Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Линии спектрографического анализа для

    Таблицы гомологических пар линий для полуколичественного спектрографического анализа [c.647]

    При качественном анализе проводят относительное измерение длин волн. Положение искомой линии определяют чаще всего сравнением со спектром железа I15]. Отсутствие линии надежно свидетельствует об отсутствии элемента. Уверенный вывод о присутствии данного элемента (ввиду возможного наложения линий) делают при наличии по крайней мере двух линий обнаруживаемого элемента. При количественном анализе измеряемой величиной является почернение фотопластинки, описываемое уравнением (5.2.9). Необходимыми предпосылками количественного определения являются съемка всех спектров при одинаковых условиях и калибровка прибора по пробам известного состава. Особенно часто спектрографический анализ выполняют в полуколичественном варианте. При визуальном сравнении плотности почернений для стандарта и анализируемой пробы можно оценить порядок содержания определяемого элемента (например, 10 ,  [c.195]


    Разряд в полом катоде. Особое место среди источников света в спектрографическом анализе веществ особой чистоты занимает разряд в полом катоде, позволяющий понизить пределы обнаружения на несколько порядков [162, 165, 361, 367, 1163]. Показана эффективность применения полого катода для определения многих примесей, в том числе натрия, в труднолетучих основах и особо чистых веществах [386]. Изучено влияние различных факторов на интенсивность линий натрия химических свойств газа-носителя, геометрических )азмеров полости, величины разрядного тока [358], давления газа 176, 358, 661], способа введения раствора в полый катод [366], наложения магнитного поля [423, 541]. Исследовано распределение интенсивности спектральных линий натрия по поперечному сечению [c.110]

    Идентификация линий. В качественном спектрографическом анализе требуется только идентификация элемента, вызывающего эмиссию соответствующих длин волн, наблюдаемых в спектре определяемого вещества. Идентификация осуществляется сравнением со спектрами образцов чистых элементов. Все известные длины волн для всех элементов имеются в справочных таблицах, но для получения правильных -результатов при пользовании этими таблицами необходимо возможно более точное определение длин волн линий, вызываемых анализируемым ве- [c.95]

    Методика спектрографического анализа с применением искрового возбуждения не отличается от применяемой для анализа передельных чугунов (см. п. 2). Дополнительная аналитическая пара линий 2802,69 — Ре 2799,29 А. [c.24]

    Спектрографический анализ чугуна, обработанного маг.чием с помощью дугового возбуждения также производят по методике, применяемой для контроля состава передельных чугунов. Дополнительная аналитическая пара линий 2802,69"—Ре [c.24]

    Спектрографический анализ конструкционных сталей, содержащих вольфрам (без повышенных концентраций алюминия), проводят в тех же условиях, что и анализ сталей, перечисленных в группе 1. Для определения вольфрама используются линии 3300,82 — Ре 3298,13 2397,09 — Ре 2396,71 2896,01 — [c.80]

    Ha большом материале показано, что ошибки спектрографического анализа почв и золы растений подчиняются нормальному распределению, если результаты анализа выражать в логарифмах интенсивности линий. [c.414]

    При выборе аналитических пар линий большую помощь оказывают соответствующие таблицы спектральных линий и уже упомянутые атласы для качественного спектрографического анализа (разд. 5.2). Для облегчения поиска спектральных линий, необходимых для визуальных методов анализа, можно использовать соответствующие таблицы длин волн (табл. 9.5.2), атласы спектра железа собственного изготовления или найденные в литературе [2]. Атласы собственного изготовления должны быть не фотографиями, а рисунками, точно воспроизводящими субъективно и визуально воспринимаемое изображение спектра. В спектре отмечают положе- [c.305]


    Рассматривается вопрос о возможности повышения точности спектрографического анализа путем введения весовых коэффициентов при вычислении разности логарифмов интенсивностей аналитических линий в тех случаях, когда коэффициенты регрессии на диаграммах рассеяния (см. [146 ) не равны единице. [c.423]

    Изучение характера изменения во времени может дать ценную информацию, касающуюся выбора аналитических пар линий для тех спектральных методов, которые основаны на использовании общего излучения за все время экспозиции. Для спектрографического анализа наиболее подходящими оказываются такие пары линий X я г, для которых наблюдается одинаковый характер изменения X и г во времени. Или, выражаясь точнее, для количественного анализа в большей степени подходит пара линий, для которой величина 1х/1г изменяется во времени меньше всего, т. е. отношение интенсивностей меньше зависит от изменений в условиях возбуждения (например, температуры плазмы, ионного и электронного давления и т. д.). С учетом небольшого изменения этого практического правила его придерживаются и в спектрометрическом анализе. В этом случае вместо максимума интенсивности измеряют суммарную интенсивность линий на некотором участке длин волн (разд. 6.6). Поэтому при изучении изменений отношения интенсивностей линий пары х и г следует принимать во внимание интегральную интенсивность линий для их полных контуров. [c.272]

