Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Масс-спектрометрия эмиссионная

    Предлагаемое практическое руководство обобщает опыт преподавания физических и физико-химических методов анализа, накопленный на кафедре аналитической химии Московского государственного университета. Руководство включает два больших раздела— спектроскопические и электрохимические методы. В спектроскопические методы включены методы эмиссионной фотометрии пламени, атомно-абсорбционной спектроскопии пламени, абсорбционной молекулярной спектроскопии и люминесцентный в электрохимические — потенциометрический (в том числе с использованием ионоселективных электродов), кулонометрический, полярографический и амперометрический методы. Наряду с перечисленными методами в современных аналитических ла- бораториях используют и другие методы атомно-флуоресцентный анализ, рентгеновские методы, искровую и лазерную масс-спектрометрию, радиоспектроскопические, ядерно-физические и радиохимические методы, однако ограниченное число учебных часов не позволяет включить их в данное руководство. Изучение этих курсов предусмотрено [c.3]


    Обнаружение и идентификация веществ могут быть осуществлены физико-химическими и физическими методами анализа, такими, как спектральный, ИК-спектроскопия, масс-спектрометрия, хроматография. Эмиссионный спектральный анализ относится к методам, которые позволяют одновременно определять и качест- [c.117]

    Ванадий извлекают из битумов и других остаточных продуктов, обрабатывая их в течение 5 ч при 500 °С смесью 1 М раствора НЫОз, кислородсодержащего газа и полигликоля. В результате такой обработки ванадий переходит в неорганические соединения, растворимые в воде и легко извлекаемые. Для определения небольшого содержания металла в нефти [419] в дополнение к классическим химическим методам применяют колориметрию, спектрофотометрию, эмиссионную спектрометрию, инфракрасную и ультрафиолетовую спектроскопию, рентгеноскопию, дифракцию, масс-спектрометрию, полярографию, амперометрическое титрование, хроматографию, радиоактивный анализ. [c.36]

    Главное направление развития М. а.-использование физ. методов (напр., масс-спектрометрии, атомно-эмиссионной спектроскопии, рентгеновского локального анализа, лазерной аналит. спектроскопии). Совр. методы М. а. позволяют Б одной микропробе или на пов-сти твердого тела определять более 50-60 элементов. [c.85]

    Ознакомиться с важнейшими физическими методами элементного анализа атомно-эмиссионной спектрометрией, атомно-абсорбционной спектрометрией, рентгенофлуоресцентной спектрометрией, активационным анализом и неорганической масс-спектрометрией. [c.6]

    При химическом анализе вкраплений, микрофаз металлических слитков, геологических и археологических образцов при послойном анализе пленок выяснении состава пятен, штрихов в рукописях, в объектах судебной экспертизы и т. д. требуется проводить локальный анализ. При таком анализе вводят новую характеристику метода — пространственное разрешение, т. е. способность различать близко расположенные участки образца. Пространственное разрешение определяется диаметром и глубиной области, разрушаемой при анализе. Наиболее высокое пространственное разрешение, достигаемое современными методами локального анализа, — 1 мкм по поверхности и до 1 нм (т. е. несколько моноатомных слоев) по глубине. В локальном анализе используют рентгеноспектральные методы (электронно-зондовый микроанализатор), атомно-эмиссионные спектральные методы с л ерным возбуждением, масс-спектрометрию. [c.29]


    Различают групповое и индивидуальное выделение и концентрирование при групповом — за один прием отделяется несколько компонентов, при индивидуальном — из образца выделяют один компонент или последовательно несколько компонентов. При использовании многоэлементных методов определения (атомно-эмиссионный, рентгенофлуоресцентный, искровая масс-спектрометрия, нейтронно-активационный) предпочтительнее групповое разделение и концентрирование. При определении методами фотометрии, флуориметрии, атомно-абсорбционным, напротив, целесообразнее индивидуальное выделение компонента. [c.210]

    Для контроля плазменного травления предложен ряд методов механическое измерение рельефа [126], интерферометрические методы [134], прямое измерение состава газовой фазы при помощи эмиссионных спектров [135], масс-спектрометрия [101, 136] и др. [137]. [c.62]

