Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплекс ионов металла с белками

    Методы выделения нуклеиновых кислот. При изучении химического состава и строения нуклеиновых кислот перед исследователем всегда стоит задача выделения их из биологических объектов. В главе 2 было указано, что нуклеиновые кислоты являются составной частью сложных белков — нуклеопротеинов, содержащихся во всех клетках животных, бактерий, вирусов, растений. Нуклеиновые кислоты обладают сильно выраженными кислыми свойствами (обусловлены остатками ортофосфорной кислоты в их составе) и при физиологических значениях pH несут отрицательный заряд. Этим объясняется одно из важных свойств нуклеиновых кислот—способность к взаимодействию по типу ионной связи с основными белками (гистонами), ионами металлов (преимущественно с М "), а также с полиаминами (спермин, спермидин) и путресцином. Поэтому для вьщеления нуклеиновых кислот из комплексов с белками необходимо прежде всего разрушить эти сильные и многочисленные электростатические связи между положительно заряженными молекулами белков и отрицательно заряженными молекулами нуклеиновых кислот. Для этого измельченный путем [c.96]


    Существует обширная группа ферментов, активность которых проявляется только в присутствии определенных соединений небелковой природы. Эти соединения называются кофакторами. Кофакторами могут быть, например, ионы металлов или органические соединения сложного строения — их обычно называют кофер-ментами. В большинстве случаев связь между коферментом и белком слабая и кофермент можно отделить от белка весь комплекс в целом есть холофермент, а белок (лишенный активности) без кофермента называют апоферментом. [c.356]

    Активаторами ферментов могут служить катионы и анионы разнообразных солей, способньте к образованию различных комплексов как с самими ферментами, так и с их субстратами. Это возможно вследствие наличия в природе большого числа металлоферментов, содержащих тот или иной ион металла в акгивном центре ферментного белка. Механизмы активации энзиматических реакщ. г разнообразны. Ионьт металлов, действуя [c.166]

    Ко второй группе металлопротеинов относится ряд ферментов ферменты, содержащие связанные с молекулой белка ионы металлов, определяющих их функщгю,— металлоферменты (в процессе очистки металлы остаются связанными с ферментами) ферменты, активируемые ионами металлов, менее прочно связаны с металлами, но для проявления своей активности нуждаются в добавлении в реакционную среду определенного металла. Предполагают, что механизмы участия металла в акте катализа в обоих случаях, вероятнее всего, сходны ионы металла участвуют в образовании тройного комплекса активный центр фермента—металл—субстрат (Е—М—8), или М—Е—8, или Е—8—М. Есть доказательства, что в активном центре многих ферментов в связывании металла участвует имидазольная группа гистидина. [c.95]

    Проблемы синтеза и распада хромопротеинов привлекают внимание как исследователей, так и практических врачей по двум основным причинам. Во-первых, вследствие широкого разнообразия биологически важных функций гемоглобина, хлорофилла и цитохромов, в молекулах которых центральную роль играет ядро порфирина, обладающее способностью координационно связываться с ионами металлов (см. главу 2). Во-вторых, изменения синтеза или распада порфиринов и соответственно их комплексов с белками приводят к нарушению жизненно важных функций и развитию болезней у человека и животных. [c.503]

    Ионы металлов играют заметную роль в биохимических процессах, обусловленную отчасти их способностью связываться как с большими, так и с малыми молекулами. Большие молекулы — это нуклеиновые кислоты и белки. Комплексы ионов металлов с белками подразделяются на две основные группы. В комплексах первой группы ионы металла являются составной частью структуры белковых молекул и не могут быть выделены из белка без разрушения этой структуры. Такие белки называют металло-протеидами. Помимо них известно большое число комплексов, для которых характерно обратимое взаимодействие ионов металла с белком. Образование комплексов, принадлежащих этой второй группе, обычно стабилизирует определенную конформацию белковой части комплекса. Ярким примером важности взаимодействия между ионами металлов и малыми органическими молекулами может служить связывание АТФ с ионами металлов, абсолютно необходимое для того, чтобы молекулы АТФ могли принимать участив в ферментативных реакциях, зависящих от АТФ. [c.22]


