Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Антрацен поглощение

    Для анализа полициклических ароматических углеводородов успешно применяют флуоресцентные датчики, высокая чувствительность и селективность которых определяется сильной естественной флуоресценцией этих веществ. В результате чувствительность по 3,4-бензпирену составляет 4-10 г в пробе [15]. Этим методом анализируют растворы, полученные при поглощении ароматических углеводородов из газа, а также экстракты сточных вод. Время выхода веществ при использовании в качестве растворителя водного раствора ацетонитрила (при 60 °С и 5,5 МПа) составляет в мин антрацен — 4,8, пирен— 5,9, хризен — 7,3, [c.324]


    Особенно хорошо разработаны методы определения ароматических углеводородов при совместном присутствии. В ультрафиолетовой части спектра этих углеводородов наблюдаются ясно выраженные полосы поглощения. Например, разработаны методы определения бензола, метил-бензола, этилбензола, 1,2-, 1,3- и 1,4-диметилбензола в бензине, нафталине 1,2-метилнафталина в керосиновых фракциях антрацена в сыром антрацене 1,3-бутадиена в бутенах и др. [c.249]

    Чтобы понять, как характер поглощения связан со строением органического вещества, вернемся к условию Бора Е — Ео = /IV. Чем ближе друг к другу находятся оба энергетических уровня (основной и возбужденный), тем меньше затрата энергии на возбуждение, тем меньшей энергией может обладать действующий квант света, тем, следовательно, меньше его частота (и соответственно больше длина волны). Разность энергий Е — Ед определяется природой возбуждения. Свет видимой и ультрафиолетовой частей спектра обладает энергией, достаточной для возбуждения электронов затрачиваемая на возбуждение энергия определяется в конечном счете подвижностью электронов. Так, электроны 0-связей требуют для своего возбуждения квантов с большой энергией, эти электроны малоподвижны. Поэтому предельные углеводороды, спирты, простые эфиры поглощают лишь в очень далекой ультрафиолетовой области. Этилен, имеющий подвижные л-электроны, поглощает свет при 193 нм. Сопряженные двойные связи в бутадиене, обладая еще большей подвижностью я-электронов, вызывают поглощение уже при 217 нм. В бензоле я-электронная система имеет несколько полос поглощения, наиболее длинноволновая из которых расположена в области 260—270 нм. Нафталин поглощает уже при 314 нм, антрацен — при 380 нм. На этих примерах видно, как с ростом сопряжения (ростом подвижности электронов) поглощение постепенно сдвигается в длинноволновую область — в область квантов со все меньшей энергией. Однако все упоминавшиеся пока соединения бесцветны — их поглощение лежит в ультрафиолетовой области спектра. [c.358]

    Поскольку триплетные состояния сильно тушатся кислородом, для наблюдения спектров триплет-триплетного поглощения необходимо использовать либо откаченные растворы, либо растворители с большой вязкостью. В качестве вязких растворителей могут быть использованы глицерин, полиэтиленгликоль, растворы полимеров, например полистирола в спирте. Удобными объектами для наблюдения триплет-триплетного поглощения являются ароматические углеводороды нафталин, фенантрен, антрацен и др. Спектры триплет-триплетного поглощения этих соединений приведены на рис. 6.3. В выбранном растворителе готовятся растворы следующих концентраций нафталин — М, фенантрен — [c.316]


    При использовании маловязких растворителей необходимо удалить кислород из раствора. При использовании глицериновых растворов или полиэтиленгликоля можно работать в присутствии воздуха. Практически задача выполняется следующим образом. Готовят раствор нафталина (10 М), который разбавляют растворителем в 40 раз с различным содержанием антрацена — 10 М. Регистрируют кинетику триплет-триплетного поглощения на длине волн 425 нм (для антрацена) и 412 нм (для нафталина). Облучение раствора проводят через светофильтры УФС-2 и ЖС-3, которые не пропускают свет с длиной волны, поглощаемой антраценом. Определяют константу скорости триплет-триплетного переноса энергии. [c.318]

    Поглощение в УФ-свете при 254 нм. Слабая флуоресценция бумаги гасится центрами поглощения, включающими две или более сопряженные двойные связи, например диен-3,5, диен-5,7, ен-4-он-З, ен-5-он-7, ен-16-он-20, ен-4-дион-3,6 и др. чувствительность 0,5 мкг. Чувствительность можно увеличить в пять раз, если использовать для детекции фотографию или пропитать хроматограмму флуоресцирующим веществом, например 0,01 %-ным раствором антрацена (Аи) в петролейном эфире (40-60°С). Антрацен малореакционноспособен и не мешает дальнейшим операциям. [c.414]

