Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метилен-радикал реакции

    Энергии активации обоих процессов будут порядка тепловой энергии, адсорбированной при реакции, следовательно, Ь) требует меньше энергии активации и при низких температурах будет протекать легче, чем первый процесс разложения (а). Возможно, что это обусловливает расхождение в значениях энергии активации при различных условиях. Метилен, происходящий от атома углерода в состоянии Р, не является, строго говоря, свободным радикалом, скорее это будет сравнительно стойкая молекула. Возможность перехода атома углерода в состояние 5 делает ее менее стабильной, чем метан, но все же она стабильнее метильного радикала. Метилен-радикал, содержащий углерод в состоянии S, будет несомненно очень реакционноспособным. [c.254]


    Наблюдающаяся высокая химическая активность )адикалов обусловлена незаполненностью их электронных оболочек. Характерна аналогия между химическими свойствами гидридов углерода, азота, кислорода и фтора и химическими свойствами атомов с тем же числом электронов. Так, радикал СН (метин) является химическим аналогом атома Н, радикалы СНа (метилен) и NH (имин) — аналогами атома О, радикалы СН3 (метил), НН2 (аминогруппа) и ОН (гидроксил) — аналогами атома К и, наконец, молекулы СН4, N1 3, Н2О и НГ в известном смысле (инертность) аналогичны атому N6. Благодаря химической ненасыщенности радикалов энергия активации нроцессов, протекающих с их участием, имеет порядок величины энергии активации атомных реакций. Поэтому такие процессы, как правило, идут приблизительно с такой же скоростью, с какой идут атомные процессы. [c.34]

    Изучение механизма реакции показало, что деметилирование толуола происходит через стадию распада толуола на бензол и метилен. Метиленовый радикал взаимодействует с водяным паром, образуя окислы углерода и водорода. [c.59]

    Вторичные реакции являются обычными термическими реакциями фотохимические они лишь в том смысле, что вступающие в реакцию частицы не появились бы в отсутствие света. Некоторые частицы встречаются гораздо чаще как промежуточные в фотохимических реакциях, нежели в термических. Сюда относятся свободные атомы и радикалы, а также электронно-возбужденные частицы. Такие промежуточные частицы обычно высокоактивны, и их время жизни в реакционной системе соответственно мало. Однако активность не следует путать с нестабильностью свободный радикал или атом в изолированном состоянии имели бы совершенно нормальную стабильность, тогда как время жизни электронно-возбужденной частицы определяется вероятностью потери энергии путем излучения. Образующиеся атомы и радикалы могут также иметь некоторый избыток энергии например, при фотолизе кетена метилен может выделяться как в основном, так и в возбужденном электронном состоянии в зависимости от длины волны поглощаемого излучения. [c.18]

    Наблюдающаяся высокая химическая активность радикалов обусловлена незаконченностью электронных оболочек соответствующих атомных групп, благодаря чему свойства этих групп приближаются к свойствам атомов, обладающих тем же количеством внешних электронов, что и данная атомная группа. В этом отношении характерна аналогия между химическими свойствами гидридов углерода, азота, кислорода и фтора и химическими свойствами атомов с тем же числом электронов. Так, радикал СН (метин) является химическим аналогом атома N, радикалы СНа (метилен) и NH (имин) — аналогами атома О, радикалы СНз (метил), NHg.(аминогруппа) и ОН (гидроксил) — аналогами атома F и, наконец, молекулы СН4, NHj, HgO и HF в известном смысле (инертность) аналогичны атому Ne. Благодаря химической ненасыщенности радикалов энергия активации процессов, протекающих с их участием, имеет порядок величины энергии активации атомных реакций. Поэтому эти процессы, как правило, идут приблизительно с такой же скоростью, с какой идут атомные процессы. [c.79]


