Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Макромолекулы линейные, гибкость

    Для определения энтропии смешения линейного полимера с низкомолекулярным растворителем необходимо предположить, что разме ) сегментов макромолекулы (звенья) равен размеру молекулы растворителя. Иногда в качестве сегмента берут мономерную единицу, а за нх число г в цепи макромолекулы принимают степень полимеризации. Используя решеточную модель раствора, в которой отдельные узлы решетки заняты молекулами растворителя или сегментами макромолекулы, обладающей гибкостью, рассчитывают число возможных расположений микромолекул. Число частиц, принимающих участие в перестановках, равно = 1 22. После расчета полной статистической вероятности Я в соответствии с уравнением Больцмана (5 = й 1пй) определяют энтропию смеше- [c.322]


    Свойства полимеров резко зависят от геометрической формы макромолекул. Так, линейные полимеры, обладая большой прочностью, эластичностью, могут образовывать растворы с высокой вязкостью. Это связано с высокой степенью ориентации линейных макромолекул друг относительно друга и их довольно плотной упаковкой. Разветвленные полимеры обладают иногда даже большей растворимостью по сравнению с линейными полимерами. Степень разветвленности определяет их прочность и вязкость растворов. Например, полимеры с высокой степенью разветвления образуют растворы с пониженной вязкостью, что объясняется меньшей гибкостью этих макромолекул, а значит, и незначительной их асимметрией. Разветвленность макроцепи является еще одним видом нерегулярности макромолекул полимера, который мешает и даже препятствует процессу кристаллизации. С увеличением степени разветвленности макромолекул полимеры приближаются по физическим свойствам к обычным низкомолекулярным веществам. Сетчатые полимеры по свойствам очень отличаются от линейных и разветвленных полимеров. Они не растворяются и не плавятся без разложения, практически не кристаллизуются. Все эти и другие свойства зависят от степени связывания макромолекулярных цепей [c.382]

    Многие линейные полимеры могут плавиться без разложения, причем их расплавы также обладают очень высокой вязкостью. Линейные полимеры отличаются хорошими физико-механическими свойствами большой прочностью и эластичностью. Гибкость макромолекулы линейных полимеров способствует их растворению и плавлению, а способность гибкой макромолекулы изменять форму под влиянием внешних условий обусловливает высокие эластические свойства. Значительное разрушающее напряжение для линейных полимеров объясняется главным образом тем, что линейные макромолекулы могут достигать высокой степени ориентации относительно друг друга и иметь большую плотность упаковки, что приводит к возникновению многочисленных межмолекулярных связей с высокой суммарной энергией. [c.47]

    Еще не так давно некоторые ученые считали линейные макромолекулы жесткими. Однако опыт последних десятилетий показал, что в большинстве случаев линейные макромолекулы обладают гибкостью. [c.427]

    Макромолекулы линейных полимеров характеризуются высокой степенью асимметрии. Поэтому отдельные участки вытянутой молекулярной цепи настолько удалены друг от друга, что взаимное влияние становится ничтожно малым. Вследствие этого некоторые участки молекулярной цепи при растворении (когда подвижность и гибкость цепи возрастает) и при процессах деформации полимера ведут себя как кинетически самостоятельные единицы. Такие участки молекулярной цепи называют сегментами. Размер участка молекулярной цепи, проявляющего кинетическую независимость (сегмента), не является постоянной и зависит от гибкости молекулярной цепи и условий, в которых находится полимер (температура и концентрация раствора, природа растворителя, температура, величина и скорость приложения нагрузки прн деформации). Благодаря подвижности отдельных сегментов молекулярной цепи при их тепловом движении макромолекула непрерывно меняет свою форму конформацию), и так как число возможных конформаций изогнутой молекулы очень велико, а вытянутая только одна, то макромолекула большую часть времени имеет изогнутую форму, что очень важно для понимания особенностей свойств растворов и процессов деформации полимеров. [c.44]