    Спектрометрический аналитический метод отличается от спектрографического метода по существу только способом измерения спектра. В то время как в спектрографическом анализе интенсивность спектра измеряют через промежуточную стадию фотографирования, спектрометрический анализ основан на прямом фотомет-рировании интенсивности спектральных линий. Прямое измерение интенсивности имеет два практических преимущества из-за отсутствия продолжительной операции обработки сфотографированных спектров и связанных с ней источников погрешностей существенно [c.199]

    Требования, предъявляемые при выборе линий аналитических пар (разд. 4.8.4) в спектрометрическом анализе, несколько отличаются от таковых в спектрографическом анализе (разд. 5.7.9). Поэтому они будут обсуждены здесь отдельно. [c.251]

    В качественном спектрографическом анализе требуется только идентификация элемента, вызывающего эмиссию соответствующих длин волн, наблюдаемых в спектре определяемого вещества. Идентификация осуществляется сравнением со спектрами образцов чистых элементов. Все известные длины волн для всех элементов вносятся в справочные таблицы, но чтобы пользоваться последними, необходимо возможно более точное определение длин волн линий, вызываемых анализируемым веществом. Идентификацию можно также проводить фотографированием на одном и том же спектрографе спектров различных возможных элементов и сравнивать их, линию за линией, с анализируемым веществом. [c.151]

    Установки спектрометрического и спектрографического анализа аналогичны, за исключением устройства их рецепторной части. В фотоэлектрических установках свет после диспергирующего элемента через специальные щели в фокальной плоскости попадает на фотоэлемент или фотоумножитель, соединенный с накопительным конденсатором и далее с регистрирующим потенциометром. Одна из щелей в приборах с фиксированными приемниками света предназначена для линии сравнения, а остальные — для линий анализируемого элемента или элементов. В приборах этого типа для каждой линии предусмотрен свой фотоэлектрический приемник. В сканирующих спектрометрах измерение интенсивности линии определяемого элемента производится фотоэлектрическим приемником, который передвигается вдоль спектра по специальной программе. Фотоэлектрический измерительный блок может также использоваться в качестве приставки к спектроскопу или спектрографу. Такой блок, состоящий из входной щели и фотоэлемента или фотоумножителя с измерительным устройством, устанавливается на место кассеты для фотопластинки. Сконструированный таким образом простой спектрометр может быть эффективно применен для анализа проб с несложным спектром. [c.41]

    Существуют четыре основных предположения, определяющие, по-видимому, целесообразность применения искрового источника для масс-спектрографического анализа следов элементов 1) твердые пробы полностью разрушаются в искровом разряде 2) эффективность ионизации одинакова для всех элементов и отсутствует эффект влияния основы 3) идентификация линий при помощи фотопластинки по их положению в спектре надежна и 4) почернение фотоэмульсии пропорционально ионному току. [c.354]

    В настоящее время основная масса анализов по определению следов еществ выполняется при помощи эмиссионной спектрографии и колориметрии Спектрографический метод применим для определения любого элемента, однако с чувствительностью, изменяющейся в широких преде- лах. Для некоторых элементов нет удовлетворительных колориметрических методов определения, для других эти методы недостаточно чувствительны, чтобы их использовать в анализе следов веществ. Колориметрическому определению лучше всего поддаются тяжелые металлы. Как правило, колориметрическое определение следов элементов требует проведения многочисленных операций разделения. В этом требовании заключается как слабая, так и сильная стороны метода. С одной стороны, не всегда есть эффективные методы разделения. В процессе разделения могут происходить незначительные потери определяемого компонента и не полностью удаляться элементы, мешающие определению. Процедура отделения следов элемента может оказаться довольно трудной. С другой стороны, если возможно осуществить удовлетворительное отделение — а это в действительности скорее правило, чем исключение, — влияние посторонних элементов устраняется, и колориметрический метод становится абсолютным. Этого часто нельзя сказать в отношении обычных спектрографических анализов, в ходе которых не делается никаких химических разделений, и точность результата может сильно зависеть от состава образца и от точности стандарта. Кроме того, точность колориметрического определения может превысить точность спектрографического определения проще измерить оптическую плотность раствора, чем плотность линии на фотографической [c.17]