    В присутствии кислорода был обнаружен радикал СЮ , что подтверждает образование в этой реакции атомов хлора. В условиях данного эксперимента интенсивные полосы поглощения дифторкарбена можно было наблюдать в течение 20 мксек после вспышки. Это подтверждает более высокую стабильность дифторкарбена по сравнению с метиленом (15 мксек). Ослабление поглощения дифторкарбена следует, по-видимому, нулевому порядку, что позволяет предположить, что дифторкарбен удаляется из реакции посредством диффузии к стенкам реакционного сосуда.  [c.187]

    Первое указание на то, что в некоторых системах метилен реагирует как горячий радикал (радикал с энергией, превышающей значение, соответствующее тепловому равновесию), было получено из наблюдения, что соотношение продуктов реакции метилена с различными типами углерод-водородных связей зависело от источника получения этого радикала — диазометана или кетена 14—6]. Более подробные исследования [7,8] реакций метилена с бутеном-2 и циклобутаном, которые будут рассмотрены ниже, позволили предположить, что метилен может обладать избытком как поступательной, так и колебательной энергии. Поэтому отсутствие избирательности нри реакциях метилена вызывается, вероятно, тем, что он является горячим радикалом, а также низкими значениями энергии активации большинства его реакций. [c.250]

    Механизм этих реакций заключается в первичном распаде диазосоединения на азот и свободный двухвалентный радикал,—в данном случае метилен. Если распад диазометана ведется в органическом растворителе, образуется полиметилен (СНг) . [c.896]

    Реакции СНг и других карбенов родственны реакциям СО. Триплетный метилен действует как свободный радикал, отрывая обычно атомы водорода. [c.315]

    Под действием света и излучений высокой энергии в растворах могут образоваться и низкомолекулярные короткоживущие радикалы, приводящие к цепным реакциям. При определенных условиях в молекуле может образоваться два неспаренных электрона, т. е. такая молекула будет бирадикалом. Бирадикалом является атом кислорода, который имеет два неспаренных электрона, радикал метилен СНг. Бирадикалы могут быть и сложного строения с большим молекулярным весом, например [c.234]

    В радикале метилена СНг два электрона могут иметь анти-параллельные спины, тогда состояние радикала будет синглетным, или параллельные спины, тогда состояние радикала будет триплетным. Метилен, полученный фотолизом диазометана в газовой фазе по реакции [c.308]

    Чтобы показать значение энергии активации обратной реакции, рассмотрим разложение ион-радикала метана на метилен и водород (9). На рис. 17 изображены термохимические соотношения в этом процессе. [c.39]

    Благодаря наличию у радикалов свободных валентностей энергия активации процессов, протекающих с их участием, имеет порядок величины энергии активации атомных реакций, и, следовательно, они идут с такой же большой скоростью, как и реакции, в которых участвуют атомы. Особенно интересны радикалы, имеющие две свободные валентности. К таким радикалам относятся двухвалентные атомы О, 8, 8е и радикал метилен СНг , получающиеся в результате термического или фотохимического разложения диазометана (СНгМг- СНз- + N2) или фотохимического разложения кетена (СН2 = С0— СНз +С0). Устойчивые органические бирадикалы могут быть получены путем отрыва двух атомов водорода от молекул углеводородов. Активные бирадикалы имеют большое значение в химических процессах, так как способствуют возникновению так называемых разветвленных цепных реакций. [c.85]

    Отчетливо подтверждает реальность существования радикала СНа еще и реакция атомов Na с хлористым (или бромистым) метиленом [6]. Продуктами реакции являются Na l (пли NaBr) и этилен. Образование последнего может быть объяснено только рекомбинацией метиленовых радикалов  [c.95]

    Реакции с участием бирадикалов сравнительно редки. Бирадикал, у которого две ненасыщенные валентности находятся на разных атомах в разных местах молекулы, реагирует как монорадикал независимо одной и другой валентностью. Специфической реакционной способностью обладают активные частицы, несущие два электрона, не участвующие в химической связи, на одном атоме. Примером может служить свободный метилен СН , который образуется при термическом или фотохимическом распаде H2N2 и СНг = С=0. Метилен существует в двух формах синглетной и триплетной. Триплетный метилен с С—Н-связью реагирует как обычный свободный радикал  [c.117]