    Размеры макромолекул полимерных соединений настолько превышают размеры молекул низкомолекулярных веществ, что форма макромолекулы, как и химическая структура ее элементарных звеньев, оказывают решающее влияние на физические и механические характеристики материалов. Макромолекулам линейной формы свойственна высокая гибкость, приводящая к непрерывным конформационным изменениям. Чем длиннее цепи линейного полимера и больше полярность структуры его звеньев, тем выше силы их взаимного сцепления. Внешне это проявляется в большей прочности и твердости полимера, в повышении температуры размягчения и снижении текучести при повышенной температуре. Чем меньше силы межмолекулярного сцепления, тем богаче набор различных конформаций, которые может иметь макромолекула в результате тепловых колебательных движений. Большую гибкость полимерной цепи придает связь углерод — углерод. Звенья кислорода или серы, вкрапленные в углеродные цепи в ви e простых эфирных связей, способствуют усилению колебательного движения, повышая эластичность полимера, снижая температуру стеклования и размягчения. [c.763]

    Пачки и глобулы в определенных, зависящих от химич. строения полимера условиях, способны переходить одна в другую. Так, напр., в случае р-ра полимера изменение природы растворителя может привести к развертыванию скрученных гибких макромолекул линейного строения и агрегации их в пачки, а также к обратному процессу дезагрегации пачки и образования глобул. При достаточной гибкости пачек может происходить их свертывание, т. е. образование более крупных глобулярных форм И. с. [c.159]

    Линейные цепные макромолекулы представляют наибольший интерес, и они нашли большое применение в технике. В большинстве случаев линейные макромолекулы обладают гибкостью. Наиболее гибкими линейными макромолекулами являются цепочки углеводородов, так как из-за незначительного взаимодействия СНг- или СНз-групп между собой энергетический барьер свободного вращения невелик. К таким высокомолекулярным углеводородам относятся натуральный каучук, полибутадиен (бутадиеновый синтетический каучук), полиизобутилен. [c.67]

    На первом этапе, характеризуемом классическими работами Куна [ ]. Гута и Марка [2], была развита статистическая теория полимерных цепей как линейных систем, состоящих из независимых элементов (статистических сегментов). На основе этой модели, учитывающей основное общее свойство макромолекул — их гибкость, в работах Флори [З], Дебая Куна [ 2] и Кирквуда была построена тео- [c.11]

    Штаудингером представления о вытянутой, жесткой, палочкообразной форме таких длинных молекул в свете многочисленных экспериментальных данных (например, рентгеновского анализа, адсорбции линейных полимеров на жидких поверхностях и поведения полимеров в растворе и др.) оказались неправильными. Представления Штаудингера не могут быть также увязаны с высокоэластическими свойствами полимеров. Поэтому высокоэластические свойства полимеров старались объяснить внутренней подвижностью макромолекул, их гибкостью, способностью изгибаться и менять свою конфигурацию. [c.92]

    В большинстве случаев линейные макромолекулы обладают гибкостью. Однако правильное понимание гибкости макромолекул оказалось возможным лишь после открытия особого вида движения в молекулах органических соединений — внутреннего вращения. [c.25]

    Макромолекулы линейных полимеров характеризуются высокой степенью асимметрии. Поэтому отдельные участки вытянутой молекулярной цепи настолько удалены друг от друга, что взаимное влияние становится ничтожно малым. Вследствие этого некоторые участки молекулярной цепи при растворении (когда подвижность и гибкость цепи возрастает) и в процессах деформации полимеров ведут себя как кинетически самостоятельные единицы. Такие участки молекулярной цепи называют сегментами. Величина участка молекулярной цепи, проявляющего кинетическую независимость (сегмента), не является постоянной и зависит от условий, в которых находится полимер (температура и концентрация раствора, природа растворителя, температура, величина и скорость приложения нагрузки при деформации). Это приводит к появлению некоторых особенностей в свойствах растворов и в процессах деформации полимеров. [c.48]