    Принятые обозначения. ИСП-АЭС — атомно-эмиссионная спектрометрия индуктивно-связанной плазмы ИСП-МС — масс-спектрометрия с источником индуктивно-связанной плазмы  [c.976]

    ИР-ГХ-МС — масс-спектрометрия в комплексе с газовым хроматографом, метод изотопного разбавления ИСП-АЭС — атомно-эмиссионная спектрометрия индуктивно-связанной плазмы. [c.978]

    ИВА — инверсионная вольтамперометрия ИОХ — ионообменная хроматография ИПХ — ион-парная хроматография ИС — ионообменные смолы ИСП-АЭС — атомно-эмиссионная спектрометрия с индуктивно-связанной плазмой ИХ — ионная хроматография МСВИ — масс-спектрометрия вторичных ионов [c.94]

    Существует два метода изотопного анализа газообразующих элементов масс-спектрометрия и эмиссионная спектрометрия. При этом используются различия в масс- и эмиссионных спектрах стабильных изотопов, обусловленные отличиями в массах атомов этих элементов. [c.929]

    Метод масс-спектрометрии позволяет определять изотопный состав всех газообразующих элементов с погрешностью от 0,1 до 2-3%. Метод эмиссионной спектрометрии применим при анализе таких элементов, как Н, С, О, N. Погрешность определения составляет 1-3%. [c.929]

    В период 1971—1975 гг. систематическхт проводились работы по созданию и совершенствованию методов атомной абсорбции, масс-спектрометрии, эмиссионного спектрального анализа, пьезокварцевого взвешивания, выбора селективных растворителей для извлечения и высокочувствительного опреде.ления микрофаз в химических соединениях. [c.320]

    Различные физические методы анализа по существу представляют собой микроаналитические методы. К ним относятся особенно эмиссионный спектральный анализ (спектрография) и рентгеноспектроскопия. Эти методы играют ведущую роль в современном микроанализе. В табл. 8.19 приведены важнейшие микрохимические методы анализа. Элементный анализ можно проводить как химическими, так и физическими методами. Особое место среди методов микроанализа занимает спектрография, так как этим методом можно проводить анализ жидких и твердых веществ. При правильном выборе источника возбуждения можно провести анализ чрезвычайно малых участков поверхности [68, 72]. Из полученных данных можно сделать вывод о степени гомогенности данного материала и о распределении отдельных элементов ( локальный анализ ). Структурный анализ микропроб проводят методами ИК-, УФ- и масс-спектрометрии. При анализе смесей веществ необходимо их предварительно разделить. При этом широко применяют сочетание методов газовой хроматографии с ИК- или масс-спектроско-пией [61]. Микроанализ газохроматографических фракций можно проводит [c.422]

    Элементный К. а. можно проводить хим. методами с испольэ. р-ций обнаружения, характерных для неорг. ионов в р-рах или атомов в составе орг. соединений. Эти р-ции обычно сопровождаются изменением окраски р-ра (см. также Капельный анализ), образованием осадков (см., напр.. Микрокристаллоскопия) или выделением газообразных продуктов. К. а. неорг. в-в часто требует систематич. хода, при к-ром с помощью хим. р-ций иэ смеси последовательно выделяют небольшие группы ионов (т. н. аналит. уш ы элементов), после чего проводят р-ции обнаружения. В дробном К. а. каждый элемент открывают непосредственно в смеси по специфич. р-ции. Хим. методы имеют практич. значение при необходимости обнаружения только 1—2 элементов. Многоэлементные фиэ. методы, напр, эмиссионный спектральный анализ, активационный анализ, рентгеноспектральный анализ (см. Рентгеновская спектроскопия), позволяют обнаружить ряд элементов после проведения небольшого числа операций. Молекулярный и функциональный К. а. проводят с помощью инфракрасной спектроскопии, комбинационного рассеяния спектроскопии, масс-спектрометрии, ядерного магнитного резонанса и хроматографии, Используют также хим. методы и методы, основанные на измерении таких физ. характеристик в-ва, как, напр., плотность, р-римость, т-ры плавления и кипения. [c.250]


