Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция ионов на поверхностях

    Теория Нернста приводит к ошибочному выводу о независимости стандартного электродного потенциала от природы растворителя, поскольку величина Р не является функцией свойств растворителя. Нельзя также считать правильным первое положение теории, поскольку скачок потенциала на границе металл — раствор не совпадает с электродным потенциалом, а представляет его часть. В электродный потенциал входят некоторые величины, характеризующие специфическую адсорбцию ионов на поверхности металла, а также работу выхода иона из данного металла. Недостатком теории Нернста является и то, что понятие об электролитической упругости растворения металла не имеет определенного физического смысла. Все это привело к необходимости пересмотра теории возникновения электродного потенциала. [c.164]


    На практике наиболее часто наблюдается адсорбция ионов на поверхности кристалла. Представим себе, что в раствор иодида калия внесены кристаллы иодида серебра (рис. 67 а). На поверхности этих кристаллов в определенном порядке расположены ионы Ад+ и 1 . Раствор содержит ионы К" " и 1 , Иодид-ионы, которые могут образовывать с ионами серебра, находящимися в кристаллической решетке, малорастворимое соединение, будут адсорбироваться из раствора на поверхности кристалла, создавая на ней избыток отрицательных зарядов. Ионы калия не адсорбируются, так как они не образуют с иодид-ионами твердого тела малорастворимого соединения, но под действием электростатического притяжения будут располагаться вблизи поверхности. Иодид-ионы, сорбированные поверхностью, и ионы калия, нахо  [c.172]

    В целом адсорбция ионов на поверхности окислов достаточно сложна, так как она сопровождается целым рядом возможных процессов. Рассмотрим сначала ионный обмен. Обмен катионов можно осуществить двумя методами. Если поверхность окисла покрыта только протонами, т, е. не содержит адсорбированных ионов другого металла, адсорбцию проводят при достаточно высоком pH раствора, в котором находится адсорбируемый катион, так что поверхность обменивает ионы водорода на ионы металла. Эту весьма важную для адсорбции катионов реакцию в общем виде можно записать следующим образом  [c.43]

    Адсорбция ионов на поверхности диэлектриков [c.34]

    Выще было показано, что пластовая жидкость—носитель электрических зарядов из-за трения фаз, адсорбции ионов на поверхности взвещенных фаз и контакта с заряженными поверхностями. В то же время скелет пласта и окружающие горные породы, как правило, являются носителями собственного электрического поля. [c.129]

    При адсорбции иона на поверхности диэлектрика, также состоящего из ионов, между ионами адсорбента и адсорбированным ионом должны возникать кулоновские силы. Положительный ион, адсорбированный на отрицательном ионе адсорбента, притягивается этим ионом, но отталкивается другими ионами адсорбента, расположенными в непосредственной близости вокруг адсорбирующего отрицательного иона затем он снова притягивается ионами последующего слоя и т. д. В результате всех этих взаимодействий адсорбированный нон испытывает довольно слабое притяжение. Электростатическое поле, создаваемое вблизи кубической грани поверхности кристалла галоидной соли щелочного металла, выражается следующим уравнением, которое было выведено Хюккелем [30]  [c.34]


    В разделе V, 3 мы рассматривали адсорбцию ионов на поверхности металлов, исходя из поляризации идеально поляризуемой структуры под влиянием иона. Диэлектрики обладают более ограниченной поляризуемостью. Поляризация приводит к смещению электронов в атомах или группах атомов диэлектрика, а также к смещению ионов от их нормального положения [31]. Вместо уравнения (16), которое справедливо для адсорбента с идеальной поляризуемостью, в случае диэлектрика получается следующее выражение для слагаемого энергии адсорбции, обусловленного электростатической индукцией  [c.36]

    Третий пример образования двойного электрического слоя, как и второй, отвечает идеально поляризуемому электроду, но в таком растворе, где адсорбция ионов на поверхности электрода обусловлена не только чисто кулоновскими силами, а и другими более сложными [c.27]