    Поглощение в УФ-свете при 360 нм. Аналогичное тушение флуоресценции наблюдается в случае наличия в молекуле трех или более сопряженных связей (но не ароматической природы), например ен-4-дион-3,6 5 мкг. При обработке антраценом происходит повышение чувствительности методики, аналогичное описанному выше. [c.414]

    Сущность метода. Метод основан на избирательном поглощении ультрафиолетового излучения антраценом при длинах волн —359 и 378 ммк присутствие карбазола и фенантрена не мешает определению. [c.370]

    Многие вещества в растворе нри непрерывном облучении ультрафиолетовым светом начинают флуоресцировать так ведут себя, например, антрацен, Р-нафтол и сернокислый хинин . Флуоресценция объясняется тем, что некоторые молекулы в результате поглощения квантов возбуждающего света переходят в электронно-возбужденное состояние и при возвращении в основное состояние испускают свет в видимой или близкой ультрафиолетовой области. Для молекулы X эти процессы можно предста- [c.150]

    Полное изменение не только положения, но обычно и самого типа полос поглощения, происходит при соединении нескольких бензольных циклов в конденсированные циклические системы, как, например, нафталин, антрацен, нафтацен, пирен, перилен и т. д. (ср. поглощение бензола на рис. 23 с поглощением пирена и нафталина на рис. 24). Некоторые авторы рассматривают эти конденсированные системы, так же как и бензол, происшедшими не от конъюгации связей С = С, а как самостоятельные, хотя и сложные, хромофорные группы. [c.113]

    В разделе 1,3,Г было показано, что свойства поглощения света кристаллами в зависимости от направления связаны со свойствами симметрии волнового вектора и обычно с самой фактор-группой. Вследствие этого нафталин и антрацен поглощают вдоль оси Ь кристалла и в плоскости ас в бензоле, имеющем фактор-группу Озл, единственные направления поглощения — это направления вдоль трех орторомбических осей. Интенсивность поглощения вдоль активных направлений зависит от ориентации осей молекулы относительно осей кристалла, а также от величины смешения между различными верхними состояниями молекул, обусловленного членами второго порядка, которые только что рассматривались. В модели ориентированного газа для кристалла, в которой предполагается, что молекулы вообще не взаимодействуют, интенсивность поглощения в одном из главных направлений пропорциональна квадрату проекции момента перехода в свободной молекуле. Отношение интенсивностей в двух главных направлениях, называемое поляризационным отношением, равно, таким образом, отношению квадратов проекций момента перехода молекулы. В случае кристалла Р2у а с двумя молекулами в ячейке моменты переходов в г-е возбужденное состояние могут быть записаны в виде и Щ, причем нижними индексами обычно обозначают различные молекулы. Направления обоих векторов параллельны активным осям молекулы. При последовательном образовании осей в молекуле 2 с помощью отражения в плоскости ас сумма + лежит в плоскости зеркального отражения, а разность перпендикулярна [c.538]

    Спектры линейно построенных полиядерных ароматических углеводородов сохраняют характерные для бензола полосы поглощения, включая их тонкую структуру. Номере роста числа конденсированных циклов полосы поглощения смещаются в сторону длинных воли. Нафталин и антрацен не поглощают в видимой области, но нафтацен [c.26]

    Трициклические углеводороды с двумя бензольными кольцами и одним пятичленным насыщенным кольцом (аценафтен) несколько слабее адсорбируются на кристаллах карбамида и его комплексах с н-алканами. Это можно объяснить тем, что в насыщенном кольце на один углеродный атом меньше, чем у тетралина, а электронное облако в меньшей степени смещено от оси симметрии молекулы. Самая слабая интенсивность спектра поглощения ЭПР обнаружена у трициклических углеводородов (антрацен), причем поверхность кристалла насыщается пара-магннтными центрами антрацена при его концентрации в растворе порядка 0,8-1.0% (масс.),в то время как в [c.50]


