Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гистидин, бис комплекс

    В комплексных соединениях медь (I) проявляет координационное число 2 или 4 (структура, линейная для к. ч. 2 и тетраэдрическая, иногда искаженная, для к. ч. = 4). Комплексы меди (II) имеют искаженную тетраэдрическую или октаэдрическую структуру. Особенно интересно, что ионы меди могут образовывать комплексы с координационным числом 5. Такие комплексы имеют строение, отвечающее квадратной пирамиде (в частности, так построен комплекс меди с р-аланил-гистидином), и реже — тригональной бипирамиде ([СиСЬ] ). [c.204]


    В качестве одного из характерных примеров применения потенциометрического метода можно привести исследование равновесий в растворе гистидина и его комплексов с никелем или кобальтом. В достаточно кислых растворах (рН 1) гистидин существует в виде двухзарядного иона  [c.242]

    Донором протонов, вероятно, является имидазольное кольцо остатка гистидина, связывающее ионы металлов. С., содержащие Си и Хп, инактивируются Н,02 из-за образования комплексов ионов этих металлов с ОН. [c.474]

    Читатель может и сам поразмыслить, какая механика нужна для того, чтобы расщепить АТР и произвести сокращение. При этом небесполезно взглянуть и на структуру самого АТР. Прежде всего обратите внимание на то, что три-фосфатная группа содержит много отрицательных зарядов, взаимно отталкивающих друг друга. Представьте далее, что должно произойти, когда молекула АТР вытеснит ADP и Pi из связанной с актином миозиновой головки. При этом может нарушиться связь белок—белок вероятнее всего в какой-то определенной точке а поверхности их контакта индуцируется электростатическое отталкивание. Подумайте об образовании АТР в процессе окислительного фосфорилирования и о возможной роли протонов в синтезе АТР (разд. Д, 9,в). Не могут ли протоны оказать какое-то влияние на белок, окружающий молекулу АТР, в обратном процессе Подумайте о действии Mg +, связанного в комплексе с полифосфатной группой АТР, а также о том, что может случиться, если с соседней группой белка свяжется ион Са . Примите во внимание данные о возможном фосфорилировании боковых цепей белка на промежуточных стадиях процесса. Что произойдет, если будет фосфорилирована боковая цепь гистидина, связанная водородной связью с пептидным остовом в концевом участке спирали Автор этой книги не смог соединить все эти соображения в цельный механизм работы мышцы, но, может быть, кому-то из читателей удастся это сделать  [c.418]

    Анализ значений энтальпии и энтропии комплексообразования (см. табл. 4.8) показывает, что комплексообразование 18-краун-б с АК является селективным процессом. Отметим, что комплексы 18-краун-б с такими аминокислотами как Ь-аспарагин, Ь-глутамин, Ь-серин, Ь-треонин энтальпийно стабилизированы, а комплексообразование ОЬ-метионина, Ь-гистидина, Ь-изолейцина с макроциклом энтальпийно и энтропийно благоприятно. [c.209]

    Так как Aps А достаточно сильно связан с ферментом, обмен оказывается очень медленным ( off < 70 с" ), так что удается отдельно наблюдать резонансные линии различных аминокислотных остатков в свободном состоянии и в комплексе с аденилаткиназой. Например, вследствие насыщения половины связей с активными центрами резонансная линия гистидина 36 расщепляется на две линии равной интенсивности, которые соответствуют гистидиновому остатку в свободном субстрате и в ферменте, связанном в комплекс. Правда, [c.107]


    Автором с сотрудниками исследованы комплексо-, коллоидообразование и растворимость золота в растворах аминокислот [41 др.]. Установлено, что стандартные окислительно-восстановительные потенциалы комплексов золота (I) с глицином, аланином, ва-лином и фенилаланином находятся в пределах 0,624—0,648 В, с гистидином, аспарагином и метионином — 0,457—0,573 В и с цистеином — 0,144 В. [c.154]