    Третий случай образования двойного электрического слоя, как и второй, отвечает идеально поляризуемому электроду, но в таком растворе, где адсорбция ионов на поверхности электрода обусловлена не только чисто кулоновскими силами, а и другими более сложными видами взаимодействия, которые обычно объединяются общим тер- [c.29]

    Гейровский и Илькович образование максимума первого рода объясняют адсорбцией ионов на поверхности ртутной капли. При наложении потенциала у поверхности ртутной капли образуется неоднородное электрическое поле, которое способствует адсорбции ионов и дипольных молекул воды. Так как в самом начале электролиза скорость адсорбции превышает скорость разряда ионов, то на поверхности капли создается избыточная концентрация деполяризатора и при достижении потенциала электрохимической реакции величина тока будет больше предельного. При достижении потенциала, при котором скорость разряда ионов будет выше скорости адсорбции, поверхностный слой будет обедняться электро-восстанавливающимися веществами и полярографическая кривая примет отрицательный наклон. [c.185]

    Адсорбция ионов на поверхности осадка характеризуется уравнением типа (5.21), но имеет некоторые особенности по сравнению с адсорбцией молекул. Особенности связаны с избирательной адсорбцией ионов ионным кристаллом и с зарядом ионов. В соответствии с правилом Панета — Фаянса — Гана осадок адсорбирует из раствора те ионы, которые образуют наименее растворимое или наименее диссоциированное соединение с одним из ионов осадка. В первую очередь на поверхности осадка адсорбируются ионы, входящие в состав осадка и имеющиеся в растворе в избытке. Например, при осаждении сульфата хлоридом бария в начальный момент и до полного осаждения сульфата бария на осадке будут адсорбироваться 504 -ионы, так как в это время они находятся в избытке, а после полного осаждения BaS04, когда в раствор введен избыток хлорида бария, адсорбироваться будут ионы Ва +. Эти ионы образуют первичный слой, связанный с осадком довольно прочно. К ионам первичного слоя притягиваются ионы противоположного заряда (противоионы), которые удерживаются менее прочно и образуют так называемый вторичный или диффузный слой. В качестве противоионов вторичного слоя выступают ионы, образующие наименее растворимое или наименее диссоциированное соединение с ионами первичного слоя. При прочих равных условиях адсорбция иона увеличивается с увеличением его заряда. Число адсорбированных ионов возрастает также с увеличением поверхности осадка т. е. мелкокристаллические и аморфные осадки адсорбируют больше ионов, чем крупнокристаллические. С увеличением температуры адсорбция уменьшается. [c.96]

    Понижение поверхностной энергии ртути в контакте с водными растворами различных веществ объясняется адсорбцией ионов на поверхности ртути, и отсюда — уменьшением неуравновешенности атомов ртути в поверхностном слое. Как видим, поверхностная энергия является функцией строения граничащих фаз и.зависит от температуры и от характера взаимодействия поверхности с молекулами окружающей среды, а также от концентрации веществ, растворенных в исследуемой жидкости. [c.212]

    Окклюзия — это захват посторонних ионов в процессе образования осадка. Захват может осуществляться, во-п )вых, вследствие адсорбции ионов на поверхности растущих кристаллов по правилам, описанным выше, в процессе роста кристаллов примеси оказываются внутри осадка (внутренняя адсорбция), во-вторых, в результате захвата маточного раствора, попадающего в трещины и полости в осадке (инклюзия). Окклюзия — основной вид загрязнения осадков. Очевидно, что вид и количество примесей в осадке будут зависеть от скорости его формирования и порядка сливания растворов. Например, сульфат бария можно получить, прибавляя серную кислоту к раствору соли бария, и наоборот. В первом случае образующиеся кристаллы сульфата бария будут адсорбировать в процессе роста ионы Ва и в качестве противоионов СГ, т. е. осадок будет преимущественно окклюдировать хлорид бария (возможна небольшая окклюзия и серной кислоты). Во втором случае кристаллы сульфата бария будут преимущественно адсорбировать ионы SOj и в качестве противоионов HjO. В этом случае осадок окклюдирует преимущественно сер- [c.19]