    Все линейные полимеры принципиально могут быть переведены в раствор. Растворы линейных полимеров даже при относительно небольших концентрациях обладают высокой вязкостью, в десятки и сотни раз превышающей вязкость соответствующих растворов низкомолекулярных соединений. Многие линейные полимеры могут плавиться без разложения, причем их расплавы также обладают очень высокой вязкостью. Линейные полимеры отличаются хорошими физи-ко-механическими свойствами большой прочностью и эластичностью. Гибкость макромолекулы линейных полимеров способствует их растворению и плавлению, а способность гибкой макромолекулы изменять форму под влиянием внешних усилий обусловливает высокие эластические свойства. Значительная разрывная прочность линейных полимеров объясняется главным образом тем, что линейные макромолекулы могут достигать высокой степени ориентации относительно друг друга и иметь большую плотность упаковки, что приводит к возникновению многочисленных межмолекулярных связей с высокой суммарной энергией. [c.51]


    Цепная макромолекула линейного полимера представляет собой линейную последовательность большого числа одинаковых или различающихся по химическому строению структурных элементов (мономеров, звеньев), соединенных химическими связями в единую цепь. Важнейшее свойство полимерной цепи, обеспечивающее ее конформа-ционную и кинетическую лабильность, — способность к свободному или заторможенному вращению вокруг единичных связей. Наличие и характер внутреннего вращения, степень его заторможенности предопределяют специфические равновесные и релаксационные свойства разных полимеров. Фундаментальным равновесным свойством макромолекул является термодинамическая гибкость, под которой понимают способность полимерной цепи принимать множество пространственных форм - конформаций. Эта способность связана с наличием большого числа внутренних степеней свободы - углов внутреннего вращения в основной полимерной цепи. [c.13]

    Гибкость макромолекулы линейных полимеров способствует их растворению и плавлению, а способность гибкой макромолекулы изменять форму под влиянием внешних усилий обусловливает высокие эластические свойства. Значительная разрывная прочность линейных полимеров объясняется главным образом тем, что линейные макромолекулы могут достигать высокой степени ориентации относительно друг друга с большой плотностью упаковки, что приводит к возникновению многочисленных межмолекулярных связей с высокой суммарной энергией. [c.37]

    Исследования растворов полимеров показали, что характерное для ннх сильное отрицательное отклонение от неидеальности связано с различием в размерах молекул ВМС и растворителя и особенно с гибкостью линейных макромолекул, которые сильно увеличивают энтропию смешения при растворении. Вклад конформаций макромолекул в энтропию смешения был учтен в теории растворов полимеров, в основе которой лежит уравнение Флори и Хаггинса, полученное с помощью статистической термодинамики. [c.321]

    Особенности в структуре строения линейных полимеров. Многие высокомолекулярные вещества, к числу которых относятся целлюлоза, каучук и синтетические волокна, имеют смешанную структуру. Возникающие между макромолекулами силы притяжения иногда достигают таких величин, что молекулы располагаются симметрично, образуя кристаллические области. Другие области линейных полимеров остаются неупорядоченными, аморфными. Эта особенность строения линейных полимеров служит наглядным подтверждением возможности сочетания в одном и том же материале высокой прочности с отличной пластичностью. В неразвернутом состоянии макромолекулы вытягиваются достаточно легко. При полном растяжении они настолько близко подходят друг к другу, что оказываются в сфере действия межмолекулярных сил, благодаря чему полимер делается исключительно прочным. Растягивание макромолекул линейных полимеров является одной из важнейших технологических операций при производстве волокон, повышающей их прочность. Макромолекулы кристаллических полимеров обладают регулярной структурой. К ним относятся полиэтилен, полиизобутилен и ряд других полимеров линейной полимеризации. В упорядоченных кристаллических областях макромолекулы связаны друг с другом прочно межмолекулярными и водородными связями. В результате этого материал приобретает устойчивость к разрыву и жесткость. Аморфным областям свойственно противоположное— они придают материалу гибкость и эластичность. [c.281]