Рис. 62. Схема активного центра карбоксипептидазы А (остаток Туг 198 на схеме не изображен) фермента, катализирующего гидролитическое отщепление С-концевого аминокислотного фрагмента от полипептидов. Фермент абсолютно специфичен к Ь-конфи-гурации отщепляемого аминокислотного остатка и резко преимущественно катализирует отщепление остатков гидрофобных аминокислот. Гидролиз в этом случае протекает по механизму электрофильного катализа и требует участия иона цинка — в белке какие-либо группы, способные выступать в роли электрофиль-ных катализаторов, отсутствуют. Ион цинка фиксирован в активном центре фермента путем координации тремя аминокислотными остатками — двумя остатками гистидина 1118-69 и Н18-196 и одним глутамат-ионом С1и-72. Четвертая координата (для ионов цинка характерна тетраэдрическая зр -конфигурация координационных связей) направлена в комплексе фермент — субстрат на карбонильную группу гидролизуемой пептидной связи. Фиксация С-концевой части гидролизуемого пептида в активном центре обеспечивается в первую очередь взаимодействием с двумя остатками аргинина — Aгg-145 и Arg-127 и кластером гидрофобных Рис. 62. <a href="/info/100820">Схема активного центра</a> карбоксипептидазы А (остаток Туг 198 на схеме не изображен) фермента, <a href="/info/1652849">катализирующего гидролитическое</a> отщепление С-концевого аминокислотного фрагмента от полипептидов. <a href="/info/362175">Фермент абсолютно</a> специфичен к Ь-<a href="/info/1009789">конфи-гурации</a> отщепляемого аминокислотного остатка и резко преимущественно <a href="/info/1813080">катализирует отщепление</a> остатков <a href="/info/1304271">гидрофобных аминокислот</a>. Гидролиз в этом случае протекает по <a href="/info/1776504">механизму электрофильного катализа</a> и требует <a href="/info/220523">участия иона</a> цинка — в белке какие-либо группы, способные выступать в роли <a href="/info/1473574">электрофиль</a>-ных катализаторов, отсутствуют. Ион цинка фиксирован в <a href="/info/99728">активном центре фермента</a> путем координации тремя аминокислотными остатками — двумя остатками гистидина 1118-69 и Н18-196 и одним глутамат-ионом С1и-72. Четвертая координата (для ионов цинка характерна тетраэдрическая зр -<a href="/info/499986">конфигурация координационных</a> связей) направлена в <a href="/info/574398">комплексе фермент</a> — субстрат на <a href="/info/7246">карбонильную группу</a> <a href="/info/466952">гидролизуемой</a> <a href="/info/7320">пептидной связи</a>. Фиксация С-<a href="/info/916047">концевой части</a> <a href="/info/466952">гидролизуемого</a> пептида в <a href="/info/5969">активном центре</a> обеспечивается в первую очередь взаимодействием с двумя остатками аргинина — Aгg-145 и Arg-127 и кластером гидрофобных
    На рис. 5.1 представлен активный центр рибонуклеазы — фермента, гидролизующего РНК, которая состоит из множества мононуклеотидов. В каталитическом центре находятся два остатка гистидина Гис 12 и Гис 119. Оба эти гистидина участвуют в процессе катализа, причем Гис 12 образует комплекс [c.64]

    Связь гема с полипептидной цепью осуществляется за счет координации иона железа с атомом азота гистидина (пятая аминокислота в глобине) Шестым лигандом могут выступать О2, СО и др Комплекс гемоглобина с молекулярным кислородом О2, называемый оксигемоглобином, замечателен тем, что ион железа Ре при этом не окисляется, а переходит из высокоспинового состояния в низкоспиновое, уменьшая свой радиус и вдавливаясь в плоскость порфинового кольца Молекула кислорода, таким образом, оказывается в образованном полипептидной цепью гидрофобном кармане, из которого вытеснена вода По этой причине анионы С1 , НСО , 804 , фосфаты не могут войти в комплекс в качестве шестого лиганда [c.910]