    В таких методах анализа, как прлярография, эмиссионный спектральный анализ и др., И.а. в конечной стадии определяется разрешающей способностью прибора, т.е. той миним. разностью между абсциссами сигналов искомого и сопутствующего компонентов на регистриреумой кривой (регистрограмме), при к-рой еще можно надежно обнаружить или измерить сигнал искомого компонента. Разрешающая способность прибора зависит от ширины сигнала. Наиб, высокой И. а. характеризуются методы многокомпонентного анализа - масс-спектрометрия, иейтроино-активац. анализ, газожидкостная хроматография и др. [c.178]

    К широко применяют при определении микрокомпонен-тов в объектах окружающей среды, минер, сырье, металлах и сплавах, в-вах высокой чистоты. Наиб, распространение для анализа концентратов получили такие методы, как фотометрия, атомно-эмиссионный, атомно-абсорбционный, рентгенофлуоресцентный и нейтронно-активационный анализ, инверсионная вольтамперометрия. Орг. микрокомпоненты удобно определять газовой и жидкостной хроматографией, хромато-масс-спектрометрией. Для К. газообразующих микроэлементов широко применяют высокотемпературную экстракцию. [c.462]

    Определение следовых количеств Se(IV) (или As) представляет особый интерес в случае водных проб, таких, как питьевая вода. Хотя сложная комбинация индуктивно-связанной атомно-эмиссионной спектрометрии (разд. 8.1) и масс-спектрометрии (ИСП-МС, разд. 8.5) позволяет определять низкие концентрации, ей присуща проблема мешающего влияния димера Аг-Аг+ при значении тп/z, идентичном значению для селена, и Аг-С1+, идентичном значению для мышьяка. Следовательно, необм)димо выбрать альтернативный подход, который должен включать этап предварительного концентрирования. Для [c.460]

    За последние три десятилетия характер элементной аналитической химии существенно изменился благодаря развитию инструментального анализа. Многие методы возникли и получили широкое распространение для рутинного анализа на коммерчески доступных приборах. Примерами могут служить атомно-эмиссионная спектрометрия с индуктивно-связанной плазмой, масс-спектрометрия с индуктивно-связанной плазмой и атомно-абсорбционная спектрометрия с графитовыми печами. Некоторые другие методы, такие, как резонасно-ионизационная масс-спектрометрия, находятся пока в стадии изучения, но их аналитические возможности столь многообещающи, что внедрение этих методов—дело ближайшего будущего. [c.6]

    Рентгенофлуоресцентная спектрометрия (РФС) Фотоэлектронная спектрометрия (ФЭС) Электронная оже-спек-трометрия (ЭОС) Масс-спектрометрия вторичных ионов (МСВИ) Лазерно-индуцированная флуоресцентная спектрометрия (ЛИФС) Атомно-эмиссионная спектрометрия (АЭС) [c.7]