    Однако в продуктах реакции оказался лишь димер ( Hg)2As— — А8(СНз)2. Франкланд в 1849 г. утверждал, что при действии цинка на иодистый этил им синтезирован свободный радикал этил, что также оказалось неверным..— это был обыкновенный бутан. Бутлеров упорно и тщетно пытался синтезировать свободный метилен СНз разложением иодистого метилена H2I2. Лишь Гомбергу в 1900 г. удалось обнаружить диссоциацию бесцветного гексафенилэтана на окрашенные свободные радикалы трифенилметила  [c.258]


    Если катализатор очень насыщен углеродом, то преобладает реакция III вместо реакции I. Энергия активации реакции образования метана из этана и водорода на никелевом катализаторе определена в 43 ккал. Если с никелевым катализатором нагревать до 218° один этан, то образуются метан и углерод согласно схеме II. Полученные в этом исследовании результаты, повидимому, указывают на то, что этан в присутствии избытка водорода подвергается адсорбции, сопровсждающейся диссоциацией на радикалы, которые адсорбированным водородсм количественно превращаются в метан. При недсстатке водорода адсорбция, сопровождающаяся диссоциацией, идет дальше, из метила получается метилен, метин и, наконец, углерод с одновременным образованием атомного водорода, который с метильными радикалами дает метан. То, что происходит реакция обмена с образованием дейтероэтана в температурном интервале, в котором адсорбция, сопровождаемая диссоциацией, все еще идет в направлении образования метильного радикала, показывает, что адсорбция с диссоциацией на этильный радикал и водород оказывается процессом с меньшей энергией активации, чем адсорбция с образованием метильного радикала. Энергия активации процесса адсорбции, сопровождаемого диссоциацией этана и образованием метильного радикала, определена приблизительно в 19 ккал, между тем как для процесса адсорбции, сопровождаемого образованием этильного радикала и водорода, она около 15 ккал. [c.604]

    Кроме энергетического разветвления цецей, обусловленного межмоле-кулярным обменом энергии (Н Ег = Н НГ -1- Г), Шиловым с сотр. [145, 299] на примере реакции фтора с СНдТ были открыты разветвления, осуществляющиеся в результате внутримолекулярного обмена энергии. В этой реакции радикалы СНа , образующиеся в процессе Г СНд = = НГ -Ь СНа , взаимодействуя со фтором СНа -Ь Га = СНа Г + Г 4- 78 ккал, превращаются в богатую энергией молекулу СНа Г, которая в результате перераспределения энергии, не успев стабилизоваться, может распасться по схеме СНа Г СНаГ -Н Образующийся при этом радикал СНаГ, взаимодействуя с молекулой фтора, дает атом фтора (СНаГ + Га = СНаГа + Г), который инициирует новую цепь (разветвление). В соответствии с этим механизмом в продуктах реакции были обнаружены молекулярный иод, образующийся при рекомбинации атомов иода, и фтористый метилен СНаГа- По спектру ЭПР были обнаружены атомы иода. [c.445]

    Реакции паров натрия применялись для получения таких алкильных и арильных радикалов, как метил, фенил и бензил, а также дирадикалов, например триметилена СНд—СН2—СН2 , получающегося из триметилендибромида и ци слизующегося в свою очередь в циклопропан Предполагается, что реакция между парами натрия и бромистым метиленом дает дирадикал метилен -СНг-, который димеризуется в этилен, и радикал бромметил Вг — СН21 [c.117]