    Рентгеноструктурные исследования показали, что помимо серина-195 в активный центр входят также остатки гистидина (Н1з-57) и аспарагиновой кислоты (А5р-102). Другой остаток гистидина (Н1з-40) не участвует в катализе. Фермент обладает специфичностью к ароматическим аминокислотам. Эфиры ароматических аминокислот — хорошие субстраты этого фермента, и для большинства кинетических исследований в качестве субстратов использовались такие эфиры. Фермент расщепляет пептиды, освобождая карбоксильную группу ароматических аминокислот. После образования комплекса Михаэлиса единственный реакционноспособный 5ег-195 вначале ацилируется, образуя ацилферментное промежуточное соединение с субстратом. Превращение комплекса Михаэлиса в ацилфермент происходит сначала путем образования тетраэдрического интермедиата (разд. 4.4.1), и наконец происходит гидролиз ацилфермента при атаке молекулой воды, так что ацилированный продукт обычно не накапливается. [c.220]

    Большое значение имеет комплексообразование железа с биолигандами [2, с. 165—184]. Особенно важен гемоглобин — железосодержащая белковая молекула, выполняющая в крови животных и человека функции переносчика кислорода. Гемоглобин содержит белок глобин и четыре гема , представляющих собой порфириновый комплекс железа (II), где атом железа образует связь с четырьмя атомами азота порфиринового кольца и одну связь с атомом азота гистидина— аминокислоты, входящей в состав б1елка глобина. Шестое место в координационной сфере железа (II) может быть занято молекулярным кислородом О2, а также лигандами типа СО, СЫ и др. Если гемоглобин вступил во взаимодействие, например, с СО, он теряет способность обратимо присоединять О2. В таком случае организм погибает от гипоксии. Этим объясняется высокая токсичность СО, СК - и подобных им лигандов. [c.134]

    Трипсин и химотрипсин, очевидно, имеют второй активный центр, содержап ий гистидин. Второй участок удален от первого, но на спиральной цепочке они сближены. Установление активной роли гистидина основывалось частично на изменении скорости ферментативной реакции в зависимости от pH, что соответствовало предположению о стратегическом расположении слабоосновного остатка, имеющего характер гистидина. Даже сам имидазол также катализирует гидролиз простейших сложных эфиров (БрюИ С" и Шм Ир 1965—.19i57 Бендер, 1957). 7 о, что фермент в 10 раз эффективнее, чем имидазол, имеет аналогию в модельных опытах по мутаротации глюкозы — реакции, катализируемой кислотами и основаниями. о -Оксипиридин, содержащий кислотный и основной центры (оба относительно слабые), более эффективен как катализатор, чем смесь пиридина и фенола (Свайн, 1952). И в а-окси-пиридине, и в протеолитическнх ферментах бифункциональность повышает каталитическую активность, поскольку протоны могут быть одновременно поданы и отщеплены в сопряженной реакции. Механизм действия, предложенный, Нейратом (1957) для химотрипсина, сводится к следующему. При взаимодействии гидроксильной группы серина с имидазольным кольцом гистидина отщепляется протон и образуется активированный комплекс П, имеющий электрофильный и нуклеофильный центры. [c.714]


    Влажный комплекс гистидина с ртутью суспендируют в 5 л воды и энергично перемешивают, пропуская при зтом ток сероводорода. Когда сернистая ртуть осадится полностью, суспензия становится равномерного черного цвета и при стоянии хорошо отстаивается. Фильтрат и промывные воды после сернистой ртути (примечание 4) упаривают в вакууме до объема около 1 л и осветляют [c.161]

    Если, как это иногда бывает, комплекс гистидина с ртутью оседает медленно, жидкость можно отсифонировать и профильтровать. Небольшое количество вещества на фильтре присоединяют к основной массе. [c.162]