Таблица 8-2. Аналитические характеристики наиболее важных приборов, используемых для элементного анализа. Аналитические характеристики включают пределы обнаружения (ПО) в растворе (нг/мл) или твердой пробе (млн ), помехоустойчивость (робастность, отсутствие влияния основы), селективность (отсутствие спектральных помех) и воспроизводимость. Инструментальные характеристики включают желательную форму пробы, жидкую или твердую, минимальный расход пробы и максимальную солевую концентрацию в случае раствора. АЭС — атомно-эмиссионная спектрометрия, А АС— атомно-абсорбционная спектрометрия, МС —масс-спектрометрия, ИСП — индуктивно-связанная плазма, ЛТР — лампа с тлеющим разрядом, ГП — графитовая печь, ТИ — термоиониэация, ИИ — искровой источник, ЛИФС - лазерно-индуцированная флуоресцентная спектрометрия, РФСВД — рентгенофлуоресцентная спектрометрия с волновой дисперсией Таблица 8-2. <a href="/info/140729">Аналитические характеристики</a> <a href="/info/410326">наиболее важных</a> приборов, используемых для <a href="/info/5100">элементного анализа</a>. <a href="/info/140729">Аналитические характеристики</a> включают <a href="/info/5532">пределы обнаружения</a> (ПО) в растворе (нг/мл) или <a href="/info/5543">твердой пробе</a> (млн ), <a href="/info/1403099">помехоустойчивость</a> (робастность, <a href="/info/1418543">отсутствие влияния</a> основы), селективность (отсутствие <a href="/info/140811">спектральных помех</a>) и воспроизводимость. <a href="/info/142820">Инструментальные характеристики</a> включают желательную <a href="/info/583350">форму пробы</a>, жидкую или твердую, <a href="/info/146195">минимальный расход</a> пробы и максимальную <a href="/info/481813">солевую концентрацию</a> в случае раствора. АЭС — <a href="/info/141079">атомно-эмиссионная спектрометрия</a>, А АС— <a href="/info/140797">атомно-абсорбционная спектрометрия</a>, МС —<a href="/info/6125">масс-спектрометрия</a>, ИСП — <a href="/info/141592">индуктивно-связанная плазма</a>, ЛТР — лампа с тлеющим разрядом, ГП — <a href="/info/140765">графитовая печь</a>, ТИ — термоиониэация, ИИ — <a href="/info/141596">искровой источник</a>, ЛИФС - лазерно-индуцированная <a href="/info/85822">флуоресцентная спектрометрия</a>, РФСВД — <a href="/info/141885">рентгенофлуоресцентная спектрометрия</a> с волновой дисперсией
    Методы, использующие растворы, включая электротермическую атомноабсорбционную спектрометрию (ЭТААС), атомно-эмиссионную спектрометрию с индуктивно-связанной плазмой (ИСП-АЭС), масс-спектрометрию с ин-дуктиввю связанной плазмой (ИСП-МС) и некоторые другие методы, обычно требуют разложения пробы и часто также отделения основы от определяемого элемента. Основным ограничивающим фактором этих методов при определе- 1ии так называемых бытовых элементов является контрольный опыт. [c.101]

    Хотя в качестве ионного источника можно использовать дугу (разд. 8.1), промышленно, выпускают только искровой источник [8.5-1]. Масс-спектрометры с искровым источником (ИИМС) появились в 1960-х гг. Используют искру высокого напряжения (разд. 8.1). Была использована искра постоянного тока, но в производимых приборах применяют импульсное поле с частотой 1 МГц, чтобы получить цуг коротких импульсов через межэлектродный промежуток. Поскольку длительность импульса (20-200 мкс) и частоту повторения (1Гц -10 кГц) можно изменять довольно широко, можно оптимизировать условия ионизации в соответствии с типом пробы. В противоположность искровым источникам для атомно-эмиссионной спектрометрии, которые работают обычно при атмосферном давлении, искровой источник для МС функционирует в условиях вакуума. Электроды расположены в искровом кожухе, который также соединен с высоким напряжением. Электрическое соединение не дает большинству ионов сталкиваться со стенками вакуумной системы, что могло бы привести к распьшению материала кожуха. [c.136]

    Разряды низкого давления используют в качестве ионных источников в МС для проводящих твердых проб благодаря их простоте и эффективной ионизации. Их широко применяли до внедрения искрового источника. Вслед за использованием тлеющего разряда в атомно-эмиссионной спектрометрии, где наблюдали интенсивное испускание ионов, в начале 1970-х вновь возник интерес к применению этого источника в МС [8.5-9-8.5-13]. Масс-спектрометрия с тлеющим разрядом (ТРМС) имеет ряд уникальных характеристик, что можно видеть и в атомно-эмиссионной спектрометрии (разд. 8.1). Пробоподготовка сведена к минимуму, ТР работает при пониженном давлении (0,1-10 мм рт. ст.), атомизация происходит за счет распыления поверхности, а ионизация — главным образом за счет электронного удара и пеннинговской ионизации из метастабильных уровней инертного газа —сосредоточена в области свечения (рис. 8.5-2). Разрядный газ — это обычно аргон высокой чистоты, но аргон можно заменить другим инертным газом, например Ne. Интерфейс с МС располагают очень близко к области свечения, чтобы избежать захвата молекулярных ионов. Подобно ИСП-МС используют двухступенчатую дифференциальную систему откачки. Требуется также ионная оптика, особенно для уменьшения разброса энергии ионов. Настройка ионной оптики имеет решающее значение для экстракции и прохождения ионов. Параметры ТР, используемые для оптимизации ионизации, включают природу и давление газа, напряжение и ток разряда. В некоторых последних модификациях ячейку охлаждают жидким [c.137]