    Бионеорганическая химия (неорганическая биохимия) — раздел химии, изучающий комплексы ионов металлов (Ма, К, Са , Мд , Мп , Ре , 2п , Со , Мо ) с белками, нуклеиновыми кислотами, липидами и низкомолекулярными природными соединениями с позиций химии координационных соединений и квантовой химии. [c.49]

    Другие типы моноядерного комплексообразования в водных растворах включают связывание ионов металла белками или синтетическими полиэлектролитами. Эти системы удобно рассматривать, предположив, что ионы металла выступают в качестве лигандов по отношению к центральному полимеру [33, 67]. Комплексы могут также образовываться между двумя органическими ионами, например ионами анилиния и пикриновой кислоты [58], или между двумя белками. В окислительновосстановительном равновесии электрон можно рассматривать как лиганд, а состояние наивысшей степени окисления — как центральную группу [11, 45]. Смешанные моноядерные комплексы, которые содержат более одного типа лигандов, обсуждаются в гл. 18. [c.17]

    Гистидин и цистеин связывают ионы металлов более прочно, чем любые другие аминокислоты можно думать, что они принимают непосредственное участие в образовании комплексов ионов металлов с белками. [c.24]

    Таким образом, исследование ДОВ, АДОВ и КД эффективно при определении а-спиральности белков и полипептидов. С другой стороны, весьма перспективно изучение ИОА комплексов белков с красителями и ионами металлов, ИОА коферментов и простетических групп. Такие исследования дают сведения о конформациях и в сочетании с химией позволяют расшифровать события, протекающие в активном центре ферментов (см. гл. 6 и [135]). Изучению структуры белков методом КД посвящен обзор [272]. [c.319]

    Эти ферменты представляют собой идеальный объект для исследования. Они хорошо растворимы в воде и устойчивы в широком интервале pH без необратимой денатурации белка, в частности, в случае каталазы в интервале pH 2—11 [51]. Такую же стабильность по отношению к изменениям pH обнаруживает пероксидаза хрена [53]. К каталазам и пероксидазам относятся некоторые из наиболее термостабильных ферментов. Некоторые пероксидазы сохраняют активность даже при 90°С [197]. Интенсивные УФ-спектры железопорфирина (гема) предоставляют в руки исследователей очень удобный способ наблюдения за ходом реакции, а наличие только одного активного центра в каждой молекуле фермента (за исключением каталазы) существенно упрощает интерпретацию результатов. Рассматриваемая группа ферментов характеризуется набором частично перекрывающихся, но различных свойств, хотя и содержит одинаковый кофактор или комплекс металла. Реакции этих комплексов ионов металла с белком можно сравнивать с реакциями небелковых комплексов, которые, как будет показано ниже, обладают в основном такими же каталитическими свойствами, но в [c.198]

    В процессе биохимической очистки часть ионов тяжелых металлов аккумулируется активным илом, при этом происходит образование комплексов ионов с белком активного ила. Следствием этого является снижение скорости биохимической очистки. [c.47]

    Если антиген или антитело в качестве метки содержат электроактивную группу, то образование комплексов АГ-АТ, как правило, приводит к изменению скорости электрохимической реакции. Так, в присутствии антител ток окисления морфина, меченного ферроценом, уменьшается, а волна восстановления ацетата ртути, связанного с эстриолом, смещается к более отрицательным потенциалам. В качестве метки могут служить и ионы металлов, образующие комплексные соединения с хелатообразующими реагентами, пришитыми к белкам. В результате взаимодействия антител с мечеными антигенами ионы металлов высвобождаются и могут быть определены методом инверсионной вольтамперометрии. Одновременно можно определять несколько компонентов, используя в качестве метки различные ионы. [c.507]