    С помощью Л. X, удается выделять и разделять соед., склонные к координации с ионами металлов, в присут. больших кол-в минер, солей и некоординирующихся в-в. Напр, с использованием иминодиацетатной смолы с ионами Си из морской воды выделяют своб. аминокислоты На катионитах с ионами Ре разделяют фенолы, с ионами Лg -сахара. На карбоксильных катионитах с N1 разделяют амины, азотсодержащие гетероциклы, алкалоиды. На силикагеле с нанесенным слоем силиката Си в водно-орг. среде в присут. ННз проводят быстрый анализ смесей аминокислот и пептидов, причем элюируемые из колонки комплексы легко детектируются спектрофотометрически. На высокопроницаемых декстрановых сорбентах с иминодиацетатными группами, удерживающими ионы N1 или Си- , селективно выделяются из сложных смесей индивидуальные белки и ферменты, содержащие иа пов-сти своих глобул остатки гистидина, лизина или цистеина. Силикагели с фиксированными на пов-сти инертными т/)ис-этилендиа.миновыми комплексами Со используют для т. наз. внешнесферной Л. х. смесей нуклеотид-фосфатов. Методом газовой Л. х. с помощью фаз, содержащих соли Ag , разделяют олефины, ароматич. соед., простые эфиры. Тонкослойная Л. х. на носителях, пропитанных солями Ag , применяется для анализа стероидов и липидов. [c.590]

    Более надежным представляется использование условных констант, учитывающих физиологические условия. При наличии необходимой информации о константах устойчивости индивидуальных соединений, присутствующих в данной системе, можно с помощью ЭВМ оценить направление реакций, происходящих в организме. Так, применение компьютерных расчетов равновесий в растворе, содержащем одновременно ионы меди (II), цинка (II) и 22 аминокислоты, присутствующие в плазме крови [939], показало, что при рН=7,4 медь и цинк образуют смешанный комплекс с гистидином и цистеином. Таким образом, при прогнозировании результата введения в такую систему молекулы комплексона необходимо учитывать в качестве конкурирующих реакций не только образование биометаллами комплексов с аминокислотами, но и смешанно лигандных соединений. [c.493]

    Анализ кристаллических структур комплексов белков с металлами показал, что аминокислотные комплексы металлов имеьот октаэдрическое строение, причем два остатка аминокислоты связаны с центральным атомом металла амино- и карбоксильными группами, а свободные координационные места заняты водой. Особой устойчивостью отличаются комплексы с аминокислотами, имеющими функциональные боковые цепи, как, например, гистидин, азот имидазола в котором образует дополнительную связь с центральным атомом. [c.67]

    Гемоглобин эритроцитов обеспечивает обратимое связывание и транспорт кислорода от легких во все органы и клетки живых существ. Миоглобин сохраняет запасенный кислород в мышцах. В этих гемопротеидах молекула белка-протеина связана с одной или несколькими молекулами гема(У), представляющего собой комплекс Ре(П) с протопорфирином. В настоящее время известен аминокислотный состав и последовательность аминокислот в протеине гемоглобина, место присоединения частиц гема, пространственная структура гемоглобина. Гем, РеПП, локализован в расщелине между спиралями белковой молекулы. По соседству с гемом находится так называемый проксимальный (соседний) фрагмент имидазола (Im) гистидино-вого (His) остатка, а на известном удалении с противоположной стороны от атома железа гема находится так называемый гисталь-ный (удаленный) имидазол другой гистидиновой молекулы. В отсутствие О2 атом Ре(П) в гемоглобине прочно связан с порфирином четырьмя донорно-акцепторными связями Fe-N и намного менее прочной [c.286]

    Они мало содержат глутаминовой кислоты и пролина и, наоборот, много аминокислот с основными свойствами (лизин, гистидин). Их молекулярную массу обычно оценивали в пределах 11000—30 000 Да, но в среднем ее можно считать равной 16 000 Да [119]. Отдельные полипептидные цепи могут соединяться, образуя комплексы с более высокой молекулярной массой. [c.181]

    Это соединение было получено Спринсоном [6], в сущности, по описанному методу. Гистидин осаждался в виде комплекса с сулемой, а затем превращался в гидрат монохлористоводо-родной соли. Выход неочищенного /-2-меркаптогистидина-2-С составлял 1,83 г (исходя из 20 жмолей тиоцианата-С калия). [c.326]