    Между онектрами люминесценции и поглощения существует определенная зависимость. Спектры люминесценции всегда сдвинуты в более длинноволновую область по сравнению со спектрами поглощения. В связи с тем, что методы УФ-спектро-окаиии наиболее эффективны ири анализе ароматических веществ, люминесцентные методы также используются для исследования этих соединений в нефтяных молекулярных растворах. Эталонные спектры ароматических соединений, встречающихся в нефтях и нефтепродуктах, представлены в работе [99]. Так, в спектре свечения нафталина выделяется набор полос различной интенсивности в интервале 320—340 нм. Фенантрен обладает характерными полосами в области 345—375 им, а антрацен — 370—430 нм. Следует отметить, что достаточно узкие полосы флуоресценции (короткоживущей люминесценции) могут быть получены лишь при низких темшературах е помощью эффекта Шпольско го [15]. В растворах происходит ущирение полос, и спектр флуоресценции обычно представляет широкую бесструктурную полосу. [c.57]

    Увеличение числа бензольных колец в конденсированных ароматических углеводородах вызывает смещение всех полос поглощения в длинноволновую область. Например, если нафталин и антрацен бесцветны (Хщах = 275, 314 и 250, 380 нм соответственно), то нафтацен и пентацен окрашены в желтый и голубой цвета соответственно (к ах = = 480 и 580 нм). [c.136]

    В колбу или двугорлую склянку помещают 200 г сухого бензола и несколько граммов бромного железа (или порошка железа). Колбу закрывают пропарафиненной пробкой, в которую вставлены капельная воронка и газоотводная трубка, и из капельной воронки постепенно приливают под тягой) 135 мл брома. Происходит энергичная реакция (вначале колбу следует охлаждать водой) с равномерным выделением бромистого водорода. Газ пропускают через и-образную трубку, одно колено которой наполнено РеВгз (для поглощения бензола), а другое — антраценом (для связывания унесенного свободного брома). [c.165]

    Поглощенный свет переводит антрацен в возбужденное состояние (подобное бирадикалу XXXIII или сходное с ним, ср, стр. 306), в котором он присоединяет молекулу кислорода и в результате нецепной реакции образует трансаннулярную перекись XXXIV. [c.302]

    Конденсированные арены делятся на две группы — линейные, или аце-пы (антрацен пентацен и т. д.), и угловые (ангулярные), к которым относятся фенантрен, пирен, хризен и т. д. В аценах общие грани соседних бензольных ядер все лежат на одной прямой (оси дг), тогда как в ангулярных линии, соединяющие общие грани, лежат на нескольких прямых, образующих угол друг с другом. Важно отметить, что обобщение тс-электронов в аценах выражено сильнее, чем у ангулярных систем. Так, в ряду нафталин — ашрацен — пентацен и т. д. формируется общий сильный хромофор с поглощением в видимой области спектра. В этом ряду уже тетрацен имеет желтую окраску, тогда как пирен и хризен, также имеющие по четыре бензольных ядра, но ангулярное их расположение, — бесцветны. [c.337]

    В работе Фурусава [28] описан способ определения очень малых количеств антрацена в продажном фенантрене посредством УФ-спек-трофотометрии по максимуму поглощения при 380 Нм. Посторовние примеси, также поглощающие при указанной длине волны, отделяли зонной плавкой. Методом компенсационной спектрофотометрии в ультрафиолетовой области эти же авторы определяли антрацен [29]. [c.127]

    Другим типом сенсибилизированной фотополимеризации являются процессы, в которых поглощение кванта света сенсибилизатором не приводит к его распаду на радикалы. Андерсен и Норриш [137] установили, что фотополимеризация стирола, сенсибилизированная антраценом (>1, = 366 ммк), происходит при участии тринлетных молекул антрацена. Применяя методику импульсного освещения, авторы имели возможность непосредственно наблюдать кинетику дезактивации триплетного состояния антрацена, следя] за изменением триплет-триплетного поглощения света. По мере добавления стирола к раствору антрацена в бензоле происходит сокращение времени жизни тринлетных молекул антрацена. Это явление нельзя объяснить триплет-триплетным переносом энергии, так как триплетный уровень антрацена расположен ниже триплетного уровня стирола. Очевидно первичным актом инициирования является присоединение тринлетной молекулы антрацена к молекуле стирола. С этим процессом конкурируют процессы дезактивации возбужденных молекул антрацена, как в синглетном, так и в триплетном состоянии. Квантовый выход фотоипициирования имеет порядок 10 10 . [c.65]