    Попытки сделать выводы из химической реакцпонноспособ-ности метилена о его спиновом состоянии и обратные выводы имеют длительную и порою неотчетливую историю. Ранние опыты с целью показать присутствие метилена в газовых струях заключались в переносе металлических зеркал из теллура, селена, мышьяка и сурьмы, а метод теллурового зеркала [44] был излюбленным для детектирования метилена, пока не было показано [45], что, по крайней мере при получении метилена фотолизом кетепа, перенос зеркала обусловлен главным образом реакцией с другими молекулами. Метилен реагирует также с иодом с образованием СНаХз [46, 47] и с окисью углерода с образованием кетена [48, 49]. Реакция дифеиилкарбена с кислородом дает бензофенон [43]. Метилен и его производные могли бы, вероятно, реагировать и со многими другими вещ ествами, если создать соответствующ ие условия, поск льку метилен весьма реакционпоспособен как в синглетном, так и в триплетном состоянии. Поэтому сомнительно, чтобы какое бы то ни было исследование случайно выбранных реакций, за исключением самого подробного, дало бы значительную информацию о типичных химических свойствах синглетных и триплетных состояний. Прежние предположения, как, нанример, то, что синглетный метилен обладает малой реакционной способностью [50] или что триплетный метилен, несомненно, обладает реакционной способностью свободного радикала , по-видимому, либо неправильны, либо чересчур упрощенны. [c.284]

    Простейший двухвалентный радикал—метилен—в 1859 г. пытался получить Бутлеров, действуя различными металлами (Na, К, Си) на иодистый метилен [5]. Однако во всех случаях им был получен этилен, т. е. также проходило соединение метиленовых радикалов друг с другом. А. П. Эльтеков сделал попытку получить в свободном состоянии этилиден (СН СН<) при действии на тиоуксусный альдегид медью (1877 г.) но в результате реакции был получен непредельный углеводород, который при взаимодействии с бромом давал ди- ромид, идентифицированный как 2,3-дибромбутан [6]. [c.800]

    Галогенирование. Из галогенов наиболее широко используется хлор вследствие дешевизны и достаточной химической активности. При взаимодействии метана с хлором на свету атомы водорода постепенно замещаются хлором. Как было установлено экспериментальными исследованиями, реакция протекает по радикальному цепному механизму. Молекулярный хлор под влиянием света расщепляется на атомный, который иницирует (начинает) радикальную реакцию он отщепляет водород от метана, образуя радикал метил и хлористый водород. Метильный радикал взаимодействует с молекулярным хлором и стабилизируется в первый продукт хлорирования метана — хлористый метил, который по аналогичной схеме подвергается дальнейшему хлорированию, образуя последовательно хлористый метилен, хлоро рм и тетрахлорметан (четыреххлористый углерод)  [c.41]

    В Париже, в лаборатории Вюрца, Бутлеров выполнил свою первую работу из большого цикла исследований производных метилена. Там он впервые получил в достаточно чистом виде йодистый метилен и изучил некоторые его реакции. Заключение статьи, в которой изложены результаты этой работы, показывает, что Бутлеров был полностью в курсе представлений теории многоатомных радикалов. Наличие в йодистом метилене С2Н212 (С =6.—Г. Б.) двухатомного радикала СаНа завершает ряд простейших радикалов, содержащих 2 эквивалента углерода. Эти радикалы следующие  [c.74]

    Акт химической реакции между хлороформом и хлоридом трет-бутилмагния сопровождается переносом электрона с реактива Гриньяра на хлороформ. Состав продуктов реакции и распределение химической поляризации в них указывают, что поляризация генерируется в паре о-радикалов дихлорметил/трт-бутил. Правило 1 показывает, что первичная радикальная пара образуется в синглетном состоянии ( 5). 1,1-Дихлор-2,2-диметилпропан, имеющий усиленное поглощение на метильных и метиновом протонах, образуется нри рекомбинации партнеров первичной радикальной пары. Константа СТВ для протонов тпрещ-бутильного радикала имеет положительный знак [8], а g-фaктop трет-бутильного радикала (2,0025 [8]) меньше -фактора дихлорметильного радикала (2,008 [8]). Откуда имеем (+)=Ц (+) (—) (+)> М =( )- Аналогичный результат можно получить при анализе сигнала усиленного поглощения метинового протона. Константа сверхтонкого взаимодействия дихлорметильного радикала имеет отрицательный знак (—17 гс [8]), но положительная разность -факторов приводит к такому же выводу (+)=Ц-(+) (+) (—), т.е. а = (—) (схема 8). Реакция диснропорционирования в первичной радикальной паре дает два продукта — изобутилен и хлористый метилен. Разность -факторов обусловливает усиленное поглощение метильных и метиленовых протонов изобутилена Г =(—) (+) (—) (+) = (+), т. е. А. Протон, который перешел при диспропорционировании от трет-бутильного радикала [c.95]