    Многие ферменты содержат прочно связанные ионы металлов (обычно переходных). Еще большее число ферментов активируется определенными металлами. Все содержащиеся в белках функциональные группы являются потенциальными лигандами, поэтому возможно образование широкого спектра комплексов, в которых металл связан с кислородом, азотом или серой, выступающими в качестве доноров [37]. [c.474]

    Оба этих механизма, вероятно, существенны для ферментативных реакций, когда стабильность комплексов в них может контролироваться трехмерной структурой белка (в известной степени справедливо противоположное утверждение, поскольку сведение лигандов из различных участков цепи в координационную сферу иона металла может играть структурирующую роль). [c.476]

    Наконец, ионы металлов играют очень важную роль агентов транспорта электронов [37], в особенности в одноэлектронных переносах, где обычно используются окислительно-восстановительные системы типа Fe (И) Fe (П1) и Си (I) 5 Си (И). Окислительно-восстановительный потенциал является чувствительной функцией связывания лигандов. Во многих случаях (гемоглобин, цитохромы, хлорофилл, витамин В,2) металл комплексуется не только с белком, но и с макроциклическими тетрадентатными лигандами (например, порфирин в геме), которые оставляют свободным только одно координационное место с весьма специфическими и тщательно контролируемыми свойствами [42]. [c.476]


    БИОНЕОРГАНИЧЕСКАЯ ХИМИЯ (неорг. биохимия), изучает комплексы ионов металлов с белками, нуклеиновыми к-тами, липидами и низкомол прир, в-вами. При этом, как правило, рассматриваются в молекуле биол. происхождения,-, [c.287]

    Эти особенности выражают напряжения, которым подвергается ион металла в результате многоточечного взаимодействия с аминокислотными остатками, определяемого конформационной структурой белка. Необычное расположение лигандов задает направленную геометрию комплекса. Напряжение создается совместно и металлом и лигандами. Взаимодействие металл — лиганд в металлоферментах сходно с взаимодействием активных групп Гис, Сер, Тир, — ЗН ряда ферментов с протонами, являющимися простейшими катионами. [c.416]

    Изменение шага спирали ДНК вызывают также ионы металлов и некоторые белки, в том числе гистоны [144]. Изменение шага спирали ДНК в комплексах с АК и актиномицином, однако, значительно больше, что не вызывает удивления, так как для упаковки массивного органического катиона необходимы дополнительные геометрические условия. Приводим формулы некоторых лигандов [c.529]

    Ферменты образуются внутри клеток, но они могут действовать и вне клетки, причем их можно выделить из клеток без потери активности. Следовательно, ферментативные реакции можно проводить и во внеклеточной среде. Биокатализаторы — высокомолекулярные белки с определенной надмолекулярной структурой, содержащие активный центр, который обычно находится во впадине (рис. 14.2). Во многих случаях активный центр представляет собой сложную органическую молекулу или ион металла (кофактор) и может быть либо связан, либо не связан с белком гомео-полярной связью. Комплекс белка (апофермент а) с кофактором называют голоферментом. [c.300]

    В живых организмах для проведения практически всех химических превраш,ений кроме чрезвычайно быстрых реакций переноса протона используются специальные катализаторы — ферменты (или энзимы). Ферменты представляют собой белковые молекулы, которые в зависимости от типа катализируемой реакции либо сами выполняют функцию катализатора, либо работают в комплексе с ионом металла или каким-нибудь сложным органическим соединением. Например, пищеварительные ферменты трипсин и химитрипсин, выделяемые поджелудочной железой в кишечный тракт для переваривания белков, являются чисто белковыми катализаторами, а фермент, катализирующий разложение пероксида водорода (последний образуется в. клетках в ходе некоторых окислительных реакций и его нужно немедленно убирать) содержит связанные с белком органические-молекулы, включающие ион железа, — так называемый гем. [c.310]