    Гибкость макромолекул. Линейные цепи атомов, соединенных между собой химическими связями типа С—С, С—О, 51—О и т. п., весьма гибки и могут занимать в пространстве различное положение. Наличие больших боковых заместителей уменьшает гибкость макромолекулярных цепей тем сильнее, чем больше размер этих заместителей. Полярные группы ОН, СО, МН и др. также ограничивают свободу вращения макромолекулярных цепей и тем сильнее, чем больше внутри- или межцепные взаимодействия полярных групп. Такое же влияние на гибкость макромолекул оказывают циклические группировки (например, ароматические или конденсированные ядра) в цепи. Наконец, наличие сетчатых структур почти полностью исключает возможность перемещения макромолекулярных звеньев в пространстве и делает цепи жесткими. [c.23]

    Линейные полимеры отличаются высокими физико-механическими показателями высокими пределом прочности при разрыве и эластичностью. Эти особенности свойств линейных полимеров вытекают из их строения. Наличие двух типов связей—химических валентных связей и физических межмолекулярных взаимодействий,—различающихся по энергетической характеристике, определяет возможность растворения линейных полимеров. Высокой степенью асимметрии макромолекул обусловлена высокая вязкость растворов линейных полимеров. Гибкость макромолекул линейных полимеров способствует их растворению, а способность гибкой макромолекулы изменять форму под влиянием внешних условий обусловливает хорошие эластические свойства. Высокий предел прочности при разрыве линейных полимеров объясняется главным образом тем, что линейные макромолекулы могут достигать значительной степени ориентации относительно друг друга и большой плотности упаковки, что приводит к возникновению многочисленных межмолекулярных связей с высокой суммарной энергией. [c.302]

    Величина а свидетельствует о степени гибкости макромолекул полимера в данном растворителе. Для полимеров, макромолекулы которых имеют форму глобулы или предельно разветвленной цепочки, величина а приближается к нулю и вязкость раствора не зависит от молекулярного веса растворенного вещества. Молекулярный вес таких полимеров невозможно определить по предельному числу вязкости раствора. Константа а для полимеров, в которых макромолекулы линейной формы вытянуты в растворе как жесткие палочки, становится равной 1,5—1,7. [c.65]

    Форма макромолекул в растворе. Под влиянием колебатель- 0-вращательных движений макромолекулы полимера принимают в растворах самые разнообразные формы. Разнообразие )орм макромолекул определяется гибкостью цепи, ее длиной, концентрацией раствора и природой растворителя. В разбавленных растворах макромолекулы менее зависят друг от друга ч своих тепловых движениях. Поэтому конформационный набор лх все более обогащается новыми формами, которые в твердом юлимере и даже в растворе, но более высокой концентрации, невозможны вследствие межмолекулярного взаимодействия. Предельными формами макромолекул в растворе являются вытянутая нить или нить, свернутая в рыхлый клубок. Из много численных возможных конформаций линейные макромолекулы стремятся занять такое положение, которое в наибольшей сте тени отвечает равновесному состоянию данной системы, т. е.. . осто янию, соответствующему минимуму потенциальной энергии. [c.59]

    Величина молекулярного веса полимера данного гомологического ряда не оказывает влияния на гибкость полимерных цепей, так как в полимерных цепях разного молекулярного веса величина сегмента одинакова, а различны только количества сегментов. Наличие межмолекулярных химических связей обычно затрудняет конформационные превращения и уменьшает гибкость цепи. Однако, если эти связи располагаются довольно редко, на расстояниях, существенно превышающих величину сегмента, гибкость цепи такого полимера практически совпадает с гибкостью макромолекул линейного полимера такой же химической структуры. По мере увеличения плотности поперечных связей длина отрезков полимерной цепи между соседними точками сшивания уменьшается и гибкость макромолекул понижается. Вследствие взаимодействия между макромолекулами переход из одной конформации в другую осуществляется не мгновенно, а с какой-то конечной скоростью. Иногда проявление гибкости цепей оказывается практически невозможным вследствие исключительно низкой скорости поворотов. В этом случае, хотя число возможных конформаций велико, практически гибкость макромолекул не проявляется. [c.45]