    Допустим, что мы имеем плоский твердый диэлектрик в контакте с раствором электролита и что существует некоторое тангенциальное электрическое поле (рис. 62-1). В результате специфической адсорбции ионов на поверхности может существовать двойной слой, а это означает, что в диффузном слое будет находиться компенсирующий заряд. Строение диффузного слоя обсуждалось в разд. 52. Благодаря тангенциальному электрическому полю на заряд диффузного слоя действует некоторая сила. Поскольку этот слой является частью раствора, он подвижен, и можно ожидать, что под действием приложенной силы возникнет движение относительно твердого тела. [c.217]

    Форма электрокапиллярной кривой и положение фн.з могут измениться при специфической адсорбции ионов на поверхности ртути. Особенно характерны эти изменения в случае адсорбции ионов ПАВ. [c.70]

    Плоская часть электрического двойного слоя — слой Штерна. Различие в зависимостях потенциала двойного слоя г ) от расстояния до границы раздела фаз, вычисленных на основании модели Гуи — Чепмена и найденных из экспериментальных данных, впервые объяснено Штерном [28] и несколько позднее Грэмом [29, 30]. Авторы работ [28— 30] приняли во внимание, что ионы имеют определенные размеры и поэтому могут приближаться только на конечное расстояние б к поверхности раздела (рис. 5). Следовательно, в уравнение Гуи—Чепмена необходимо подставить вместо гро величину гро- Кроме того, как показано, в уравнении Больцмана следует учесть энергию адсорбции ионов на поверхности. Соответствующие постоянные, входящие в показатели степени основания натуральных логарифмов, имеют большое значение при изучении специфического влияния ионов. [c.20]

    В присутствии электролитов капли вследствие адсорбции ионов на поверхности раздела могут приобретать заряд. Отталкивание одинаково заряженных капель препятствует агломерации. Анионы обычно лучше растворимы в органических жидкостях, чем катионы, и если диспергирована органическая фаза, то кап-лп заряжаются отрицательно. Заряженная капля находится в окружении неподвижного диффузного слоя ионов противоположного заряда. Когда такой комплекс движется относительно неподвижной сплошной фазы, на поверхности сдвига возникает потенциал, так называемый дзета-потенциал. Последний является важным фактором, препятствующим агломерации [c.494]

    Работы по исследованию адсорбции ионов на поверхности стекла методом меченых атомов. [c.862]

    Особенности адсорбции электролитов. Адсорбция ионов на поверхности твердых адсорбентов в противоположность молекулярной (физической) адсорбции в большинстве случаев является необратимой активированной адсорбцией. Иногда она представляет собой обычную химическую реакцию. Поэтому при повышении температуры величина адсорбции ионов в противоположность моле- [c.171]

    Ионные и молекулярные слои на поверхности частиц дисперсной фазы. Адсорбция ионов на поверхности коллоидных частиц, т. е. образование на их поверхности двойного электрического слоя, уменьшает агрегативную неустойчивость (при неизменном значении кинетической устойчивости) за счет возрастания сил электростатического отталкивания между мицеллами. Вследствие этого относительная роль кинетической устойчивости, а значит и устойчивость коллоидной системы в целом возрастают. При адсорбции на поверхности коллоидных частиц молекул поверхностно-активных веществ агрегативная неустойчивость (при неизменном значении кинетической устойчивости) сокращается за счет уменьшения свободной поверхностной энергии, приходящейся на одну частицу, поскольку при этом уменьшается межфазное натяжение. [c.325]