    При анодном замещении в 1,2-диметнлпирроле катион-радикал может вступать в две конкурентные реакции (схема 4-2). Во-первых, анодно-генерированный катион-радикал 16 атакуется цианид-ионом, что приводит к радикалу 17 затем цроисхо-дит дальнейшее гомогенное или гетерогенное окисление с последующей потерей протона, дающее в итоге продукт цианирования в ядро 21. Альтернативно катион-радикал может депро-тонироваться, образуя интермедиат, являющийся аналогом бензильного радикала 18, который, окисляясь далее, дает катион. За этой реакцией в свою очередь последует нуклеофильная атака цианид-ионом, дающая 1-метил-5-метилен-2-циано-3-пир-ролин (22), который в протонных растворителях должен подвергаться ароматизации. Чтобы различить эти два возможных пути, исследовали анодное окисление 1,2-диметилпиррола в растворе цианида натрия в СНзОО. Включения дейтерия в 2-ме-тильную группу не наблюдалось, но были обнаружены следовые количества 1-метилпиррол-2-ацетонитрила. Следовательно, при ароматическом замещении второй механизм (с депротонированием) не осуществляется. Аналогичные результаты были получены и при анодном цианировании 1,3-диметилиндола в СНзОО. В этом случае 1-метилиндол-З-ацетонитрил не удалось обнаружить. [c.139]

    Хорошо изучена также реакция присоединения тиолов к диенам [4, 198]. Радикальное присоединение тиофенола к 4-метилен-норборнену идет с атакой тиильного радикала на двойную связь в эн5о-положении, причем образуются три продукта реакции [99]  [c.87]

    Метилен был обнаружен при помощи метода металлических зеркал (он разрушает налеты 5е, Те, Аа и 5Ь, однако не налеты Zn, С(1, РЬ, Т1 и В1). С теллуровым зеркалом он образует полителлуроформаль-дегид (СНзТе) . Продолжительность существования метилена гораздо больше, чем метильного радикала его концентрация в газе не уменьшается нри прохождении через трубку длиной 80 см в течение 0,05 сек. в экспериментальных установках, аналогичных примененным для получения метильного радикала. Нормальной реакцией стабилизации метилена в газовой фазе является димеризация в этилен. [c.381]

    При реакции ферроцена с тетрацианэтиленом в циклогексане образуется комплекс [731 в более полярных растворителях (хлороформ, хлористый метилен, ацетонитрил) происходит перенос электрона с образованием иона ферри-циния и радикал-аниона ТЦЭ эту реакцию впервые наблюдали Вебстер, Малер и Бенсон [1791. Розенблюм и сотрудники определили, что константа равновесия образования тетрацианэтиленилида феррпциния из ферроцена и тетрацианэтилена в ацетонитриле равна 2,5-10 [731. Рутеноцен и осмоцен также реагируют с ТЦЭ с образованием радикал-аниона. [c.72]


Смотреть страницы где упоминается термин Метилен-радикал реакции: [c.394]    [c.276]    [c.277]    [c.277]    [c.4]    [c.274]    [c.219]    [c.219]    [c.24]    [c.128]    [c.274]    [c.250]    [c.57]    [c.54]    [c.71]   
Введение в радиационную химию (1967) -- [ c.191 ]




ПОИСК





Смотрите так же термины и статьи:

Метилен

Метилен реакции

Реакции радикалов



© 2025 chem21.info Реклама на сайте