    Трудности, связанные со сравнением констант устойчивости комплексов с белками и модельными соединениями, были наглядно показаны также при исследовании миоглобина кашалота [109, ПО] и альбумина бычьей сыворотки [111, 112]. Отсутствие данных о константах устойчивости комплексов ионов металлов с малыми пептидами, содержащими координирующие боковые цепи (т. е. гистидин, лизин или остатки глутаминовой кислоты), очень задерживает понимание более сложных взаимодействий ионов металлов с белками. [c.126]

    Интерес к изучению неопецифических взаимодействий металлов с белками возник исторически в связи с использованием ионов металлов для очистки белков на основании известных эффектов ингибирования ионами металлов некоторых ферментов, а также возможности того, что неспецифические комплексы ионов металлов с белками послужат моделями металлопротеинов. Учитывая специфичность окружения иона металла в металлопротеинах [I], в данной главе, посвященной исследованию неспецифических взаимодействий ионов металлов с белками, будут главным обра- [c.274]

    К числу прямых методов, используемых для идентификации атомов или боковых цепей, к которым присоединяются ионы металлов, относятся рентгеноструктурный анализ (см. исследование миоглобина) и ядерный магнитный резонанс (см. изучение ион металла — РНаза, разд. 4.6). Кроме того, для этой цели используются различные непрямые методы. К числу последних относятся исследование влияния модификации боковой цепи специфического бел-ка на связывание с металлом, титриметрические определения значений рКа. участвующих в координации лигандных групп (разд. 3), и, по мере щозможности, корреляция спектров комплекса иона металла с белками со спектрами подходящих модельных систем. Хотя в случае металлопротеинов это последнее и рискованно, оно оказалось особенно плодотворным для изучения неспецифических комплексов ионов металлов с белками. Исследование влияния модификации белка на связывание с металлом несомненно играет полезную роль, однако при этом необходимо учитывать возможность того, что модификация боковой цепи, которая ранее не участвовала в связывании, может повлиять на него 1В результате изменения либо общего заряда на белке, либо его конформации. [c.276]

    В живых организмах для проведения практически всех химических превращений кроме чрезвычайно быстрых реакций переноса протона используются специальные катализаторы — ферменты (или энзимы). Ферменты представляют собой белковые молекулы, которые в зависимости от типа катализируемой реакции либо сами выполняют функцию катализатора, либо работают в комплексе с ионом металла или каким-нибудь сложным органическим соединением. Например, пищеварительные ферменты трипсин и химитрипсин, выделяемые поджелудочной железой в кишечный тракт для переваривания белков, являются чисто белко- [c.395]

    Большинство белков находится в жнвом организме не в свободном виде, а в виде комплексов с различными мономерными или полимерными органическими соединениями, с нонами металлов. В отличие от свободных белков — протеинов такие комплексы носят название протеидов. Важное значение имеют комплексы белков с нукленновымн кислотами, углеводами, липидами, красителями (пигментами), ионами металлов и т. д. [c.450]

    Лигандообменную хроматографию применяют для разделения в водной среде соединений, представляющих большой интерес для органической химии и биохимии аминов, аминокислот, белков, нуклеотидов, пептидов, углеводов. При этом в вчестве комплексообразующих используют ионы меди, цинка, кадмия, никеля, серебра и железа. Ионы ртути и серебра в неполярной среде алифатических углеводородов образуют лабильные комплексы с ненасыщенными и ароматическими углеводородами. Большими достоинствами лигандообменной хроматографии является ее селективность и отсутствие жестких требований к сорбенту, который может быть прочно связан ионами металла или только пропитан солями металла. [c.82]