    Типичным примером спектрографического полуколичественного анализа является определение следовых количеств элементов в неорганических и органических пробах при контроле качества различных химических продуктов 118, 33, 39]. Спектрографический метод эффективно используют при выполнении большого числа анализов в геохимической разведке [34]. Спектрографический метод малоэффективен при анализе проб, содержащих элементы, спектры которых имеют очень много линий (Fe =, Mo, W, Со. ..). В случае такой неблагоприятной комбинации элементов целесообразно использовать рентгеновские спектры, отличающиеся небольшим числом линий. [c.195]

    Основное преимущество спектрометрического метода состоит в высокой точности измерений ( + 0,1—1,0%) средних величин интенсивностей спектральных линий. Для спектрографического метода затруднительно получить результат с точностью ниже 5%. В зависимости от концентрации определяемого элемента точность будет меняться, Для измерения высоких концентраций элементов метод спектрометрии имеет явные преимущества. Для средних концентраций (0,1—0,01%) точность фотоэлектрического метода выше спектрографического в 2—3 раза, в то время как при анализе следов часто оказывается предпочтительнее использовать спектрографический метод. [c.113]

    Методы количественного разделения и определения редкоземельных элементов, как правило, мало совершенны. Лишь немногие элементы этой группы можно количественно выделить из смеси окислов относительно удобными методами. Предложено несколько спектрографических методов анализа смеси окислов редкоземельных металлов. Из них особый интерес представляет рентгеноспектральный метод Некоторые редкоземельные элементы дают характерные линии и полосы поглощения в видимой части спектра, что обычно используется для их открытия в присутствии других редкоземельных элементов . Различные авторы рекомендуют спектры поглощения использовать также для определения этих элементов в смеси [c.628]

    Условия спектрографического анализа магниевых сплавов в общем не отличаются от описанных для определения состава алюминиевых сплавов ([56, 278] и др.). Отличия состоят главным образом в том, что в качестве подставного электрода используют пруток из чистого магния или спектрально чистого угля, а также парные электроды из анализируемого сплава (заточка на полусферу), время предварительного обыскривания составляет 30 сек (при определении железа и кремния 60 сек) и используются другие аналитичеокие пары линий. При определении кремния иногда рекомендуется медный -подставной электрод. [c.170]

    Примерное равенство энергий возбуждения линий х п г приводит к практически одинаковым изменениям интенсивности этих линий, обусловленным различиями в условиях возбуждения в разных зонах источника света. Так, на относительную интенсивность не влияют в заметной степени флюктуации, которые появляются из-за неодинаковой оптической фокусировки разных зон источника света на соответствующие участки щели диспергирующего прибора. Наиболее важное для спектрографического анализа оптическое требование состоит, например, в том, чтобы профили линий хл,г были бы как можно ближе друг к другу. Это приводит к минимальным флюктуациям отношения Ix/Ir за счет разъюстиров-Kft спектографа, обусловленной изменением температуры. [c.276]

    Вследствие степенной зависимости между отношением Ix/Ir и искомой концентрацией с спектрометрический градуировочный график нелинеен (рис. 6.5, а). В противоположность этому в спектрографическом анализе, где используется значение логарифма отношения интенсивностей Ixlh, градуировочный график обычно линеен (рис. 6.5, б). Если интенсивностью фона / под линией х нельзя пренебречь, то для линии х будет измерена интенсивность / -f /и и окончательно получено значение (1х + /и)//г. Это приведет к смещению спектрометрической аналитической кривой в направлении оси отношения интенсивностей на величину / //, (рис. 6.6, а). Мешающее влияние фона проявляется в искривлении (загибе) спектрографической аналитической прямой (разд. 4.6.2 и 5.5.7 рис. 6.6,6). Учет фона спрямляет спектрографическую аналитическую кривую и не изменяет кривизны спектрометрического графика. Поэтому довольно легко ввести поправку на фон, которая, как было показано ранее, сводится к параллельному смещению кривой. Последнее можно очень просто осуществить с помощью электроники. Нулевую точку потенциометрического самописца или расчетного контура можно изменить смещением напряжения. При этом все регистрируемые [c.221]