    Карразерс и Дуглас [26] выделили из сырой кувейтской нефти несколько индивидуальных ароматических углеводородов с поли-конденсированным ароматическим ядром. Методика выделения была следующей масляную фракцию нефти 390—440° С экстрагировали ацетоном и фурфуролом, а полученные экстракты обрабатывали малеиновым ангидридом. Продукты конденсации ароматических углеводородов с малеиновым ангидридом разлагали натронной щелочью, а регенерированные углеводороды разделяли хроматографически и идентифицировали по температуре плавления и спектрам поглощения в ультрафиолетовой области. Были выделены кристаллические вещества в виде белых пластинок образец одного вещества, имевший температуру плавления 154—156° С, соответствующую температуре плавления 1,2-бензантрацена образец второго вещества по температуре плавления (192—194,5° С) близок к 4 -метил-1,2-бенз-антрацену (температура нлавления 199—200° С), смешанная проба с которым не давала депрессии. Были выделены кристаллы трифени-лена в виде бесцветных игл (температура плавления 195—199° С), а также хризен. О выделении таких конденсированных ароматических углеводородов из сырой нефти до этого в литературе не сообщалось. Однако вопрос о том, не образовались ли эти углеводороды при высокотемпературной вакуумной перегонке сырой нефти, осуществленной для выделения целевой масляной фракции, в сообщении не освещается. Между тем высокомолекулярные компоненты высокосернистой кувейтской нефти должны подвергаться глубоким химическим изменениям при длительном нагревании уже при 350— 400° С. [c.282]

    В области, свободной от поглощения другими возможными компонентами, последний надежно идентифицируется. Примерами могут служить нафталин в смесях с алкилбензолами, антрацен в смесях с moho-, би-и трициклическими аренами и подобные. [c.398]

    Исследование выделенного концентрата трициклических ароматических углеводородов методом аналитической тонкослойной хроматографии показывает идентичность подвижности выделенной фракции и модельных антрацена и фенантрена. В то же время значительная вытянутость пятна полученного концентрата предполагает наличие в пем достаточно большого количества соединений, имеющих близкую хроматографическую подвижность и не разделяющихся вследствие этого при тонкослойной хроматографии. Масс-спектрометрически определены в смеси три гомологические серии, отличающиеся степенью ненасьпценности (см. таблицу). Кроме того, в первых порциях элюата зафиксировано незначительное количество соединений, молекулярная масса которых отвечает формуле H2 -i6, где п меняется от 14 до 23. Относительное содержание в смеси этих соединений составляет около 10 %. По нашему мнению, эти компоненты могут быть представлены алкилзамещенными гомологами 9, 10-дигидроаптрацена. Соединения ряда H2 -i8 являются либо алкилфенантренами, либо алкилантраценами. Анализ данных электронной спектроскопии в области 200—300 нм демонстрирует возможное наличие фенантреновых структур (максимумы поглощения при 222, 253 и 259 нм). В то же время в области 300—700 нм присутствуют максимумы полос поглощения замещенных антраценов (339, 352 и 382 нм). Поэтому более вероятно наличие в смеси гомологов как тех, так и других структур. [c.108]

    Интересно, что широкие размытые полосы характерны не только для спектров аморфных образцов. Спектр поглощения кристаллов НТМ толуола также состоит из широких диффузных полос. Широкие полосы поглощения, несмотря на очень низкую температуру, наблюдаются также и в спектрах других кристаллов (антрацен, нафталин, стильбен и др). Однако они отнюдь не диффузны в упомянутых кристаллах, а имеют резко очерченные края. Наряду с широкими полосами в спектре этих кристаллов наблюдается ряд более слабых и узких полос, также имеющих резкие края. В спектрах же кристаллов НТМ толуола все полосы, в том числе и очень слабые, диффузны и имеють практически одинаковую ширину. [c.115]

    УФ-спектры всех обычных ди- и триазанафталинов, многих азафенантренов и -антраценов определены и хорошо освещены в литературе. Теоретические исследования в этой области достаточно хорошо коррелируются, и в обзоре Масона [64] дается их исключительно исчерпывающая трактовка. В общем виде низшая энергия я->л -полос поглощения азанафталинов не сильно варьирует в зависимости от положения, но п- -я -полосы поглощения прогрессивно смещаются в длинноволновую область с увеличением степени аза-замещения. Последовательное аннелирование сдвигает л - л -полосы трех азинов в сторону меньших частот примерно вдвое сильнее, чем и- л -полосы, и в предельном случае п л-линии с их малой интенсивностью могут маскироваться сильным я л -поглощением (см. табл. 16.7.1). В орто-диазинах неподеленные атомные орбитали соседних атомов азота перекрываются, образуя связанные и антисвязанные неподеленные молекулярные орбитали. Вследствие этого орго-диазины всегда поглощают в более длинноволновой области, чем другие изомерные диазины. Результаты этих эффектов и уменьшение тонкой структуры, наблюдаемые с возрастанием аза-замещения [c.310]