    С целью выяснения влияния хемосорбированного метанола на строение ионного двойного электрического слоя исследовали зависимость адсорбции ионов от потенциала электрода в подкисленных растворах, содержащих как слабо поверхностно- активные ионы (Ыа+, и ЗОг ), так и сильно поверхностно-активные (2п+2, Т1+, СГ и Вг ). Измерения проводили с помощью изотопов Ка-22, Сз-134, Zn-65, Т1-204, 8-35, С1-36 и Вг-82. Способы приготовления растворов и подготовки электродов были такими же, как и в [11, 12]. Потенциал электрода, поддерживаемый потенциостатом, сдвигался в анодную область от Тг =0, и через каждые 50 мв после выдерживания электрода при данном значении потенциала по 15—30 мин измеряли величину адсорбции ионов. Наши данные по адсорбции ионов на поверхности платинированной платины, свободной от метанола, полностью согласуются с результатами более ранних работ [13—16]. [c.41]

    Электростатические заряды образуются также при перемешивании жидкого водорода. Накопление зарядов происходит в основном в результате адсорбции ионов на поверхности стенок трубопроводов. Величина накапливаемого электрического заряда зависит в основном от электрической проводимости, вязкости водорода, скорости его потока, содержания в нем примесей. Минимальное напряжение, при котором происходит пробой разрядного промежутка, равного 1 см, в газообразном водороде при атмосферном давлении и температуре 293 К равно 17,5 кВ/см. [c.625]

    Импульсные методы изучения ионной адсорбции введены Гильманом [32—34] и широко использованы Багоцким, Васильевым и сопр. [35—42]. Эти методы основаны на изучении адсорбции водорода и кислорода при одновременной адсорбции ионов на поверхности электрода. Адсорбция ионов приводит либо к уменьшению суммарной адсорбции кислорода и водорода, либо к перераспределению адсорбированного водорода между центрами с различной энергией связи. Импульсные методы относятся к числу косвенных методов изучения адсорбции. Главное возражение против этих методов заключается в том, что при определении заполнения поверхности адсорбированными ионами не учитывается изменение стехиометрии вытеснения адсорбированного водорода и кислорода по мере заполнения поверхности адсорбатом [43]. Интерес к импульсным методам вызван тем, что они применимы к гладким электродам с малыми поверхностями. [c.59]

    В потоке жидкости электростатические заряды образуются в основном в результате адсорбции ионов на поверхности стенок трубопроводов. Рассеянный слой ионов противоположного заряда удерживается на определенном расстоянии от поверхности стенок вследствие равновесия сил, обусловленных электрическим притяжением и тепловой диффузией. Подобная модель обычно называется электрическим двойным слоем и может рассматриваться аналогично пластинам конденсатора. Механизм явления, определяющего величину электростатического заряда, возникающего в потоке жидкости, сложен. [c.212]

    Штерн также высказал мысль о необходимости учета специфической адсорбции ионов на поверхности металла. Поэтому в растворах, содержащих поверхностно активные ионы, их число в плотной (гельмгольцевой) части двойного слоя может быть не эквивалентно заряду поверхности металла, а превосходить его на некоторую величину, зависящую от свойств ионов и заряда металла, т. е. [c.159]

    На границе соприкосновения различных фаз (например, металл -электролит) возникает пространственное распределение электрических зарядов в виде так называемого двойного электрического рлоя. Разделение зарядов может вызываться различными причинами переходом ионов из электрода в раствор (или наоборот) - ионный двойной электрический слой специфической адсорбцией ионов на поверхности электрода - адсорбционный слой ориентацией полярных молекул растворителя и поверхности электрода - ориентационный слой. Во всех случаях двойной слой электронейтрален. [c.36]

    Если первое требование вьшолнить легко, то два других - довольно трудно, если вообще возможно. Из-за летучести элементов или их соединений, образования нерастворимых осадков, адсорбции ионов на поверхности сосуда неизбежно будут возникать потери. Кроме того, из посуды и окружающей среды лаборатории, реактивов происходит загрязнение образцов [c.232]