    Было показано, что в спектрографическом анализе линии х и г должны располагаться близко друг к другу по двум причинам. С одной стороны, при большом расстоянии между линиями возрастают фотографические погрешности, а с другой — параметры характеристической кривой (или кривой преобразованных почернений) быстро изменяются вне области длин волн 2500—3100 А. Последнее существенно усложняет методику анализа. В противоположность этому в случае измерения интенсивности линий с помощью фотоумножителей точность измерений не зависит от расстояния между линиями (разд. 5.10 в [1]). Поскольку между фототоком и интенсивностью света существует простое линейное соотношение, зависимость чувствительности фотоумножителей от длины волны в относительно широких пределах не играет роли. Поэтому различие в длинах волн линий аналитических пар может быть значительным. Зависимость от длины волны параметров фотоумножителя можно скомпенсировать соответствующим выбором динодных напряжений. Последние регулируют в соответствии с желаемой чувствительностью, которая зависит от возможного соотношения минимальных и максимальных величин интенсивностей измеряемой линии. Кроме того, фотоумножители обычно можно использовать в более широкой области длин волн, чем фотоэмульсии. Поэтому фотоум ножи- [c.251]

    Наибольшие ограничения спектрометрического метода связаны с тем, что выходная щель обычно много шире собственной ширины измеряемой линии. Ранее было показано, что это делается для того, чтобы устранить мешающие эффекты оптической нестабильности. Хотя это обстоятельство является достоинством при определении высоких концентраций (см. выше), его следует рассматривать в качестве недостатка при определении следов элеменов. Вследствие широких выходных щелей отношение суммарной интенсивности линии и фона к интенсивности фона, т. е. (/ + 1и)/1и, заметно изменяется, что приводит к увеличению предела обнаружения. Другой недостаток с точки зрения определения следов элементов состоит в том, что на приборах обычной конструкции невозможно произвести точный учет фонового излучения. Иными словами, нельзя одновременно интегрировать интенсивности // + / и / , где / — интенсивность фона рядом с линией. Следовательно, невозможно вычесть величну / из суммарной величины / + / и тем самым ввести поправку на фон. Вместо этого приходится последовательно определять величины I -Ь 1и) 1г и 1и11г и затем вычислять / //г путем вычитания последней из первой величины. Точность определения этой расчетной величины зависит от воспроизводимости неоднократно повторенных измерений, т. е. по существу от статистической воспроизводимости измеряемых данных. В противоположность этому в спектрографическом методе величины 5/+и и измеряются рядом в одном спектре. Измерения можно повторить в параллельных спектрограммах, и поэтому такой способ дает более точный учет фона. Однако в спектрографическом анализе главные погрешности обусловлены локальной неоднородностью фотопластинки. Возможности [c.260]

    Основные принципы способа последних линий и источники помех в случае визуального метода спектрального анализа те же, что и в спектрографическом анализе (разд. 5.3.3). Величины концентраций Сь Сг. .. с здесь также можно привести в соответствие с визуальной наблюдаемостью различных аналитических линий Хи Х2 . Хп- В этом случае вышеупомянутые величины концентраций также в значительной степени зависят от разрешающей силы оптического прибора и ширины щели. Особо тщательно необходимо поддерживать па стабильном уровне интенсивность фона. Например, если в апертуру коллпмагора попадает свет от светящегося конца угольного противоэлектрода, то может исчезнуть линия, которая в ипо.м случае еще наблюдается. [c.298]

    Вышеизложенное объясняет причину удовлетворительных результатов спектрографического анализа при сравнительно небольшом, а главное, малоотличающемся фоне на измеренных линиях эталонов и проб. Резкое различие фона на спектрограммах приводит к значительным погрешностям. Решить эту проблему может эксперимент, позволяющий получить и промерить в чистом виде /)д, Вф, Вц+ф. [c.93]

    Экспозиция. При проведении фотографического атом-но-абсорбционного анализа время экспозиции должно быть таким же, что и при проведении эмиссионного спектрографического анализа, то есть в общем случае, оно не должно превышать 30—60 сек. Исходя из этого, а также, учитывая целесообразность использования обычных спектральных фотопластинок, чувствительность которых, как известно, невысока, следует считать применение высокоинтенсивных спектральных ламп необходи.мым условием проведения атомно-абсорбционного спектрографического анализа. Современные достижения в развитии источников света и тенденции к повышению их яркости снимают вопрос об экспозиций с точки зрения выбора источника света и вопрос о выборе экспозиции сводится только к выбору оптимального промежутка времени,, в течение которого обеспечивалось бы достаточно плотное почернение резонансной линии. Время экспозиции не должно быть слишком мало с тем, чтобы не вносить ошибки в результаты анализа за счет неточности в его измерении. [c.59]