    Для многих веществ чрезвычайно чувствительными к примесям являются спектры флуоресценции. Это связано с эффективным переносом энергии от молекул- хозяев к случайным молекулам примеси [13, 36, 59, 85, 144]. Испускаемое излучение является характеристичным для молекул примеси, а не для основных молекул например, в случае когда содержание тетрацена в антрацене составляет 0,1 часть на миллион, флуоресценция антрацена едва различима, а при содержании 0,3 частей на миллион она полностью подавляется [144]. Перенос энергии изучался и во многих других случаях. Соловьев исследовал влияние второй примеси на спектры поглощения и люминесценции первой примеси в решетке основного вещества. Так, добавка стильбена в кристаллы дибензила, легированные нафта-ценом, вызывает заметные изменения сйектра нафтацена [121]. Теория примесной флуоресценции была разработана Перлиным [84]. [c.170]

    Зонную теорию обычно используют для описания ионных кристаллов [104], которые, как правило, являются хорошими изоляторами. Полагают поэтому, что ее можно применять также при описании молекулярных кристаллов. Например, с использованием этой теории рассматривались электрические свойства кристаллов Ь и Зв [102], а также электрические свойства кристаллов типа антрацена [33]. Однако при рассмотрении молекулярных кристаллов встретились затруднения, которых не возникает, например, в случае ковалентных кристаллов типа германия или соединений двух элементов. Бьюб [18] приводит более 100 таких соединений, имеющих тесное соответствие между энергетической щелью и длинноволновой границей поглощения. Изучение всех этих кристаллов несколько осложнено наличием экситонов их спектр вполне определяется энергетической щелью. Дополнительной характеристикой служит и то, что вообще в таких соединениях эффективная масса электрона (а также дырки) имеет примерно тот же порядок величины, что и масса свободного электрона. Молекулярные кристаллы, такие, как антрацен, отличаются от только что обсуждавшихся неорганических соединений тем, что начало сильного поглощения у них непосредственно не связано с энергетической щелью между нижней зоной и зоной проводимости. Край поглощения кристаллом непосредственно связан с краем погло- [c.661]

    Спектры ионов карбония, получающихся нри взаимодействии бензола, нафталина, антрацена, фенантрена, пафтацена и пирена, а также толуола, мезитилена и гексаэтилбензола с раствором фтористого бора в жидком фтористом водороде, впервые описал Рейд [61] в статье, озаглавленной Ароматический ион карбония . Трудные в экспериментальном отношении измерения выполнены при —78°. Спектры ионов карбония подразделены на две группы с максимумами поглощения в области 4000 и 4800 А. Здесь особенно интересно отметить почти полную идентичность спектра раствора антрацена в системе НР — ВРз со спектром раствора антрацена в безводной серной кислоте [62]. Это является убедительным доказательством того, что в обоих растворах антрацен действительно присутствует в виде карбониевого иона С14НИ. Спектры растворов бензола и толуола близки к теоретически рассчитанным спектрам соответствующих карбониевых ионов [63,64]. [c.182]

    Мезитилен и гексаметилбензол уже настолько значительно протонизированы в жидком фтористом водороде, что могут служить гамметтовскими индикаторами (см. раздел II, стр. 76). Для определения функции кислотности жидкого фтористого водорода и растворов в нем Кильпетрик и Химен [70] отметили для раствора мезитилена два максимума 260 и 360 те[д,, а для гексаметилбензола (полностью ионизированного в жидком НГ) максимум поглощения приходится на Л == 395 т[г. Маккор для определения функции кислотности растворов в жидком НГ применил в качестве индикатора антрацен [71]. [c.186]


Смотреть страницы где упоминается термин Антрацен поглощение: [c.67]    [c.191]    [c.67]    [c.191]    [c.138]    [c.115]    [c.558]    [c.227]    [c.210]    [c.175]    [c.544]    [c.544]    [c.127]    [c.216]    [c.50]    [c.60]    [c.122]    [c.549]    [c.441]    [c.442]    [c.94]   
Молекулярная фотохимия (1967) -- [ c.56 ]

Фотохимия (1968) -- [ c.234 ]




ПОИСК





Смотрите так же термины и статьи:

Антрацен



© 2024 chem21.info Реклама на сайте