    Как видно из представленных выше относительных скоростей гидролиза этилового эфира о,ь-феиилаланина, действие иоиов меди ие определяется простыми электростатическими эффектами и скорее всего отражает наличие суперкислотного катализа. Однако в случае сложных эфиров гистидина, цистеина и аспарагиновой кислоты скорость катализируемого ионами меди (II) гидролиза лишь в сто раз выше скорости гидролиза нейтральных субстратов. В этих случаях ион металла может образовывать хелатный комплекс, координируясь с двумя донорны-ми центрами, но не затрагивая сложноэфириую связь. Поэтому величину каталитического эффекта можно объяснить в рамках только электростатических представлений. Очевидно, что суперкислотный катализ проявляется только тогда, когда одним из двух донорных центров, с которыми комплексуется ион металла, выступает карбонильный кислород сложноэфирной связи. Следует отметить, что хотя эти реакции не представлены полностью, в ходе всех процессов происходит регенерация ионов двухвалентной меди. [c.226]

    Гем а вместо метильной группы содержит формильный остаток (в 8-м положении) и вместо одной винильной группы (во 2-м положении)—изопре-ноидную цепь. Железо своими четырьмя связями образует комплекс с порфирином, а оставшиеся 5-я и 6-я координационные связи железа в молекулах гемоглобина и цитохромов связываются с белковыми компонентами по-разному. В частности, в гемоглобинах (и миоглобине) благодаря 5-й координационной связи железо соединяется с атомом азота имидазольной группы гистидина белковой молекулы. Шестая координационная связь железа предназначена для присоединения кислорода (с образованием оксигемоглобина и оксимиоглобина) или других лигандов СО, цианидов и др. (рис. 2.1). В цитохромах, напротив, и 5-я, и 6-я координационные связи железа соединены с остатками гистидина и метионина (в цитохроме с обе винильные группы соединены еще и с остатками цистеина) белковой молекулы. Этим, вероятнее всего, могут быть объяснены функции железа в гемоглобине, валентность которого не изменяется при присоединении кислорода (в отличие от валентности железа в цитохромах) в гемоглобине железо остается двухвалентным независимо от присоединения или отдачи кислорода. [c.80]

    Ко второй группе металлопротеинов относится ряд ферментов ферменты, содержащие связанные с молекулой белка ионы металлов, определяющих их функщгю,— металлоферменты (в процессе очистки металлы остаются связанными с ферментами) ферменты, активируемые ионами металлов, менее прочно связаны с металлами, но для проявления своей активности нуждаются в добавлении в реакционную среду определенного металла. Предполагают, что механизмы участия металла в акте катализа в обоих случаях, вероятнее всего, сходны ионы металла участвуют в образовании тройного комплекса активный центр фермента—металл—субстрат (Е—М—8), или М—Е—8, или Е—8—М. Есть доказательства, что в активном центре многих ферментов в связывании металла участвует имидазольная группа гистидина. [c.95]

    Взаимодействие протеинов можно также исследовать с использованием относительно простых методов, которые позволяют обнаружить это взаимодействие по спектрам ЯМР Н. Примером таких исследований является изучение взаимодействия протеинов в фосфотрансферазной системе. При переносе фосфонатной группы в качестве промежуточного продукта должен образовываться комплекс из НРг и фактор III. Оба протеина независимо от того, находятся ли они в фосфорилированном или в нефосфорилированиом состоянии, в принципе могут взаимодействовать один с другим. Следует ожидать, что протеины могут быть обнаружены в каждой из таких комбинаций, однако взаимодействие будет меньшим, если обе компоненты либо находятся в фосфорилированном состоянии, либо, напротив, в нефосфори-лированном. Если в спектре ЯМР нефосфорилированного фактор III наблюдать за сдвигом резонансной линии гистидина в активном центре в зависимости от концентрации добавляемого нефосфорилированного НРг, то резонансная линия гистидина будет непрерывно смещаться в область сильных полей. Это типичное поведение для случая быстрого обмена между [c.109]