    Величина молекулярной массы полимера данного гомологического ряда не оказывает влияния на термодинамическую гибкость, так как в полимерных цепях разной длины меняется только количество одинаковых сегментов. Наличие межмолекулярных химических связей обычно приводит. к затруднению конформационных превращений и уменьшению гибкости цепи. Но если эти связи располагаются довольно редко, на расстояниях, существенно превышающих величину сегмента, гибкость цепи такого полимера практически совпадает с гибкостью макромолекул линейного полимера [c.24]

    Получение синтетического каучука на основе полиэтилена давно привлекало внимание исследователей, так как макромолекула линейного полиэтилена обладает хорошей прочностью, гибкостью и имеет низкую температуру стеклования. Однако трудность получения каучука на основе полиэтилена связана с высокой кристалличностью линейной полиэтиленовой цепи. [c.15]

    Волокнообразование. Полимеры линейного строения способны образовывать прочные анизотропные высокоориентированные в одном (волокна) или в двух (пленки) направлениях материалы. Свойства этих материалов зависят от размеров, формы, гибкости и взаимного расположения макромолекул полимера. [c.377]

    Термодинамическая гибкость характеризует способность линейных макромолекул изменять свою форму в результате теплового (микроброуновского) движения. [c.80]

    Общие представления о полимерах. Элементарное звено. Степень полимеризации. Период идентичности. Линейные, разветвленные и пространственные полимеры. Химическая классификация полимеров. Карбоцепные и гетероцепные полимеры. Общие свойства ВМС. Понятие о средней массе полимеров. Гибкость макромолекул. Отличительные особенности полимеров. [c.172]

    В отличие от жестких молекул простых низкомолекулярных веществ для линейных макромолекул полимеров характерна большая гибкость. В связи с этим можно сказать, что полимер формируется при синтезе лишь тогда, когда цепные молекулы имеют большое число звеньев, достаточное для того, чтобы цепи обладали той или иной гибкостью. [c.13]

    Гибкость линейных макромолекул [c.427]

    Чтобы понять причину гибкости линейных макромолекул, рассмотрим строение молекулы этана. Ее можно представить как две группы —СНз, соединенные одинарной связью. Из органической химии известно, что группы —СНз в молекуле этана способны вращаться вокруг одинарной связи С—С. Это хорошо согласуется с тем, что, например, симметричный дихлорэтан не имеет изомеров. Однако при низких температурах свободное вращение вокруг связи С—С затруднено, так как не все возможные положения групп —СНз относительно друг друга равноценны в энергетическом отношении. Такая неравноценность обусловлена тем, что при повороте одной группы —СНз по отношению к другой изменяются расстояния между атомами водорода обеих групп. Это ведет к изменению энергии взаимодействия между группами —СНз. Поэтому при низких температурах —СНз-группы не вращаются вокруг оси С—С, а лишь вращательно колеблются на сравнительно небольшой угол. Только при достаточно высокой температуре благодаря увеличению кинетической энергии может быть преодолен энергетический барьер и группы —СНз будут свободно вращаться вокруг соединяющей их связи. [c.427]

    Макромолекулы линейного строения представляют собой длинные, зигзагообразные или закрученные в спираль цепи, которым свойственна больщая гибкость. Относительно друг друга линейные макромолекулы могут быть расположены беспорядочно, образуя сложные системы спутанных нитей, как это показано на рнс. 55. Увеличение размеров линейных макромолекул, особенно прн большой полярности образующих их звеньев, усиливает взаимодействие нх между собой, что проявляется в уменьшении летучести, ио-вышенин температуры размягчения, увеличении механической прочности и твсрдостн при низких температурах и вязкости прн высоких температурах, чему способствует также тесное переплетение макромолекул, затрудняющее их внутреннее передвижение. Однако многие линейные полимеры (особенно алифатические ноли-углеводороды) при низкой температуре сохраняют достаточную пластичность. [c.375]