    Анализ проводящих твердых веществ с помощью комбинации искровой пробоотбор - эмиссионная спектрометрия и масс-спектрометрия с индуктивно-связанной плазмой/Р.Дж. Белмор, Ч.ИХоджес, КХу и др.// Журнал РХО им. Д.И. Менделеева. 1996. 40, N2 1. С.8-9 [c.149]

    Расширяется круг доступных технологу тонких физических методов. Кроме традиционных дифракционных методов (рентгено- и электронография) применяют нейтронографию, мессбауэрографию, появились. методы каналирования тяжелых частиц и электронов Работы по изучению минеральных веществ и продуктов переработки невозможны без исследования их электронных и колебательных спектров. Развиваются новые спектральные методы, растет их значение. Вслед за эмиссионной и абсорбционной рентгеновской спектроскопией получили развитие электронная рентгеновская спектроскопия и ее раздел — оже-спектроскопия, которые открывают новые возможности изучения процессов и веществ. Ценную химическую информацию дает мессбауэровска (ядерная 7-резонансная)" спектроскопия, которая во многих научных центрах становится рядовым, широко применяемым методом. Достижения радиоспектроскопии (электронный парамагнитный и ядер-ный магнитный резонанс, в том числе в релаксационном варианте) обеспечивают возможность изучения жидких и твердых веществ почти всех элементов периодической системы. Давно используются магнитные измерения. Все чаще привлекается масс-спектрометрия. [c.200]

    ИР-ТИМС — масс-спектрометрия с термоионизационным источником, метод изотопного разбавления ИСП-АЭС — атомно-эмиссионная спектрометрия индуктивно связанной плазмы. [c.971]

    FANES — атомно-эмиссионная спекфомегрия с атомизацией пробы в графитовой печи и возбуждением спектров в тлеющем разряде ИСП-МС — масс-спектрометрия с источником индзтстивно-связанной плазмы. [c.973]

    Метод РФА конкурентоспособен по отношению ко многим видам классического неорганического анализа, особенно к таким, для которых анализируемая проба должна быть переведена в раствор. Однако метод РФА затруднительно применять для определения содержаний ниже 10% масс. В этой области безусловное предпочтение должно быть отдано таким методам, как атомно-абсорбционная спектрометрия, атомно-эмиссионная спектрометрия с источником индуктивно-связанной плазмы, масс-спектрометрия с источником индук-тивно-связанной плазмы и др. Тем не менее, одно из направлений метода РФА, основанное на использовании полного внутреннего отражения рентгеновских лучей, позволило создать приборы, способные измерять нано-и пикограммовые количества элементов. С помощью таких приборов была эффективно решена задача определения микропримесей в слоях полупроводникового кремния. [c.41]

    Созданы новые поколения атомно-эмиссионных и атомно-абсорбционных спектрометров, сканирующих и многоканальных рентгенофлуоресцентных спектрометров, масс-спектрометров, переносньгх и мобильных анализаторов различного типа и т.д. Программное обеспечение современных аналитических приборов позволяет не только управлять процедурой анализа, но и автоматизировать сам процесс разработки конкретных методик анализа, выполнять статистическую обработку получаемых результатов (с построением диаграмм контроля качества результатов анализа), обеспечивает практически неограниченный объем хранения данных, возможность использования нескольких языков, передачу информации на периферийные устройства и т.д. Столь совершенные приборы позволяют решать задачи многоэлементного анализа сложных по составу материалов с привлечением многофакторных градуировочных моделей, а высокая селективность и чувствительность новых методов анализа обеспечивает снижение пределов обнаружения многих элементов на несколько порядков по сравнению с методами АХ 60-х годов XX века. [c.4]