    При адсорбции иона на поверхности металла происходит поляризация металла под влиянием электрического заряда иона. Эту поляризацию можно представить таким образом, как если бы в металле на таком же расстоянии от его поверхности, на которое удален индуцирующий заряд, создава гся равный ему электрический заряд противоположного знака (электрическое изображение). Следовательно, то притяжение, которое должен при этом испытывать адсорбированный ион, может быть представлено как притяжение между ионом и его изображением, удаленным от иона на расстояние 2г, если в качестве г принять расстояние между ионом и поверхностью. Здесь мы встречаемся с трудностью, связанной с отсутствием ясного представления о том, где расположена поверхность металла или, вернее, граница той области, в пределах которой пребывают электроны проводимости. Сила изображения равна [c.33]

    Если специфическая адсорбция ионов на поверхности электрода является обратимой, то форма спектров AR/Ro—X при этом обычно ие изменяете , а изменение кривых AR/Ro—Ео при = onst может быть связано с соответствующим изменением емкости. Поэтому сильное искажение спектров электроотражения может служить указанием на образование химических соединений. Такие данные были получены в водных растворах KI при больших анодных потенциалах серебряного и золотого электродов. При этом на кривых AR/Ro—I в области энергии квантов света h =h / k, соответствующей энергии диссоциации соединения Ме—1, наблюдался минимум. Аналогичные минимумы наблюдались в спектрах электроотражения р-полярпзованного света от поверхности свинцового и индиевого электродов при адсорбции на них молекул анилина. Они были связаны с частичным переходом л-электронов ароматического ядра в незаполненную зону проводимости металла при образовании адсорбционного комплекса с переносом заряда. [c.184]

    Адсорбция ионов на поверхности кристаллического твердого тела подчиняется правилу Фаянса — Ланета , по которому из раствора адсорбируется тот из ионов, который входит в состав кристаллической решетки адсорбента или может образовывать с одним ИЗ ионов решетки малорастворимое соединение. [c.172]

    Селективность адсорбции ионов. Адсорбция ионов на поверхности твердых частиц, находящихся в контакте с маточным раствором, обус-ло,влена электрическим притяжением. Однако адсорбция ие обязательно будет селективиой. Существует четыре фактора, которые влияют а способность коллоидов адсорбировать один тип ионов, а е другой. [c.227]

    Кроме того, следует отметить могущие происходить выделение восстанавливающегося 1юна из комплекса и адсорбцию иона на поверхности электрода. Возможны и иные процессы. Каждая из этих стадий может быть самой медленной из перечисленных, составляющих акт восстановления. [c.238]

    Различными авторами было показано, что при большом числе ионогенных групп диссоциация полиосновных кислот приводит к тем же результатам, что и адсорбция ионов на поверхности раздела доннановское равновесие (см. гл. V) также не зависит от природы фиксированных коллоидных частиц, много общего наблюдается в обменной адсорбции ионов и др. Таким образом, большинство проблем электрохимического равновесия можно рассматривать одновременно для лиофобных коллоидов, белков и полиэлектролитов. [c.16]

    Довольно близка но своей физич. сущности к понной Э. обнаруженная в ряде веществ, напр, в коллоидах, т. п. молиионная Э. Под действием электрич. ноля заряженные частпцы (молипоны), к-рые в нек-рых условиях могут образовываться, напр., путем адсорбции ионов на поверхности частиц дисперсной фазы, приходят в движение, чем и обеспечивают протекание тока. [c.487]


Смотреть страницы где упоминается термин Адсорбция ионов на поверхностях: [c.84]    [c.84]    [c.84]    [c.221]    [c.18]    [c.217]    [c.18]    [c.33]    [c.68]    [c.43]   
Физика и химия поверхностей (1947) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция ионитах,

Адсорбция ионная

Адсорбция ионов



© 2025 chem21.info Реклама на сайте