    Вследствие высокой гибкости кремний-углеродной связи макромолекулы линейных полисилоксанов свернуты в тугие спирали. Такая форма макромолекул приводит к взаимной компенсации полярностей силоксановых звеньев макромолекулярной цепи. Отсутствие " внутримолекулярного Рис. 120. Термическая устойчи- взаимодействия И обрамление це-иость полиизопрена и полидиме-тилсилоксана  [c.476]

    Свойства и основные характеристики. B. . обладают специфич. комплексом физ.-хим. и мех. св-в. Важнейшие из них 1) способность образовывать высокопрочные анизотропные волокиа и пленки (см. Ориентированное состояние, Пленки полимерные) 2) способность к большим обратимым, т. наз. высокоэластическим, деформациям (см. Высокоэластическое состояние) 3) способность набухать перед растворением н образовывать высоковязкие р-ры (см. Растворы полимеров). Эти св-ва обусловлены высокой мол. массой В. с., цепным строением макромолекул, их гибкостью и иаиб. полно выражены у линейных В. с. По мере перехода от линейных цепей к разветвленным, редким трехмерным сеткам и, наконец, к частым сетчатым структурам комплекс характерных св-в В. с. становится все менее выраженным. Трехмерные В. с. с очень большой частотой сеткн нерастворимы, неплавки и неспособны к высокоэластич. деформациям. [c.442]

    Макромолекулы линейных полимеров имеют вытянутую форму, причем длина макромолекулы во1 много раз (100—1000 и более) превышает ее поперечные размеры. Макромолекулы линейных полимеров обладают большей или меньшей гибкостью, зависящей от хи-, мической природы макромолекулы и температуры. Таким образом, вещество, состоящее из макромолекул линейного полимера, представляет собой совокупность гибких нитей, взаимно связанных меж-мрлекулярными силами. [c.345]

    Ранее макромолекулам линейных полимеров приписывали неизменяемую прямолинейную форму. В действительности полимерные цепи отличаются большой гибкостью и располагаются так, что образуют беспорядочные переплетения. Таким характером расположения макромолекул наряду с другими факторами обусловлено сцепление между ними. Силы сцепления отражаются на свойствах полимеров, увеличивая их прочность и температуру размягчения и снижая текучесть при нагревании. - -V Беспорядочное взаимное расположение макромолекул ) обусловливает аморфную структуру многих полимеров. / Упорядоченность расположения макромолекул, более ( плотные их упаковки характерны для полимеров с кри- съ лической структурой. Обычно такие полимеры не со- еО ит полностью из кристаллических образований и со-СХ1 жат некоторое количество аморфной фазы. [c.17]

    Нйя, и повышенную гибкость полимерной цепи. Вследствие высокой гибкости связи 81—С макромолекулы линейных полисилоксанов имеют глобулярную форму, они свернуты в тугие спирали [77]. Это может привести к взаимной компенсации полярностей силоксановых звеньев макромолекулярной цепи. Отсутствие внутримолекулярного взаимодействия и обрамление цепей неполярными углеводородными радикалами, снижающими межмолекулярное взаимодействие, обусловливает значительно меньшие силы сцепления в полисил океанах, чем в большинстве органических полимеров с аналогичным молекулярным весом. Малое межмолекулярное взаимодействие полисилоксанов (хотя каждая молекула звена полимера обладает высокой полярностью) проявляется в том, что количество тепла, выделяющегося при набухании полисилоксанов, гораздо меньше, чем у органических полимеров. [c.142]

    Высокоэластическая деформация, имеющая малую скорост , при температуре ниже Т , становится преобладающим видом деформаций при температуре выше Высокоэластическая деформация заключается в изменении равновесной конформации линейных макромолекул. Величина де([)ормации при одинаковой Fiarpv -ке определяется д.пиной п гибкостью макромолекул. [c.40]