    Несколько иной характер имеют зависимости, полученные при электроокислении на золотом электроде цистеина и гистидина, которые, как показано ранее (подробнее см. А. С. Черняк, Л. Ф. Ше-стопалова. Изучение комплексов золота (/) с цистеином в щелочной среде. — Журн. неорг. хим., 1981, т. 26, вып. 6, с. 1568—1572), способны растворять золото, образуя растворимые комплексы. Поляризационные кривые, измеренные на золотом дисковом электроде в растворе цистеина в кислой, нейтральной и щелочной средах, несмотря на одинаковый тафелевский наклон (0,11 В) по-разному зависят от частоты вращения диска максимальный ток в кислой среде существенно зависит от частоты вращения электрода, а в щелочных растворах не зависит от нее — кривые, полученные на стационарном электроде и при всех изученных частота.х вращения совпадают. [c.45]

    Установлено, что действующими веществами каланхое является комплекс веществ кислотного характера (органические кислоты), в том числе аминокислоты, полисахариды, флавоноиды, катехипы, микроэлементы и др.). Наличием этих соединений в значительной мере обусловлено нротивовоснолительное и усиливающее регенерацию тканей действие. Проведен аминокислотный анализ и подтверждено наличие 12 аминокислот аспарагиновая кислота, треопип, серии, глутаминовая кислота, глицин, аланин, валин, лейцин, фенилаланин, гистидин, изолейцин, аргинин основные органические кислоты - яблочная, лимонная, щавелевая. [c.48]

    Из сказанного видно, что белок, который в данном случае сам по себе является ферментом и не требует участия дополнительных кофакторов, выполняет две главные функции узнает специфичный субстрат, ориентируя его в составе комплекса нужным образом относительно имидазольных колец двух остатков гистидина, и осуществляет с помощью эти.х дву.х остатков, формирующих ката питичес-кий центр фермента, общий кислотный и основной катализ на обеи.х стадиях гидролиза. Эти функции — наиболее общие для всех бе.пков, являющихся ферментами или в.ходящими в их состав. [c.203]

    Н2О2 Н2О, Оа Двухъядерный комплекс кобальта с триэтанол-амином (I), ацетат кобальта, хлорид кобальта, комплексы кобальта с гистидином, серином, имидазолом, гликолом 37° С, pH = 4—4,5. I наиболее активен [721] = 0 I2, Со(ОН)з, траяс-[Со(ЫНз)4(Ы02)2]С1 [722J Комплексные соединения Со + с о-фенантроли-ном [723] Комплексные соединения Со +, Ni + с ацетилацетоном (1 1) водная или водно-диоксановая среда [724] Комплексные соединения Со + с N-замещенны-ми аминокислотами в бутиловом спирте [725]. См. также [726] [c.629]

    Аскорбиновая кислота Продукты окисления Комплексы N1, Со, Fe с макромолекулярными лигандами поли-Р-кетоэфирного типа. Каталитическая активность комплексов падает в ряду Си > N1 > Со, Fe, Мп [877]° Комплексы гистидина с металлами Со +, Ni +, Zn +, d-+, комплексы метилового эфира гистидина с металлами Со +, Ni +, Zn +, d - 23—40° С [855]° [c.636]

    Метиловый эфир гистидина, Н2О к-Гептан (I) Смесь гексанола-2 и гексанола-3 Продукты стерео-селективного гидролиза Раз Продукты крекинга Дегидр Кетон С12 (I), Н2О, Н2 Комплекс с D- или L-гистидином (а-ами-Ho- -5-имидазолилпропионовой кислотой) в водных растворах, 25° С [1951] ложение Ni-фталоцианин 700—740° С, скорость подачи I — 1,3—2,5 мл/мин [1952] )ирование Ni(H OO)2—Саз(Р04)г—ZnO (Ni—4,5%, Zn— 11,4%) 400° С, скорость подачи спиртов — 1,3 25 ч. Конверсия 17%, выход I — 59,5% [1953] [c.720]


Смотреть страницы где упоминается термин Гистидин, бис комплекс: [c.68]    [c.369]    [c.354]    [c.205]    [c.80]    [c.265]    [c.75]    [c.222]    [c.48]    [c.492]    [c.564]    [c.142]    [c.149]    [c.215]    [c.636]    [c.162]   
Абсолютная конфигурация комплексов металлов (1974) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Гистидин



© 2025 chem21.info Реклама на сайте