    Методы различны по стоимости аппаратурного оформления. Наиболее дешевые — титриметрические, гравиметрические, потенциометрические методы. Аппаратура большей стоимости используется, например, в вольтампе-рометрии, спектрофотометрии, люминесценции, атомной абсорбции. Наиболее высока стоимость аппаратуры, используемой в нейтронно-активационном методе анализа, масс-спектрометрии, ЯМР- и ЭПР-спектроскопии (ядерно-магнитно-резонансная и электронно-парамагнитно-резо-нансная), в атомно-эмиссионной спектроскопии с индуктивно связанной плазмой. [c.37]

    Обозначения методов определения ААС — атомно-аб-сорбционная спектрометрия АЭС — атомно-эмиссионная спектрометрия ВА — вольтамперометрия ИВА — инверсионная вольтамперометрия МСВИ — масс-спектрометрия вторичных ионов П — потенциометрия Т — титриметрический анализ Тб — турбинометрия Ф — фотометрия Фл — флуориметрия. [c.103]

    Измерение изотопного состава определяемых элементов осуществляется методом эмиссионной спектрометрии или масс-спектрометрии. В первом случае используются сканирующие монохроматоры с разрещающей способностью до 0,05 нм. Во втором — масс-спектрометры высокого разрещения. Определение изотопного состава водорода проводится по его атомарному спектру, а азота, кислорода и углерода — по молекулярным спектрам N2, СО, Сг соответственно. [c.929]

    ГАЗОВЫЙ АНАЛИЗ, качественное и количеств, определение состава смесей газов. Т. н. прямые методы Г. а.— в первую очередь хроматографию, спектральный анализ (эмиссионный и абсорбционный) и масс-спектрометрию — используют для непосредств. анализа сложных смесей, а также для определения их отдельных компонентов после разделения. Эти методы позволяют определять орг. и неорг., агрессивные и инертные в-ва. Они отличаются экспрес-сностью, высокой точностью анализа, низкими абсолютными (10" —10- г) и относительными (10 —10 = % в случае хромато-массчахектрометрии — до 10 —10 % ) пределами обнаружения а м. б. автоматизированы. Правильность результатов контролируют с помощью стандартных смесей, приготовленных иэ чистых газов. [c.116]

    СЛЕДОВ ОПРЕДЕЛЕНИЕ, количественное определение в анализируемом в-ве примесей (элементов, ионов, хи>т. соед., фаз и т. п.), масса к-рых не превышает 1 мкг, а массовая доля — 0,01%. Для этого применяют эмиссионный спектральный анализ, масс-спектрометрию, нейтронно-активац. анализ, атомно-абсорбц. анализ с непламенной ато-млзацией, инверсионную вольтамперометрию, люминесцентный анализ н др. Первые два метода, позволяющие определять сразу большое число элементов, используют также для общей оценки чистоты материалов. Иногда предварительно проводят относит, иля абсолютное концентрирование определяемых примесей. Все операции осуществляют в условиях, обеспечивающих низкие значения поправки холостого (контрольного) опыта. Б микрообластях анализируемого образца конц. или кол-во примесей устанавливают методами локального анализа. [c.531]

    Метод лазерно-зондового микроанализа основан на испарении некоторого количества вещества и последующем его анализе методом эмиссионной спектроскопии (наиболее распространенный способ), масс-спектрометрии или атомноабсорбционной спектроскопии. Пространственное разрешение ниже, чем в методе электронно-зондового микроанализа лазерный пучок испаряет вещество с площади, эквивалентной кругу диаметром 10— 100 мкм, а объе.м образующегося углубления составляет 10—500 мкм1 [c.400]


Смотреть страницы где упоминается термин Масс-спектрометрия эмиссионная: [c.450]    [c.116]    [c.94]    [c.471]    [c.142]    [c.578]    [c.465]    [c.250]   
Молекулярный масс спектральный анализ органических соединений (1983) -- [ c.176 , c.232 ]




ПОИСК





Смотрите так же термины и статьи:

Масс-спектрометр

Масс-спектрометрия

Масс-спектрометрия масс-спектрометры

гом эмиссионный



© 2025 chem21.info Реклама на сайте