    Важное значение имеет конформационное состояние макромолекул в растворе, которое зависит от ее строения, природа дисперсионной среды, концентрации ВМС в растворе, температуры и наличия микроэлементов, которые являются причиной образования внутри- и межмолекулярных комплексов. Для нефтяных ВМС возможность образования той или иной конформации прежде всего определяется их молекулярным строением. Так, анализ данных [170] предполагает, что в состав асфальтенов могут входить ВМС, молекулы которых имеют плоскую конформацию вследствие того, что состоят из крупных конденсированных нафтено-ароматических фрагментов, соединенных непосредственно или через короткие мостики, не позволяющие молекуле сгибаться или складываться за счет вращения вокруг связей. Характерными для нефтяных систем могут бьггь макромолекулы, в которых нафтено-ароматические фрагменты с алифатическим и гетероа-томным "обрамлением" связаны между собой через несколько линейно связанных атомов углерода или гетероэлемента. В этом случае создается возможность складывания макромолекулы за счет сближения плоских фрагментов. Степень их сближения, которую можно характеризовать величиной угла пересечения плоскостей, проведенных вдоль плоских фрагментов, зависит от гибкости и длины связующего звена и стерических препятствий, создаваемых алифатическим обрамлением " плоских фрагментов, и их нафтеновой или гетероатомной частью. В результате образуется слоистая вторичная молекулярная структура с параллельной или непараллельной (зигзагообразной или спиралевидной) укладкой плоских фрагментов. Если макромолекула представляет собой разветвленную цепь плоских разнозвенных фрагментов, то слоистые структуры могут образовываться за счет складывания плоских фрагментов каждой ветви, и тогда макромолекула может рассматриваться как "гроздь" вторичных молекулярных складчатых структур, или за счет параллельной или почти параллельной укладки плоских фрагментов, входящих в состав различных ветвей макромолекулы, с образованием менее разветвленной вторичной молекулярной структуры. Образование такой конформации макромолекулы энергетически выгодно [c.82]

    Этот результат теории Флори имеет фундаментальное значение, позволяя ввести количественный и абсолютный критерий гибкости, с помощью которого все многообразие линейных и лестничных полимеров можно подразделять на гибкоцепные и жестко-цепные. Последняя категория включает и полужесткие (по терминологии Цветкова) макромолекулы, т. е. такие, для которых /о > 0. [c.39]

    Мы рассматривали линейную макромолекулу как растянутую зигзагообразную цепочку. Такая форма отвечает наименьшей потенциальной энергии молекулы, и при очень низких температурах линейные макромолекулы стремятся принять эту форму. Вытянутая форма молекулярных цепочек способствует их ориентации, обеспечивает возможность компактной упаковки именно этим и объясняется способность полимеров, состоящих из линейных макромолекул, кристаллизоватьбя при растяжении. С повышением температуры, вследствие увеличения гибкости макромолекул, возрастания интенсивности теплового движения отдельных звеньев и благодаря толчкам, получаемым от соседних молекул, линейные макромолекулы могут свертываться и образовывать клубки. Поскольку предельно вытянутое состояние линейной макромолекулы может быть лишь одним, а конформаций , которые может принимать макромолекула при свертывании, очень много, то естественно, что при достаточно высоких температурах все гибкие молекулы полимера будут представлять собой клубки. При этом состоянии энтропия полимерной системы максимальна, благодаря чему клубкообразное состояние гибких макромолекул при достаточно высоких температурах отвечает и минимуму свободной энергии. [c.429]


Смотреть страницы где упоминается термин Макромолекулы линейные, гибкость: [c.66]    [c.369]    [c.391]    [c.33]    [c.35]    [c.85]   
Курс коллоидной химии (1976) -- [ c.427 ]




ПОИСК





Смотрите так же термины и статьи:

Гибкость макромолекул



© 2025 chem21.info Реклама на сайте