    С помощью Л. X, удается выделять и разделять соед., склонные к координации с ионами металлов, в присут. больших кол-в минер, солей и некоординирующихся в-в. Напр, с использованием иминодиацетатной смолы с ионами Си из морской воды выделяют своб. аминокислоты На катионитах с ионами Ре разделяют фенолы, с ионами Лg -сахара. На карбоксильных катионитах с N1 разделяют амины, азотсодержащие гетероциклы, алкалоиды. На силикагеле с нанесенным слоем силиката Си в водно-орг. среде в присут. ННз проводят быстрый анализ смесей аминокислот и пептидов, причем элюируемые из колонки комплексы легко детектируются спектрофотометрически. На высокопроницаемых декстрановых сорбентах с иминодиацетатными группами, удерживающими ионы N1 или Си- , селективно выделяются из сложных смесей индивидуальные белки и ферменты, содержащие иа пов-сти своих глобул остатки гистидина, лизина или цистеина. Силикагели с фиксированными на пов-сти инертными т/)ис-этилендиа.миновыми комплексами Со используют для т. наз. внешнесферной Л. х. смесей нуклеотид-фосфатов. Методом газовой Л. х. с помощью фаз, содержащих соли Ag , разделяют олефины, ароматич. соед., простые эфиры. Тонкослойная Л. х. на носителях, пропитанных солями Ag , применяется для анализа стероидов и липидов. [c.590]

    Одним из основных факторов, определяющих сродство органических молекул к йонам металла, является хелатный эффект. Под этим термином понимается четко выраженная способность органической моле-4 улы связывать ионы металлов при наличии в ней двух или большего числа групп, способных к комплексообразованию. Природа с успехом использовала хелатный эффект при создании таких важных металлсодержащих молекул, как порфирины (рис. 10-1), хлорофилл (рис. 13-19), энтеробактин (рис. 2-44), кальдий-связывающие белки (разд. В, 8, в) -и т. д. Данные, приведенные в табл. 4-2, показывают, что прочные хе-латные комплексы образуют также многие относительно простые соединения, такие, как а-аминокислоты или лимонная кислота. [c.266]

    Как действуют антибиотики Некоторые, подобно пенициллину, блокируют работу определенных ферментов (дополнение 7-Г). Пептидные антибиотики (разд. Б.2.в) часто образуют комплексы с ионами металлов и нарушают, по-видимому, регуляцию ионной проницаемости в мембранах бактерий. Полиеновые антибиотики влияют на транспорт протонов и ионов в мембранах грибов. Тетрациклины, так же как многие другие антибиотики, нарушают непосредственно синтез белка (гл. 15, разд. В.2з). Некоторые другие антибио- [c.367]

    Ферменты представляют собой молекулы белков (см. гл. 23.1) с1юлекулярными массами в пределах от десяти тысяч до нескольких миллионов. Многие ферменты либо содержат, либо функционируют в комплексе с коферментами или ионами металлов, являющимися важными для каталитической активности ферментов. Многие из них представляют собой агрегаты одного, иногда двух типов индивидуальных белковых субъединиц. Некоторые ферменты организованы в группы из небольшого числа различных ферментов, существующие либо в растворе (полиферментные комплексы), либо более или менее жестко присоединенными к определенным субклеточным структурам [4]. Эти полиферментные системы могут, таким образом, имея по одному ферменту на каждую стадию последовательности, катализировать последовательность нескольких реакций. [c.450]

    Ион цинка в ацетонитриле катализирует восстановление альдегида (1,10-фенантролин-2-карбоксальдегида) под действием аналога NADH Ы-пропил-1,4-дигидроникотинамида [схема (9.7)]. В этом случае альдегид или координирован, или по крайней мере максимально приближен к иону металла, а его карбонильная группа активирована вследствие поляризации. Альдегидный комплекс с ионом Zn + сначала образует интермедиат с аналогом NADH, а затем следует прямой перенос протона, проте-каюший, как в ферментативной реакции. Эффективность ионов цинка очевидна реакция не идет в отсутствие катализатора. Эта модельная система может имитировать фермент алкоголь-дегидрогеназу, который содержит ион (ионы) цинка вне активного центра белка. [c.229]

