [137] — к некоторым соединениям ванадия. В частности, Кларку и Вильямсу удалось выявить различие в частотах валентных колебаний при тетраэдрической, мономерно-октаэдрической и полимерно-октаэдрической координации (см. табл. 3). [c.218]


Смотреть страницы где упоминается термин Частоты колебаний октаэдрических: [c.182]    [c.83]    [c.188]    [c.225]    [c.163]    [c.175]    [c.73]    [c.111]    [c.127]    [c.436]    [c.436]    [c.438]    [c.439]    [c.440]    [c.440]    [c.358]    [c.326]    [c.24]    [c.128]    [c.96]   
Инфракрасные спектры неорганических и координационных соединений (1966) -- [ c.166 ]




ПОИСК





Смотрите так же термины и статьи:

Частота колебаний



© 2024 chem21.info Реклама на сайте