    При качественном анализе проводят относительное измерение длин волн. Положение искомой линии определяют чаще всего сравнением со спектром железа [15]. Отсутствие линии надежно свидетельствует об отсутствии элемента. Уверенный вывод о присутствии данного элемента (ввиду возможного наложения линий) делают при наличии по крайней мере двух линий обнаруживаемого элемента. При количественном анализе измеряемой величиной является почернение фотопластинки, описываемое уравнением (5.2.9). Необходимыми предпосылками количественного определения являются съемка всех спектров при одинаковых условиях и калибровка прибора по пробам известного состава. Особенно часто спектрографический анализ выполняют в полуколичественном варианте. При визуальном сравнении плотности почернений для стандарта и анализируемой пробы можно оценить порядок содержания определяемого элемента (например, 10 , 3-10 , Ю- % или при более тонких градациях 10" 5-10 , 2-10 , 10 %). В полуколичественном анализе охватывается интервал концентраций определяемого элемента в несколько порядков. Несколько более точные измерения плотностей почернения возможны со шкалой стандартных плотностей почернения (зрс1-шкала ) по Аддинку [16, 17]. Эта шкала представляет собой полоску фотобумаги с изображением около десятка расположенных рядом пронумерованных линий с увеличивающимся почернением. Для измерения выбирают те линии 8р(1-шкалы, интенсивность которых совпадает с интенсивностью сравниваемых спектральных линий. Эти линии зрс1-шкалы используют в качестве эталона при калибровке и работе. [c.195]

    В качестве внутреннего стандарта при спектрографическом методе анализа веществ на примесные элементы часто используется фон в спектре. В этом случае иптепсивиость фона измеряется справа и слева от спектральных линий определяемого элемента, а затем усредняется. [c.94]

    Разработаны два варианта атомно-эмиссионного спектрального анализа спектрографический и спектрометрический, отличающиеся способом регистрации аналитического сигнала. Первый способ основан на фотографировании спектров на фотопластинку или фотопленку, второй — на измерении интенсивности спектральных линий с помоп ью с эотоэлементов и фотоумножителей. [c.96]

    Спектрометрический метод анализа отличается от спектрографического метода способом измерения выходного аналитического сигиала и основан на фотоэлектрической его регистрации. В основе спектральных методов с фотоэлектрической регистрацией спектров лежат те же зависимости, которые используются в визуальных и фотографических методах анализа. В современных приборах применяются такие радиотехнические схемы, которые представляют выходной сигнал как в виде i-рафнческой зависимости величины, пропорциональной иитенсивности спектральной линии от концентрации определяемого элемента, так и в виде цифровой записи. [c.111]

    Эти три спектрографических метода эффективны для анализа поверхностей вследствие значительной информации, получаемой при возбуждении нескольких первых атомных слоев. Одним из ограничений методов РФЭС, УФЭС и ЭОС является то, что эффективная глубина выхода электронов изменяется в зависимости от энергии возбуждения и от вида образца (например, порошка, плоского кристалла). Недавний обзор [40] показал, что глубина выхода электронов, как правило, в два раза меньше для ЭОС чем для РФЭС (преимущественно вследствие более низких значений кинетической энергии выбиваемых электронов) и что глубина выхода электронов в методе УФЭС может значительно изменяться. Типичными интервалами глубин являются для ЭОС — 0,2—2,4 нм, для РФЭС — 0,7—4,0 нм и для УФЭС — 0,3—5,0 нм. Эти вариации в глубинах выхода электронов являются причиной трудностей количественных измерений. Метод ЭОС использовался более часто и более успешно для этой цели, чем другие два метода. Посредством подбора подходящей линии спектра с соответствующей энергией метод РФЭС может быть использован для количественных измерений. С другой стороны, метод УФЭС не может быть приспособлен для этой цели, потому что спектры сами по себе не пригодны для прямой идентификации элементов, так как обычно они состоят из широких пиков, наложенных на фон рассеяния электронов [40]. [c.153]


Смотреть страницы где упоминается термин Линии спектрографического анализа для: [c.98]    [c.14]    [c.607]    [c.274]    [c.36]    [c.116]    [c.297]    [c.298]    [c.5]    [c.57]    [c.59]    [c.275]    [c.113]    [c.149]   
Спектрохимический эммисионный анализ (1936) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Линии анализе



© 2024 chem21.info Реклама на сайте