    Четвертичные структуры белка образуются тогда, когда молекула белка включает в свою структуру химически связанные комплексы хлорофилла, протопорфирина железа (II), или гема, группировки из ионов металлов (Ре, Си, 2п, Со, Мо и др.), углеводы, фосфорную кислоту, жиры и т. д. В этом случае белки являются не простыми, а сложными и называются протеидами. К числу протеидов (сложных белков) относятся хромопротеиды (белок связан с молекулой — хромофором), гликопротеиды (белок связан с углеводами), липопротеиды (белок связан с липидом), фосфопротеиды (белок этерифицирован фосфорной кислотой, как, например, в казеине молока), нуклео-протеиды (белок связан с нуклеиновой кислотой). Небелковая часть молекулы протеида называется простетической группой. [c.722]

    Белки выполняют свою важнейшую — ферментативную функцию большей частью в комплексах с низкомолекулярными кофакторами и с простетическими группами. Последние связаны с белком валентными связями. Кофакторы, коферменты слабее связаны с апоферментом, т. е. с белком, и способны переходить от одной молекулы белка к другой. Это, впрочем, не всегда так, и отличие кофермента от простетической группы не вполне определенно. Фермент в целом, т. е. комплекс белковой части молекулы, именуемой ферментом, с коферментом, называется хо-лоферментом. Роль кофакторов в ряде случаев играют ионы металлов. [c.94]

    ООО ООО. Молекула фермента может состоять только из белка или из белковой и небелковой частей. Последняя получила название кофактора или простетической группы. Белковая часть молекулы фермента может быть построена из одной или нескольких полипептидных цепей, образующих сложные комплексы. Кофакторы имеют небольшую молекулярную массу и являются активной группой фермента. Ими могут быть производные витаминов, нуклеотидов или ионы металлов. Одни и те же кофакторы могут быть прочно связаны с белком или образовывать легко диссоциирующие комплексы. Одн" и те же кофакторы могут входить в состав молекул разных ферментов. [c.21]

    Порфирины в природе находятся в виде комплексов с металлами. Комплекс порфирина с магнием является основой молекулы хлорофилла. Комплекс с железом служит простетической группой гемопротеинов, к которым относятся кислородпере-носящие белки, в частности гемоглобин (см. 13.3), цитохромы и некоторые ферменты. Производные порфиринов, содержащие ион двухвалентного железа, называют г е м а-м и. Примером может служить протогем (чаще называемый ге-мом) — простетическая группа гемоглобина. Четыре атома азота пиррольных колец в геме образуют плоский квадрат, в центре которого нахо-дится железо. [c.280]

    Наиболее распространенными объектами анализа в медащине являются кровь и моча, в которых, например, определяют содержание глюкозы при диагностике диабета. Поскольку химический и биохимический состав крови и мочи различаются, подготовка проб при химическом анализе для этих двух объектов тоже различна и в обоих случаях довольно сложна. Например, в моче могут содержаться белки, кетонные тела, билирубин, уробилиноген, лейкоциты, эритроциты, а в очень малых количествах — до тысячи компонентов, в том числе ионы металлов в виде комплексов. Химический состав крови не менее сложен. Объект анализа может претерпевать изменения в зависимости от времени и температуры, при которой он хранится перед анализом. Так, на состояние мочи оказывает влияние pH, значение которого определяется заболеванием. Разработаны тест-средства для определения глюкозы, холестерина, контроля лекарственных препаратов. В инструкциях по использованию тестов указана необходимая пробопод-готовка в зависимости от анализируемого объекта и определяемого компонента или показателя. [c.245]


Смотреть страницы где упоминается термин Комплекс ионов металла с белками: [c.478]    [c.422]    [c.129]    [c.289]    [c.282]    [c.75]    [c.280]    [c.446]    [c.85]    [c.41]    [c.85]   
Основы биологической химии (1970) -- [ c.22 , c.23 ]




ПОИСК





Смотрите так же термины и статьи:

Белки комплекс с ДСН

Комплексы ионов металлов,

Комплексы металлов комплексы металлов

Металло-азо-комплексы

Металлов комплексы



© 2024 chem21.info Реклама на сайте